首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 802 毫秒
1.

Background

Boar taint is the unpleasant odour and flavour of the meat of uncastrated male pigs that is primarily caused by high levels of androstenone and skatole in adipose tissue. Androstenone is a steroid and its levels are mainly genetically determined. Studies on androstenone metabolism have, however, focused on a limited number of genes. Identification of additional genes influencing levels of androstenone may facilitate implementation of marker assisted breeding practices. In this study, microarrays were used to identify differentially expressed genes and pathways related to androstenone metabolism in the liver from boars with extreme levels of androstenone in adipose tissue.

Results

Liver tissue samples from 58 boars of the two breeds Duroc and Norwegian Landrace, 29 with extreme high and 29 with extreme low levels of androstenone, were selected from more than 2500 individuals. The samples were hybridised to porcine cDNA microarrays and the 1% most significant differentially expressed genes were considered significant. Among the differentially expressed genes were metabolic phase I related genes belonging to the cytochrome P450 family and the flavin-containing monooxygenase FMO1. Additionally, phase II conjugation genes including UDP-glucuronosyltransferases UGT1A5, UGT2A1 and UGT2B15, sulfotransferase STE, N-acetyltransferase NAT12 and glutathione S-transferase were identified. Phase I and phase II metabolic reactions increase the water solubility of steroids and play a key role in their elimination. Differential expression was also found for genes encoding 17beta-hydroxysteroid dehydrogenases (HSD17B2, HSD17B4, HSD17B11 and HSD17B13) and plasma proteins alpha-1-acid glycoprotein (AGP) and orosomucoid (ORM1). 17beta-hydroxysteroid dehydrogenases and plasma proteins regulate the availability of steroids by controlling the amount of active steroids accessible to receptors and available for metabolism. Differences in the expression of FMO1, NAT12, HSD17B2 and HSD17B13 were verified by quantitative real competitive PCR.

Conclusion

A number of genes and pathways related to metabolism of androstenone in liver were identified, including new candidate genes involved in phase I oxidation metabolism, phase II conjugation metabolism, and regulation of steroid availability. The study is a first step towards a deeper understanding of enzymes and regulators involved in pathways of androstenone metabolism and may ultimately lead to the discovery of markers to reduce boar taint.
  相似文献   

2.
A high level of androstenone in porcine adipose tissue is a major factor contributing to boar taint. Porcine hydroxy‐delta‐5‐steroid dehydrogenase, 3 beta‐ and steroid delta‐isomerase 1 (3β‐HSD, also known as HSD3B1) plays a key role in the hepatic metabolism that catalyzes androstenone to β‐androstenol. Therefore, 3β‐HSD is a candidate gene for boar taint. This study aimed to investigate functional 3β‐HSD polymorphisms in Duroc pigs. We found eight single nucleotide polymorphisms (SNPs) in the full‐length porcine 3β‐HSD. Four of the SNPs had restriction enzyme sites, and we genotyped them in 147 uncastrated male Duroc pigs using a polymerase chain reaction–restriction fragment length polymorphism method. Pigs with the GG genotype at the g.165262G>A locus (SNP5) had significantly lower androstenone levels than did those with other genotypes (= 0.030). SNP5 also was associated with differences in 3β‐HSD mRNA levels: pigs with the GG genotype had higher levels than those with other genotypes (= 0.019). The SNP5 polymorphism could affect the hepatic catabolism of androstenone and consequently impact androstenone accumulation in the adipose tissue. Therefore, SNP5 in the 3β‐HSD of Duroc pigs could be a useful selective marker for decreasing boar taint.  相似文献   

3.

Objective:

Serum cortisol concentrations fluctuate in a circadian fashion, and glucocorticoids exert strong effects on adipose tissue and induce obesity through the glucocorticoid receptor.

