首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 366 毫秒
1.
The nucleotide degrading enzymes, ectonucleotidases, present on the platelet surface of human pregnant with a normal (without complications) or high risk for thrombosis (hypertension and gestational diabetes) were studied. NTPDase (E.C. 3.6.1.5, CD39) and 5′-nucleotidase (E.C. 3.1.3.5, CD73) activities of four patient groups, non-pregnant (NP, n = 18), pregnant without complications (P, n = 25), pregnant with hypertension (HP, n = 15) and pregnant with gestational diabetes mellitus (GDP, n = 10), were analyzed. Increased NTPDase activities were observed in the groups P (37.0%, S.D. = 2.03 and 34.0%, S.D. = 3.19), HP (40.0%, S.D. = 3.32 and 56.0%, S.D. = 3.25) and GDP (23.0%, S.D. = 2.30 and 42.0%, S.D. = 2.26) in comparison to the control group NP (p < 0.01, S.D. = 1.92 and S.D. = 2.48) when ATP and ADP were used as substrate, respectively. AMP was used as substrate to determine the 5′-nucleotidase activities, which showed to be elevated in the groups P (45.0%, S.D. = 1.73), HP (54.0%, S.D. = 2.64) and GDP (68.0%, S.D. = 1.69) when compared to the control group NP (p < 0.01, S.D. = 1.26). However, no statistically significant differences were observed between the groups P, HP and GDP. As a consequence, the enhanced ATP, ADP and AMP hydrolysis was ascribed to the pregnancy itself, independent of a normal or high risk for thrombosis. The enhanced NTPDase and 5′-nucleotidase activities in platelets suggest that these enzymes are involved in the thromboregulation process in the pregnancy.  相似文献   

2.
Piracetam improves cognitive function in animals and in human beings, but its mechanism of action is still not completely known. In the present study, we investigated whether enzymes involved in extracellular adenine nucleotide metabolism, adenosine triphosphate diphosphohydrolase (NTPDase), 5′-nucleotidase and adenosine deaminase (ADA) are affected by piracetam in the hippocampus and cerebral cortex of animals subjected to scopolamine-induced memory impairment. Piracetam (0.02 μmol/5 μL, intracerebroventricular, 60 min pre-training) prevented memory impairment induced by scopolamine (1 mg/kg, intraperitoneal, immediately post-training) in the inhibitory avoidance learning and in the object recognition task. Scopolamine reduced the activity of NTPDase in hippocampus (53 % for ATP and 53 % for ADP hydrolysis) and cerebral cortex (28 % for ATP hydrolysis). Scopolamine also decreased the activity of 5′-nucleotidase (43 %) and ADA (91 %) in hippocampus. The same effect was observed in the cerebral cortex for 5′-nucleotidase (38 %) and ADA (68 %) activities. Piracetam fully prevented scopolamine-induced memory impairment and decrease of NTPDase, 5′-nucleotidase and adenosine deaminase activities in synaptosomes from cerebral cortex and hippocampus. In vitro experiments show that piracetam and scopolamine did not alter enzymatic activity in cerebral cortex synaptosomes. Moreover, piracetam prevented scopolamine-induced increase of TBARS levels in hippocampus and cerebral cortex. These results suggest that piracetam-induced improvement of memory is associated with protection against oxidative stress and maintenance of NTPDase, 5′-nucleotidase and ADA activities, and suggest the purinergic system as a putative target of piracetam.  相似文献   

3.
Guanidinoacetate methyltransferase (GAMT) deficiency is a disorder of creatine metabolism characterized by low plasma creatine concentrations in combination with elevated guanidinoacetate (GAA) concentrations. The aim of this work was to investigate the in vitro effect of guanidinoacetate in NTPDase, 5′-nucleotidase and acetylcholinesterase activities in the synaptosomes, platelets and blood of rats. The results showed that in synaptosomes the NTPDase and 5′-nucleotidase activities were inhibited significantly in the presence of GAA at concentrations of 50, 100, 150 and 200 μM (P < 0.05). However, in platelets GAA at the same concentrations caused a significant increase in the activities of these two enzymes (P < 0.05). In relation to the acetylcholinesterase activity, GAA caused a significant inhibition in the activity of this enzyme in blood at concentrations of 150 and 200 μM (P < 0.05), but did not alter the acetylcholinesterase activity in synaptosomes from the cerebral cortex. Our results suggest that alterations caused by GAA in the activities of these enzymes may contribute to the understanding of the neurological dysfunction of GAMT-deficient patients.  相似文献   

