首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Leishmania donovani and Leishmaniainfantum infections cause fatal visceral leishmaniasis, and Leishmaniamajor causes self healing cutaneous lesions. It is poorly understood what genetic differences between these Leishmania species are responsible for the different pathologies of infection. To investigate whether L.donovani species-specific genes are involved in visceral Leishmania infection, we have examined a L.donovani species-specific gene Ld1590 (ortholog of LinJ15_V3.0900) that is a pseudogene in L.major. We have previously shown that transgenic expression of L.donovani Ld1590 in L.major significantly increased the liver and spleen parasite burdens in infected BALB/c mice. In this study we report that Ld1590 potentially encodes a nucleotide sugar transporter (NST) which localizes in the L.donovani Golgi apparatus. Surprisingly, although transgenic expression of the Ld1590 NST increased L.major survival in visceral organs, deletion of Ld1590 NST in L.donovani had no significant effect on L.donovani survival in mice. These observations suggest that loss of the functional Ld1590 gene in L.major may have been associated with reduced virulence in visceral organs in its animal reservoir and could have contributed to L.major’s tropism for cutaneous infections.  相似文献   

2.
The maxicircle control region [also termed divergent region (DR)] composed of various repeat elements remains the most poorly studied part of the kinetoplast genome. Only three extensive DR sequences demonstrating no significant similarity were available for trypanosomatids (Leishmania tarentolae, Crithidia oncopelti, Trypanosoma brucei). Recently, extensive DR sequences have been obtained for Leishmania major and Trypanosoma cruzi. In this work we have sequenced DR fragments of Leishmania turanica, Leishmania mexicana, Leishmania chagasi and two monogenetic trypanosomatids Leptomonas seymouri and Leptomonas collosoma. With the emergence of the additional extensive sequences some conserved features of DR structure become evident. A conserved palindromic sequence has been revealed in the DRs of the studied Leishmania species, L. seymouri, and T. cruzi. The overall DR structure appears to be similar in all the Leishmania species, their relative L. seymouri, and T. brucei: long relatively GC-rich repeats are interspersed with clusters of short AT-rich repeats. C. oncopelti, L. collosoma, and T. cruzi have a completely different DR structure. Identification of conserved sequences and invariable structural features of the DR may further our understanding of the functioning of this important genome fragment.Electronic Supplementary Material Supplementary material is available to authorized users in the online version of this article at Nucleotide sequence data reported in this paper are available in the GenBank™, EMBL and DDBJ databases under the accession numbers DQ107351, DQ107352, DQ107354-DQ107358, DQ239759-DQ239765, DQ492251-DQ492256.  相似文献   

3.
Leishmaniasis is a widespread tropical infection caused by different species of Leishmania protozoa. There is no vaccine available for Leishmania infections and conventional treatments are very toxic to the patients. Therefore, antileishmanial drugs are urgently needed. In this study we have analyzed the effects of essential oils from Lippia sidoides (LSEO) and its major compound thymol on the growth, viability and ultrastructure of Leishmania amazonensis. The essential oil and thymol showed significant activity against promastigote forms of L. amazonensis, with IC50/48 h of 44.38 and 19.47 μg/mL respectively. However, thymol showed toxicity against peritoneal macrophages and low selectivity against the promastigotes when compared with the crude LSEO. On the other hand, no cytotoxic effect was observed in macrophages treated with the crude essential oil. Incubation of L. amazonensis-infected macrophages with LSEO showed a marked reduction in amastigote survival within the macrophages. Significant morphological alterations as accumulation of large lipid droplets in the cytoplasm, disrupted membrane and wrinkled cells were usually seen in treated parasites. The LSEO's activity against both promastigote and the amstigote forms of L. amazonensis, together with its low toxicity to mammalian cells, point to LSEO as a promising agent for the treatment of cutaneous leishmaniasis.  相似文献   