Design and Methods:

To examine the impact of physiologic levels of circulating cortisol on subcutaneous adipose tissue, 25 overweight and obese subjects were employed, and their serum levels of morning (AM) and evening (PM) cortisol, AM/PM cortisol ratios, and 24‐h urinary‐free cortisol (UFC) were compared with their clinical parameters, serum cytokine levels, and mRNA expression of 93 receptor action‐regulating and 93 glucocorticoid‐responsive genes in abdominal subcutaneous fat.

Results and Conclusions:

AM cortisol levels did not correlate with mRNA expression of the all genes examined, whereas PM cortisol levels, AM/PM cortisol ratios, and 24‐h UFC were associated with distinct sets of these genes. Body mass index did not significantly correlate with the four cortisol parameters employed. These results suggest that physiologic levels of AM serum cortisol do not solely represent biological effects of circulating cortisol on the expression of glucocorticoid‐related genes in subcutaneous adipose tissue, whereas PM levels, amplitude, and net amounts of the diurnally fluctuating serum cortisol have distinct effects. Through the genes identified in this study, glucocorticoids appear to influence intermediary metabolism, energy balance, inflammation, and local circadian rythmicity in subcutaneous fat. Our results may also explain in part the development of metabolic abnormality and obesity in subjects under stress or patients with melancholic/atypical depression who demonstrate elevated levels of PM serum cortisol.  相似文献   

4.
Boar taint is a major meat-quality defect in pigs and is due to excessive accumulation of skatole and androstenone in adipose tissue. The present work investigated the relationship between carcass weight, levels of skatole and androstenone in adipose tissue, and expression of the hepatic androstenone-metabolising enzyme 3β-hydroxysteroid dehydrogenase (3β-HSD), in 22 entire male and 22 entire female crossbred pigs (Large White (40%) × Landrace (40%) × Duroc (20%)). Animals of each gender were divided into two subgroups (11 pigs in each subgroup): (i) conventional weight (carcass weight 59 to 77 kg) and (ii) heavy weight (carcass weight 84 to 95 kg). No relationship between carcass weight and adipose tissue skatole level was found for entire male pigs (r2 = 0.013, P > 0.05). There was a significant negative relationship between carcass weight and expression of the hepatic 3β-HSD protein (r2 = 0.502, P < 0.001) and a significant negative relationship between 3β-HSD protein expression and androstenone level in adipose tissue (r2 = 0.24, P < 0.05) in entire males. No relationship was found between carcass weight and 3β-HSD protein expression in female pigs (r2 = 0.001, P > 0.05). 3β-HSD expression was 59% higher in conventional-weight male pigs when compared with heavy-weight animals (P < 0.05) and 36% higher in heavy-weight females when compared with heavy-weight males (P < 0.05). It is concluded that an increase in slaughter weight of entire commercial crossbred Large White pigs is accompanied by inhibition of expression of the hepatic 3β-HSD protein, which might result in a reduced rate of hepatic androstenone clearance with its subsequent accumulation in adipose tissue. It is suggested that regulation of pig hepatic 3β-HSD expression is under the control of sex hormones.  相似文献   

5.
6.
Male piglets are routinely castrated to eliminate boar taint. However, this treatment is undesirable, and alternative approaches, including genetic strategies to reduce boar taint, are demanded. Androstenone is one of the causative agents of boar taint, and a QTL region affecting this pheromone has previously been reported on SSC5: 22.6–24.8 Mb in Duroc. The QTL region is one of the few reported for androstenone that does not simultaneously affect levels of other sex steroids. The main objective of this study was to fine map this QTL. Whole genome sequence data from 23 Norwegian Duroc boars were analyzed to detect new polymorphisms within the QTL region. A subset of 161 SNPs was genotyped in 834 Duroc sires and analyzed for association with androstenone in adipose tissue and testosterone, estrone sulphate and 17β‐estradiol in blood plasma. Our results revealed 100 SNPs significantly associated with androstenone levels in fat (< 0.001) with 94 of the SNPs being in strong linkage disequilibrium in the region 23.03–24.27 Mb. This haplotype block contains at least four positional candidate genes (HSD17B6, SDR9C7, RDH16 and STAT6) involved in androstenone biosynthesis. No significant associations were found between any of the SNPs and levels of testosterone and estrogens, confirming previous findings. The amount of phenotypic variance explained by single SNPs within the haplotype block was as high as 5.4%. As the SNPs in this region significantly affect levels of androstenone without affecting levels of other sex steroids, they are especially interesting as genetic markers for selection against boar taint.  相似文献   

7.
8.