4.
Ecto-nucleotidases, one of the main mechanisms involved in the control of adenosine levels in the synaptic cleft, have shown increased activities after the pilocarpine model of epilepsy. Here we have investigated the effect of the antiepileptic drugs (AEDs) on ecto-nucleotidase activities from hippocampal and cerebral cortical synaptosomes of rats at seven days after the induction of the pilocarpine model. Expression of these enzymes were investigated as well. Our results have demonstrated that phenytoin (50 mg/kg) and carbamazepine (30 mg/kg) were able to prevent the increase in ecto-nucleotidase activities elicited by pilocarpine in brain synaptosomes. However, sodium valproate (at 100 mg/kg) was only able to avoid the increase on ATP and ADP hydrolysis in hippocampal synaptosomes. Increase on ATP hydrolysis in hippocampal synaptosomes was also prevented by sodium valproate at 286 mg/kg, which corresponds to ED50 for pilocarpine model. NTPDase1, NTPDase2, NTPDase3, and ecto-5′-nucleotidase expressions were not affected by pilocarpine in cerebral cortex. However, expressions of NTPDase2, NTPDase3, and ecto-5′-nucleotidase were increased by pilocarpine in hippocampus. Our results have indicated that previous treatment with AEDs was able to prevent the increase in hippocampal ecto-nucleotidases of pilocarpine-treated rats. These findings have shown that anticonvulsant drugs can modulate plastic events related to the increase of nucleotidase expression and activities in pilocarpine-treated rats.  相似文献   

5.
6.
ATP is an important excitatory neurotransmitter and adenosine acts as a neuromodulatory structure inhibiting neurotransmitters release in the central nervous system. Since the ecto-nucleotidase cascade that hydrolyzes ATP to adenosine is involved in the control of brain functions and previous studies realized in our laboratory have recently reported that acute administration of Arg decreases the NTPDase and 5′-nucleotidase activities of rat blood serum, in the present study we investigated the effect of arginine administration on NTPDase and 5′-nucleotidase activities by synaptosomes from hippocampus of rats. First, sixty-days-old rats were treated with a single or a triple intraperitoneal injection of arginine (0.8 g/Kg) or an equivalent volume of 0.9% saline solution (control) and were killed 1 h later. Second, rats received an intracerebroventricular injection of 1.5 mM arginine solution or saline (5 μL) and were killed 1 h later. We also tested the in vitro effect of arginine (0.1–1.5 mM) on nucleotide hydrolysis in synaptosomes from rat hippocampus. Results showed that intraperitoneal arginine administration did not alter nucleotide hydrolysis. On the other hand, arginine administered intracerebroventricularly reduced ATP (32%), ADP (30%) and AMP (21%) hydrolysis, respectively. In addition, arginine added to the incubation medium, provoked a decrease on ATP (19%), ADP (17%) and AMP (23%) hydrolysis, respectively. Furthermore, kinetic studies showed that the inhibitory effect of arginine was uncompetitive in relation to ATP, ADP and AMP. In conclusion, according to our results it seems reasonable to postulate that arginine alters the cascade involved in the extracellular degradation of ATP to adenosine.  相似文献   

7.
Apyrase and 5′-nucleotidase activities were analyzed in an ethidium bromide (EB) demyelinating model associated with interferon-β (IFN-β). The animals were divided in groups: I, control (saline); II, saline and IFN-β; III, EB and IV, EB and IFN-β. After 7, 15 and 30 days the animals (n=5) were sacrificed and the cerebral cortex was removed for synaptosome preparation and enzymatic assays. Apyrase activity using ATP as substrate increased in groups II, III and IV (P<0.001) after 7 days and in groups III and IV (P<0.001) after 15 days. Using ADP as substrate, an activation of this enzyme was observed in group III (P<0.05) after seven and 15 days. The 5′-nucleotidase activity increased in group III (P<0.05) after 7 days and in groups II, III and IV (P<0.001) after 15 days. After 30 days treatment, no significant alteration was observed in enzyme activities. Results showed that apyrase and 5′-nucleotidase activities are altered in demyelination events and that IFN-β was able to regulate the adenine nucleotide hydrolysis.  相似文献   