4.
The therapeutic mainstay against the protozoan parasite Leishmania is still based on the antiquated pentavalent antimonials, but resistance is increasing in several parts of the world. Resistance is now partly understood in laboratory promastigote isolates, but the mechanism leading to drug resistance in amastigote isolates is lagging behind. Here we describe a comparative proteomic analysis of a genetically related pair of antimonial-sensitive and -resistant Leishmania infantum axenic amastigote strains. The proteomics screen has highlighted a number of proteins differentially expressed in the resistant parasite. The expression of the protein argininosuccinate synthetase (ARGG) was increased in the drug resistant mutant while a decrease in the expression of the kinetoplastid membrane protein (KMP-11) correlated with the drug resistance phenotype. This proteomic screen highlighted several novel proteins that are putatively involved in resistance to antimonials.  相似文献   

5.
In Iran, three species of Leishmania have been incriminated as the causative agents of human leishmaniasis, Leishmania (L.) major, Leishmania tropica, and Leishmania infantum.Rhombomis opimus have been incriminated as a principal reservoirs of the parasitic protozoan Leishmania major, the causative agent of rural zoonotic cutaneous leishmaniasis (ZCL) in Iran. Rodents captured and examined to find Leishmania species using conventional methods including direct impression smear and microscopic observation inoculation samples to Balb/c and culture in NNN medium. Also molecular method was employed to detect Leishmania in rodents by amplifying a region of the ribosomal RNA amplicon of Leishmania (ITS1-5.8S rRNA–ITS2) using Nested PCR. Leshmania species were specified by DNA sequences. 36 (38.3%) of R. opimus were Leishmania positive using at least one conventional methods. Many more ITS-rDNA fragments were amplified from R. opimus but only 65 out of 74 PCR products contained enough DNA for direct sequencing or readable sequences. The PCR assays detected in Iranian R. opimus not only Leishmania major in 59 (79.7%) rodents but also Leishmania turanica in 6 (8.1%) rodents, another parasite of the great gerbil. These parasites were found in Turkemen Sahara, North East of Iran, in a focus of rural (ZCL). L. major and L. turanica in R. opimus firmly identified from Turkemen Sahara. Nine rodents with Leishmania infections unidentified which some were unreadable sequences, these could be mixed infections of L. major, L. turanica, Leishmania gerbillisensu lato and Leishmania close to L. gerbilli or a related species reported in sandflies previously from this location. The haplotypes of L. major and L. turanica were found to be identical to that of isolates of L. major and L. turanica from Iran and in GenBank elsewhere. R. opimus is probably the key reservoir in this ZCL focus because of its abundance and its infection rates with both L. major and L. turanica.  相似文献   

6.
Antiparasitic effect of a lectin isolated from Synadenium carinatum latex (ScLL) was evaluated against Leishmania (Leishmania) amazonensis promastigotes/amastigotes. Pretreatment of murine inflammatory peritoneal macrophages with ScLL reduced by 65.5% the association index of macrophages and L. (L) amazonensis promastigotes. Expression of cytokines (IL-12, IL-1 and TNF-α) was detected in infected macrophages pretreated with ScLL (10 μg/mL). ScLL also reduced the growth of L. (L) amazonensis amastigote intracellular forms, showing no in vitro cytotoxic effects in mammalian host cells. ScLL treatment in infected murine inflammatory peritoneal macrophages did not induce nitric oxide production, suggesting that a nitric oxide independent pathway is activated to decrease the number of intracellular Leishmania.  相似文献   

7.
D. G. Russell 《Protoplasma》1994,181(1-4):191-201
Summary The protistan parasiteLeishmania is a dimorphic cell that survives as a motile promastigote in the insect digestive tract, and a non-motile, amastigote from within the phagolysosomal compartment of the vertebrate host's phagocytes. The surface ofLeishmania must interface with a range of differing environments and facilitate uptake of nutrients, whilst protecting the parasite from various host defence mechanisms. This review discusses the organization of the leishmanial cell, and the biology of its major surface constituents, the lipophosphoglycan and the surface proteinase, gp 63.  相似文献   