Background

FABP4 is predominantly expressed in adipose tissue, and its circulating levels are linked with obesity and a poor atherogenic profile.

Objective

In patients with a wide BMI range, we analyze FABP4 expression in adipose and hepatic tissues in the settings of obesity and insulin resistance. Associations between FABP4 expression in adipose tissue and the FABP4 plasma level as well as the main adipogenic and lipolytic genes expressed in adipose tissue were also analyzed.

Methods

The expression of several lipogenic, lipolytic, PPAR family and FABP family genes was analyzed by real time PCR. FABP4 protein expression in total adipose tissues and its fractions were determined by western blot.

Results

In obesity FABP4 expression was down-regulated (at both mRNA and protein levels), with its levels mainly predicted by ATGL and inversely by the HOMA-IR index. The BMI appeared as the only determinant of the FABP4 variation in both adipose tissue depots. FABP4 plasma levels showed a significant progressive increase according to BMI but no association was detected between FABP4 circulating levels and SAT or VAT FABP4 gene expression. The gene expression of FABP1, FABP4 and FABP5 in hepatic tissue was significantly higher in tissue from the obese IR patients compared to the non-IR group.

Conclusion

The inverse pattern in FABP4 expression between adipose and hepatic tissue observed in morbid obese patients, regarding the IR context, suggests that both tissues may act in a balanced manner. These differences may help us to understand the discrepancies between circulating plasma levels and adipose tissue expression in obesity.  相似文献   

9.
Androstenone (5 alpha-androst-16-en-3-one) is a steroid pheromone produced in the testis. Excessive accumulation of androstenone together with skatole (3-methyl-indole) in the adipose tissue of some male pigs leads to "boar taint". In isolated pig hepatocytes androstenone represses the expression of cytochrome P450IIE1 (CYP2E1), the enzyme principally responsible for skatole metabolism. Androstenone can be metabolised in liver microsomes but the pathway has not been established. We have investigated androstenone metabolism in liver microsomes from two breeds of pigs exhibiting low and high levels of androstenone in adipose tissue-Large White (LW) and Meishan (M), respectively. Androstenone was reduced in isolated liver microsomes mainly to beta-androstenol using NADH as a co-factor. The rate of beta-androstenol formation in the presence of NADPH was very low. In microsomes from LW pigs the rate of beta-androstenol formation from androstenone was six times higher than in M pigs. 3beta-hydroxysteroid dehydrogenase (3beta-HSD) was investigated as a likely candidate for the enzyme catalysing androstenone reduction in pig liver. RT-PCR analysis showed that there was no sequence difference in the cDNA encoding 3beta-hydroxysteroid dehydrogenase from LW and M pigs. However, competitive RT-PCR analysis showed that the expression of 3beta-hydroxysteroid dehydrogenase mRNA was about 12 times higher in the case of LW compared to M pigs. It is concluded that the rate of androstenone metabolism in pig liver microsomes is determined by the level of expression of hepatic 3beta-hydroxysteroid dehydrogenase. The differential expression of this enzyme could be a factor affecting the rate of hepatic androstenone metabolism which in turn may influence the level of hepatic CYP2E1 expression and hence the rate of hepatic skatole metabolism.  相似文献   

10.

Background

Previous studies have demonstrated that gene expression levels change with age. These changes are hypothesized to influence the aging rate of an individual. We analyzed gene expression changes with age in abdominal skin, subcutaneous adipose tissue and lymphoblastoid cell lines in 856 female twins in the age range of 39-85 years. Additionally, we investigated genotypic variants involved in genotype-by-age interactions to understand how the genomic regulation of gene expression alters with age.