8.
Thyroid hormones have an influence on the functioning of the central nervous system. Furthermore, the cholinergic and purinergic systems also are extensively involved in brain function. In this context, quercetin is a polyphenol with antioxidant and neuroprotective properties. This study investigated the effects of (MMI)-induced hypothyroidism on the NTPDase, 5′-nucleotidase, adenosine deaminase (ADA), and acetylcholinesterase (AChE) activities in synaptosomes of rats and whether the quercetin can prevent it. MMI at a concentration of 20 mg/100 mL was administered for 90 days in the drinking water. The animals were divided into six groups: control/water (CT/W), control/quercetin 10 mg/kg, control/quercetin 25 mg/kg, methimazole/water (MMI/W), methimazole/quercetin 10 mg/kg (MMI/Q10), and methimazole/quercetin 25 mg/kg (MMI/Q25). On the 30th day, hormonal dosing was performed to confirm hypothyroidism, and the animals were subsequently treated with 10 or 25 mg/kg quercetin for 60 days. NTPDase activity was not altered in the MMI/W group. However, treatment with quercetin decreased ATP and ADP hydrolysis in the MMI/Q10 and MMI/Q25 groups. 5′-nucleotidase activity increased in the MMI/W group, but treatments with 10 or 25 mg/kg quercetin decreased 5′-nucleotidase activity. ADA activity decreased in the CT/25 and MMI/Q25 groups. Furthermore, AChE activity was reduced in all groups with hypothyroidism. In vitro tests also demonstrated that quercetin per se decreased NTPDase, 5′-nucleotidase, and AChE activities. This study demonstrated changes in the 5′-nucleotidase and AChE activities indicating that purinergic and cholinergic neurotransmission are altered in this condition. In addition, quercetin can alter these parameters and may be a promising natural compound with important neuroprotective actions in hypothyroidism.  相似文献   

9.
This study investigated the effect of quercetin on nucleoside triphosphate diphosphohydrolase (NTPDase), 5′-nucleotidase, adenosine deaminase (ADA), and acetylcholinesterase (AChE) activities in synaptosomes from cerebral cortex of adult rats exposed to cadmium (Cd). Rats were exposed to Cd (2.5 mg/Kg) and quercetin (5, 25 or 50 mg/Kg) by gavage for 45 days. Rats were randomly divided into eight groups (n = 8–10): saline/ethanol, saline/Querc 5 mg/kg, saline/Querc 25 mg/kg, saline/Querc 50 mg/kg, Cd/ethanol, Cd/Querc 5 mg/kg, Cd/Querc 25 mg/kg, and Cd/Querc 50 mg/kg. Results demonstrated that AChE activity increased in the Cd/ethanol group when compared to saline/ethanol group. Treatment with quercetin prevented the increase in AChE activity when compared to Cd/ethanol group. Quercetin treatment prevented the cadmium-induced increase in NTPDase, 5-nucleotidase, and ADA activities in Cd/ethanol group when compared to saline/ethanol group. Our data showed that quercetin have a protector effect against Cd intoxication. This way, is a promising candidate among the flavonoids to be investigated as a therapeutic agent to attenuate neurological disorders associated with Cd intoxication.  相似文献   