8.
The leishmaniases are a group of diseases caused by protozoa of the genus Leishmania and affect millions of people worldwide. The leishmaniases are transmitted to vertebrate hosts by phlebotomine sand flies. In this review, we focus on several issues that have been poorly addressed in ongoing efforts to develop a vaccine against Leishmania, namely: vaccination with antigens present in sand fly saliva, vaccines based on intracellular Leishmania antigens, and use of recombinant BCG as a vehicle for vaccination. Additionally, we address the differences between L. major and L. braziliensis and the impact that these differences may have on strategies for immunoprophylaxis.  相似文献   

9.
Most experimental studies on leishmaniasis compare two different inbred strains of mice that are resistant or susceptible to one species of Leishmania. In the present study we characterized some cytokines and nitric oxide production as well as histological changes related to resistance and susceptibility in isogenic CBA mice infected with Leishmania major or Leishmania amazonensis. CBA mice are capable of controlling infection with L.  major, but they succumb to infection with L. amazonensis. Cells from susceptible L. amazonensis-infected CBA mice produced interleukin (IL)-4 and IL-10 but no interferon (IFN)-γ. On the other hand, resistant L. major-infected CBA mice produced IFN-γ and IL-10, but IL-4 was detected only in the first week of infection. Histopathological studies showed patterns of tissue responses at the site of the infection and in the draining lymph nodes that correlated with resistance or susceptibility. Resistant mice showed a mixed inflammatory cell infiltration and granulomas in the lesions, whereas in susceptible mice only heavily parasitized macrophages were seen. Our results indicate an important role of the parasite species in determining the pattern of immune response. L. amazonensis induces a Th2-type immune response, whereas L.  major induces a Th1-type response. These factors must be identified and taken into account in the strategies for the development of vaccines against leishmaniasis. The model presented here will be useful for the study of such factors.  相似文献   

10.
We have previously demonstrated that yangambin, a lignan obtained from Ocotea duckei Vattimo (Lauraceae), shows antileishmanial activity against promastigote forms of Leishmania chagasi and Leishmania amazonensis. The aim of this study was to determine the in vitro effects of yangambin against these parasites using electron and confocal microscopy. L. chagasi and L. amazonensis promastigotes were incubated respectively with 50 μg/mL and 65 μg/mL of pure yangambin and stained with acridine orange. Treated-parasites showed significant alterations in fluorescence emission pattern and cell morphology when compared with control cells, including the appearance of abnormal round-shaped cells, loss of cell motility, nuclear pyknosis, cytoplasm acidification and increased number of acidic vesicular organelles (AVOs), suggesting important physiological changes. Ultrastructural analysis of treated-promatigotes showed characteristics of cell death by apoptosis as well as by autophagy. The presence of parasites exhibiting multiples nuclei suggests that yangambin may also affect the microtubule dynamic in both Leishmania species. Taken together our results show that yangambin is a promissing agent against Leishmania.  相似文献   

11.
In a previous report (Luyo-Acero et al., 2004), we demonstrated that cytochrome b (Cyt b) gene analysis is an effective method for classifying several isolates of the genus Leishmania; hence, we have further applied this method to other Leishmania species in an effort to enhance the accuracy of the procedure and to construct a new phylogenic tree. In this study, a total of 30 Leishmania and Endotrypanum WHO reference strains, clinical isolates from our patients assigned to 28 strains (human and non-human pathogenic species) and two species of the genus Endotrypanum were analyzed. The Cyt b gene in each sample was amplified by PCR, and was then sequenced by several primers, as reported previously. The phylogenic tree was constructed based on the results obtained by the computer software MEGA v3.1 and PAUP* v4.0 Beta. The present phylogenic tree was almost identical to the traditional method of classification proposed by Lainson and Shaw (1987). However, it produces the following suggestions: (1) exclusion of L. (Leishmania) major from the L. (L.) tropica complex; (2) placement of L.tarentolae in the genus Sauroleishmania; (3) L. (L.) hertigi complex and L. (V.) equatorensis close to the genus Endotrypanum; (4) L. (L.) enrietti, defined as L. (L.) mexicana complex, placed in another position; and (5) L. (L.) turanica and L. (L.) arabica are located in an area far from human pathogenic Leishmania strains. Cyt b gene analysis is thus applicable to the analyzing phylogeny of the genus Leishmania and may be useful for separating non-human pathogenic species from human pathogenic species.  相似文献   

12.
The protease activity of gp63 from L. major was studied in relation to tunicamycin induced N-deglycosylation. It was found that after tunicamycin treatment, a N-deglycosylated product of gp63 with protease activity is present at the cell surface of Leishmania promastigote.  相似文献   

13.
Leishmania (L.) major is a protozoan parasite that infects mammalian hosts and causes a spectrum of disease manifestations that is strongly associated with the genetic background of the host. Interleukin (IL)-6 is an acute phase proinflammatory cytokine, known in vitro to be involved in the inhibition of the generation of regulatory T cells. IL-6-deficient mice were infected with L. major, and T cell and monocyte subsets were analyzed with flow cytometry. Our data show that at the site of infection in the footpad and in the draining popliteal lymph node, numbers of regulatory T cells remain unchanged between WT and IL-6-deficient mice. However, the spleens of IL-6−/− mice contained fewer regulatory T cells after infection with L. major. The development of cutaneous lesions is similar between WT and IL-6-deficient mice, while parasite burden in IL-6−/− mice is reduced compared to WT. The development of IFN-γ or IL-10 producing T cells is similar in IL-6−/− mice. Despite a comparable adaptive T cell response, IL-6-deficient mice develop an earlier peak of some inflammatory cytokines than WT mice. This data indicate that the role of IL-6 in the differentiation of regulatory T cells is complex in vivo, and the effect of an absence of this cytokine can be counter-intuitive.  相似文献   

14.
Primary screens for antileishmanial compounds use Leishmania species pathogenic to humans that must be handled under biosafety conditions that cannot be adopted or guaranteed everywhere. Leishmania tarentolae, a parasite isolated from the gecko Tarentolae annularis, has not been considered pathogenic to humans. Promastigotes of L. tarentolae have been previously used as a eukaryotic expression system for the production of recombinant proteins and in the amplification of genes involved in resistance to antileishmanial drugs. To validate the use of this Leishmania species in the screening of antileishmanial drugs, the sensitivity of axenic and intracellular amastigotes of L. tarentolae was compared to the sensitivity showed by Leishmania species causative of human leishmaniasis. The ability of L. tarentolae to grow as axenic amastigotes is first described while its ability to infect several mammalian cells has been confirmed. L. tarentolae amastigotes offer a suitable model for the in vitro screening of compounds for antileishmanial activity.  相似文献   

15.
Parasitic protozoa, such as Leishmania species, are thought to express a number of surface and secreted nucleoside triphosphate diphosphohydrolases (NTPDases) which hydrolyze a broad range of nucleoside tri- and diphosphates. However, the functional significance of NTPDases in parasite virulence is poorly defined. The Leishmania major genome was found to contain two putative NTPDases, termed LmNTPDase1 and 2, with predicted NTPDase catalytic domains and either an N-terminal signal sequence and/or transmembrane domain, respectively. Expression of both proteins as C-terminal GFP fusion proteins revealed that LmNTPDase1 was exclusively targeted to the Golgi apparatus, while LmNTPDase2 was predominantly secreted. An L. major LmNTPDase1 null mutant displayed increased sensitivity to serum complement lysis and exhibited a lag in lesion development when infections in susceptible BALB/c mice were initiated with promastigotes, but not with the obligate intracellular amastigote stage. This phenotype is characteristic of L. major strains lacking lipophosphoglycan (LPG), the major surface glycoconjugate of promastigote stages. Biochemical studies showed that the L. major NTPDase1 null mutant synthesized normal levels of LPG that was structurally identical to wild type LPG, with the exception of having shorter phosphoglycan chains. These data suggest that the Golgi-localized NTPase1 is involved in regulating the normal sugar-nucleotide dependent elongation of LPG and assembly of protective surface glycocalyx. In contrast, deletion of the gene encoding LmNTPDase2 had no measurable impact on parasite virulence in BALB/c mice. These data suggest that the Leishmania major NTPDase enzymes have potentially important roles in the insect stage, but only play a transient or non-major role in pathogenesis in the mammalian host.  相似文献   