10.
AimsDiabetes mellitus is associated with platelet alterations that may contribute to the development of cardiovascular complications. The present study investigates the effects of resveratrol (RSV), an important compound with cardioprotective activities, on NTPDase, ecto-nucleotide pyrophosphatase/phosphodiesterase (E-NPP), 5′-nucleotidase and adenosine deaminase (ADA) activities in platelets from streptozotocin (STZ)-induced diabetic rats.Main methodsThe animals were divided into six groups (n = 8): control/saline; control/RSV 10 mg/kg; control/RSV 20 mg/kg; diabetic/saline; diabetic/RSV 10 mg/kg; diabetic/RSV 20 mg/kg. RSV was administered during 30 days and after this period the blood was collected for enzymatic assay.Key findingsThe results demonstrated that NTPDase, E-NPP and 5′-nucleotidase activities were significantly higher in the diabetic/saline group (P < 0.05) compared to control/saline group. Treatment with RSV significantly increased NTPDase, 5′-nucleotidase and E-NPP activities in the diabetic/RSV10 and diabetic/RSV20 groups (P < 0.05) compared to diabetic/saline group. When RSV was administered per se there was also an increase in the activities of these enzymes in the control/RSV10 and control/RSV20 groups (P < 0.05) compared to control/saline group. ADA activity was significantly increased in the diabetic/saline group (P < 0.05) compared to control/saline group. The treatment with RSV prevented this increase in the diabetic/RSV10 and diabetic/RSV20 groups. No significant differences in ADA activity were observed in the control/RSV10 and control/RSV20 compared to control/saline group.SignificanceThe present findings demonstrate alterations in nucleotide hydrolysis in platelets of STZ-induced diabetic rats and treatment with RSV was able to modulate adenine nucleotide hydrolysis, which may be important in the control of the platelet coagulant status in diabetes.  相似文献   

11.
During a variety of insults to the brain adenine nucleotides are released in large quantities from damaged cells, triggering multiple cellular responses to injury. Here, we evaluated changes in extracellular ATP, ADP and AMP hydrolysis at different times (0–24 hours) after unilateral cortical stab injury (CSI) in adult rats. Results demonstrated that 24 hours following CSI, ATP and ADP hydrolyzing activities were not significantly altered in injured cortex. Based on calculated V ATP/V ADP ratio it was concluded that ATP/ADP hydrolysis was primarily catalyzed by NTPDase1 enzyme form. In contrast, AMP hydrolysis, catalyzed by 5’-nucleotidase, was significantly reduced at least 4 hours following CSI. Kinetic analysis and Lineweaver-Burk transformation of the enzyme velocities obtained over the range of AMP concentrations (0.05–1.50 mM) revealed that inhibition of 5’-nucleotidase activity after CSI was of the uncompetitive type. Taken together our data suggest that injured tissue has reduced potential for extracellular metabolism of adenine nucleotides in early stages after CSI.  相似文献   

12.
Extracellular ATP and its hydrolysis product adenosine modulate various reproductive functions such as those requiring contraction, steroidogenesis, and maintenance of fluid composition. Interestingly, adenosine might act as a key capacitative effector for mammalian spermatozoa to acquire the capacity for fertilisation. Extracellular nucleotide levels are affected by cell surface ectonucleotidases, amongst which the ectonucleoside triphosphate diphosphohydrolase (E-NTPDase) family regroups the most abundant and effective enzymes to hydrolyse ATP and ADP to AMP in physiological conditions. In the male reproductive tract three members of this family have been indentified: NTPDase1, NTPDase2 and NTPDase3 (Martín-Satué et al. in Histochem Cell Biol 131:615–628, 2009). The purpose of the present study was to characterize in the male reproductive tract the expression profile of the main enzyme responsible for the generation of adenosine from AMP, namely the ecto-5′-nucleotidase (CD73). The enzyme was identified by immunological techniques and by in situ enzymatic assays, including inhibition experiments with α,β-methylene-ADP, a specific CD73 inhibitor. High levels of ecto-5′-nucleotidase were detected in testes in association with both germinal and somatic cells, in smooth muscle cells throughout the tract, in secretory epithelia from exocrine glands, and remarkably, in principal cells of epididymis, where co-localization with NTPDase3 was found. The relevance of this co-expression on nucleotide hydrolysis in these cells directly involved in the control of sperm fluid composition was addressed biochemically. This study suggests close regulation of extracellular nucleoside and nucleotide levels in the genital tract by ecto-5′-nucleotidase that, in concurrence with NTPDases, may impact male fertility.  相似文献   

13.
14.
Several lines of evidence indicate that ATP may play an important role in Long-Term Potentiation. In this investigation we evaluated the effect of a memory task (step-down inhibitory avoidance) on the synaptosomal ecto-enzymes (ATP diphosphohydrolase and 5-nucleotidase) involved in the degradation of ATP to adenosine. After the training session, a decrease in the ATPase (40%) and ADPase (29%) activities of ATP diphosphohydrolase as well as was a decrease in 5-nucleotidase activity (31%) was observed in hippocampal synaptosomes of rats trained and killed immediately after training. In synaptosomes of rats killed 30 minutes after training, a decrease in ATPase activity (28%) was observed. In the test session, no significant changes were observed in the enzyme activities studied. These results provide new information about the activity of ecto-enzymes involved in nucleotide degradation and their possible participation in mechanisms of acquisition and modulation of memory processing.  相似文献   

15.
It is well known that the levels of adenosine in the brain increase dramatically during cerebral hypoxic-ischemic (HI) insults. Its levels are tightly regulated by physiological and pathophysiological changes that occur during the injury acute phase. The aim of the present study was to examine the effects of the neonatal HI event on cytosolic and ecto-enzymes of purinergic system––NTPDase, 5′-nucleotidase (5′-NT) and adenosine deaminase (ADA)––in cerebral cortex of rats immediately post insult. Furthermore, the Na+/K+-ATPase activity, adenosine kinase (ADK) expression and thiobarbituric acid reactive species (TBARS) levels were assessed. Immediately after the HI event the cytosolic NTPDase and 5′-NT activities were increased in the cerebral cortex. In synaptosomes there was an increase in the ecto-ADA activity while the Na+/K+ ATPase activity presented a decrease. The difference between ATP, ADP, AMP and adenosine degradation in synaptosomal and cytosolic fractions could indicate that NTPDase, 5′-NT and ADA were differently affected after insult. Interestingly, no alterations in the ADK expression were observed. Furthermore, the Na+/K+-ATPase activity was correlated negatively with the cytosolic NTPDase activity and TBARS content. The increased hydrolysis of nucleotides ATP, ADP and AMP in the cytosol could contribute to increased adenosine levels, which could be related to a possible innate neuroprotective mechanism aiming at potentiating the ambient levels of adenosine. Together, these results may help the understanding of the mechanism by which adenosine is produced following neonatal HI injury, therefore highlighting putative therapeutical targets to minimize ischemic injury and enhance recovery.  相似文献   

16.
The purpose of this study was to investigate whether salinity adaptation can alter the purinergic (ecto-nucleoside triphosphate diphosphohydrolase; NTPDase and, 5′-nucleotidase) and cholinergic (acetylcholinesterase; AChE) systems in whole brain and blood tissue of the silver catfish, Rhamdia quelen. Silver catfish were gradually adapted to salinities of 0, 4 or 8 ppt and maintained at the experimental salinity for 10 days before brain and blood samples were collected. Blood AChE activity decreased significantly at 8 ppt and significant decreases in AChE activity were observed in the brain with salinity increases. ATP hydrolysis did not change between the groups. In contrast, ADP and AMP hydrolysis in silver catfish maintained at salinities of 4 and 8 ppt were significantly higher than those kept at 0 ppt. In conclusion, this study showed that there is an enhancement in the NTPDase (ADP hydrolysis) and 5′-nucleotidase activities in the brains of silver catfish exposed to increased salinity. Therefore, the activities of these enzymes can act as markers of salinity changes.  相似文献   

17.
The aim of the present investigation was to evaluate the effect of a subchronic treatment (30 days/30 doses) with subcutaneous injections (0.1 mg/kg) of HgCl2 on NTPDase (E.C. 3.6.1.5), 5′-nucleotidase (E.C. 3.1.3.5) and acetylcholinesterase (AChE, E.C. 3.1.1.7) activities in brain from adult rats. NTPDase and 5′-nucleotidase were measured in cortical synaptosomal fraction and AChE was measured in the homogenate of cerebral cortex and hippocampus. After the subchronic treatment (30 days), NTPDase activity was enhanced approximately 35% (p < 0.05) with ATP and ADP as substrates and no difference was observed in 5′-nucleotidase activity (AMP hydrolysis). In addition, AChE activity was enhanced in the cerebral cortex (22%, p < 0.05) and hippocampus (26%, p < 0.05) after the subchronic treatment. Mercury deposited in brain was measured by cold vapor (atomic absorption spectrometry) and no difference between the control and the subchronically treated group was observed. Here we showed for the first time that exposure to low levels of Hg2+, which resembles occupational exposure to low levels of mercury, caused a marked increase in NTPDase and AChE activities. The relationship of these alterations with the neurotoxicity of inorganic mercury deserves further studies.  相似文献   