16.
17.
Different species of Leishmania are responsible for cutaneous, mucocutaneous or visceral leishmaniasis infections in millions of people around the world [14]. The adverse reactions caused by antileishmanial drugs, emergence of resistance and lack of a vaccine have motivated the search for new therapeutic options to control this disease. Different sources of antimicrobial molecules are under study as antileishmanial agents, including peptides with antimicrobial and/or immunomodulatory activity, which have been considered to be potentially active against diverse species of Leishmania [7] and [39]. This study evaluated the cytotoxicity on dendritic cells, hemolytic activity, leishmanicidal properties on Leishmania panamensis and Leishmania major promastigotes and effectiveness on parasite intracellular forms (dendritic cells infected with L. panamensis and L. major promastigotes), when each parasite in culture was exposed to different concentrations of a group of synthetic peptides with previously reported antimicrobial properties, which were synthesized based on their naturally occurring reported sequences. Dermaseptin, Pr-2 and Pr-3 showed inhibitory activity on the growth of L. panamensis promastigotes, while Andropin and Cecropin A (with a selectivity index of 4 and 40, respectively) showed specific activity against intracellular forms of this species. The activities of Andropin and Cecropin A were exclusively against the intracellular forms of the parasite, therefore indicating the relevance of these two peptides as potential antileishmanial agents. In the case of L. major promastigotes, Melittin and Dermaseptin showed inhibitory activity, the latter also showed a selectivity index of 8 against intracellular forms. These findings suggest Andropin, Cecropin A and Dermaseptin as potential therapeutic tools to treat New and Old World cutaneous leishmaniasis.  相似文献   

18.
Leishmania infantum is the causative agent of zoonotic visceral leishmaniasis in the Mediterranean Basin. The promastigote and amastigote stages alternate in the life cycle of the parasite, developing inside the sand-fly gut and inside mammalian phagocytic cells, respectively. High-throughput genomic and proteomic analyses have not focused their attention on promastigote development, although partial approaches have been made in Leishmania major and Leishmania braziliensis. For this reason we have studied the expression modulation of an etiological agent of visceral leishmaniasis throughout the life cycle, which has been performed by means of complete genomic microarrays. In the context of constitutive genome expression in Leishmania spp. described elsewhere and confirmed here (5.7%), we found a down-regulation rate of 68% in the amastigote stage, which has been contrasted by binomial tests and includes the down-regulation of genes involved in translation and ribosome biogenesis. These findings are consistent with the hypothesis of pre-adaptation of the parasite to intracellular survival at this stage.  相似文献   

19.
Monoclonal antibodies were raised against pathogenic promastigotes ofLeishmania donovani of Indian origin. Among these, one was used for immuno-affinity purification of a 78 kDa membrane protein present in both the amastigote and promastigote forms of the parasite. Results of immunoblot experiments with the anti-78 kDa antibody revealed that the protein was present only in parasites belonging to theL. donovani complex. The expression of the protein was observed to be the same during different phases of growth of the promastigotes. Therefore, the 78 kDa protein is neither stage-specific nor differentially regulated. Surface iodination and subcellular fractionation of the promastigotes indicated that the protein was localized on the cell surface. The 78 kDa protein was found to inhibit the binding of promastigotes to macrophages significantly, suggesting that it may play a role in the process of infection. Thus, here we report the purification of a surface protein ofL. donovani of Indian origin, which may play an important role in the process of infection.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号