18.
Ecto-3′-nucleotidase/nuclease (3′NT/NU) is a membrane-bound enzyme that plays a key role in the nutrition of Leishmania sp. protozoan parasites. This enzyme generates nucleosides via hydrolyzes of 3′mononucleotides and nucleic acids, which enter the cell by specific transporters. In this work, we identify and characterize Leishmania amazonensis ecto-3′-nucleotidase activity (La3′-nucleotidase), report ammonium tetrathiomolybdate (TTM) as a novel La3′-nucleotidase inhibitor and approach the possible involvement of ecto-3′-nucleotidase in cellular adhesion. La3′-nucleotidase presented characteristics similar to those reported for the class I single-strand nuclease family; a molecular weight of approximately 40 kDa and optimum activity in an alkaline pH range were observed. Although it is conserved among the genus, La3′-nucleotidase displays different kinetic properties; it can be inhibited by vanadate, molybdate and Cu2+ ions. Interestingly, ecto-3′-nucleotidase activity is 60-fold higher than that of ecto-5′-nucleotidase in L. amazonensis. Additionally, ecto-3′-nucleotidase activity is two-fold higher in virulent L. amazonensis cells than in avirulent ones. Notably, macrophage–parasite attachment/invasion was increased by 400% in the presence of adenosine 3′-monophosphate (3′AMP); however, this effect was reverted by TTM treatment. We believe that La3′-nucleotidase may play a significant role in the generation of adenosine, which may contribute to mammalian host immune response impairment and establishment of infection.  相似文献   

19.
The psychostimulant caffeine promotes behavioral effects such as hyperlocomotion, anxiety, and disruption of sleep by blockade of adenosine receptors. The availability of extracellular adenosine depends on its release by transporters or by the extracellular ATP catabolism performed by the ecto-nucleotidase pathway. This study verified the effect of caffeine on NTP-Dase 1 (ATP diphosphohydrolase) and 5-nucleotidase of synaptosomes from hippocampus and striatum of rats. Caffeine and theophylline tested in vitro were unable to modify nucleotide hydrolysis. Caffeine chronically administered in the drinking water at 0.3 g/L or 1 g/L for 14 days failed to affect nucleotide hydrolysis. However, acute administration of caffeine (30 mg/kg, ip) produced an enhancement of ATP (50%) and ADP (32%) hydrolysis in synaptosomes of hippocampus and striatum, respectively. This activation of ATP and ADP hydrolysis after acute treatment suggests a compensatory effect to increase adenosine levels and counteract the antagonist action of caffeine.  相似文献   

20.
Members of all four families of ectonucleotidases, namely ectonucleoside triphosphate diphosphohydrolases (NTPDases), ectonucleotide pyrophosphatase/phosphodiesterases (NPPs), ecto-5′-nucleotidase and alkaline phosphatases, have been identified in the renal vasculature and/or tubular structures. In rats and mice, NTPDase1, which hydrolyses ATP through to AMP, is prominent throughout most of the renal vasculature and is also present in the thin ascending limb of Henle and medullary collecting duct. NTPDase2 and NTPDase3, which both prefer ATP over ADP as a substrate, are found in most nephron segments beyond the proximal tubule. NPPs catalyse not only the hydrolysis of ATP and ADP, but also of diadenosine polyphosphates. NPP1 has been identified in proximal and distal tubules of the mouse, while NPP3 is expressed in the rat glomerulus and pars recta, but not in more distal segments. Ecto-5′-nucleotidase, which catalyses the conversion of AMP to adenosine, is found in apical membranes of rat proximal convoluted tubule and intercalated cells of the distal nephron, as well as in the peritubular space. Finally, an alkaline phosphatase, which can theoretically catalyse the entire hydrolysis chain from nucleoside triphosphate to nucleoside, has been identified in apical membranes of rat proximal tubules; however, this enzyme exhibits relatively high K m values for adenine nucleotides. Although information on renal ectonucleotidases is still incomplete, the enzymes’ varied distribution in the vasculature and along the nephron suggests that they can profoundly influence purinoceptor activity through the hydrolysis, and generation, of agonists of the various purinoceptor subtypes. This review provides an update on renal ectonucleotidases and speculates on the functional significance of these enzymes in terms of glomerular and tubular physiology and pathophysiology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号