Results

Using a linear mixed model, differential expression with age was identified in 1,672 genes in skin and 188 genes in adipose tissue. Only two genes expressed in lymphoblastoid cell lines showed significant changes with age. Genes significantly regulated by age were compared with expression profiles in 10 brain regions from 100 postmortem brains aged 16 to 83 years. We identified only one age-related gene common to the three tissues. There were 12 genes that showed differential expression with age in both skin and brain tissue and three common to adipose and brain tissues.

Conclusions

Skin showed the most age-related gene expression changes of all the tissues investigated, with many of the genes being previously implicated in fatty acid metabolism, mitochondrial activity, cancer and splicing. A significant proportion of age-related changes in gene expression appear to be tissue-specific with only a few genes sharing an age effect in expression across tissues. More research is needed to improve our understanding of the genetic influences on aging and the relationship with age-related diseases.  相似文献   

11.

Background

Trypanosoma cruzi, the causative agent of Chagas disease, has high affinity for lipoproteins and adipose tissue. Infection results in myocarditis, fat loss and alterations in lipid homeostasis. This study was aimed at analyzing the effect of high fat diet (HFD) on regulating acute T. cruzi infection-induced myocarditis and to evaluate the effect of HFD on lipid metabolism in adipose tissue and heart during acute T. cruzi infection.

Methodology/Principal Findings

CD1 mice were infected with T. cruzi (Brazil strain) and fed either a regular control diet (RD) or HFD for 35 days following infection. Serum lipid profile, tissue cholesterol levels, blood parasitemia, and tissue parasite load were analyzed to evaluate the effect of diet on infection. MicroPET and MRI analysis were performed to examine the morphological and functional status of the heart during acute infection. qPCR and immunoblot analysis were carried out to analyze the effect of diet on the genes involved in the host lipid metabolism during infection. Oil red O staining of the adipose tissue demonstrated reduced lipolysis in HFD compared to RD fed mice. HFD reduced mortality, parasitemia and cardiac parasite load, but increased parasite load in adipocytes. HFD decreased lipolysis during acute infection. Both qPCR and protein analysis demonstrated alterations in lipid metabolic pathways in adipose tissue and heart in RD fed mice, which were further modulated by HFD. Both microPET and MRI analyses demonstrated changes in infected RD murine hearts which were ameliorated by HFD.

Conclusion/Significance

These studies indicate that Chagasic cardiomyopathy is associated with a cardiac lipidpathy and that both cardiac lipotoxicity and adipose tissue play a role in the pathogenesis of Chagas disease. HFD protected mice from T. cruzi infection-induced myocardial damage most likely due to the effects of HFD on both adipogenesis and T. cruzi infection-induced cardiac lipidopathy.  相似文献   

12.

Objective

Zinc-α2 glycoprotein (ZAG) stimulates lipid loss by adipocytes and may be involved in the regulation of adipose tissue metabolism. However, to date no studies have been made in the most extreme of obesity. The aims of this study are to analyze ZAG expression levels in adipose tissue from morbidly obese patients, and their relationship with lipogenic and lipolytic genes and with insulin resistance (IR).

Methods

mRNA expression levels of PPARγ, IRS-1, IRS-2, lipogenic and lipolytic genes and ZAG were quantified in visceral (VAT) and subcutaneous adipose tissue (SAT) of 25 nondiabetic morbidly obese patients, 11 with low IR and 14 with high IR. Plasma ZAG was also analyzed.

Results

The morbidly obese patients with low IR had a higher VAT ZAG expression as compared with the patients with high IR (p = 0.023). In the patients with low IR, the VAT ZAG expression was greater than that in SAT (p = 0.009). ZAG expression correlated between SAT and VAT (r = 0.709, p<0.001). VAT ZAG expression was mainly predicted by insulin, HOMA-IR, plasma adiponectin and expression of adiponectin and ACSS2. SAT ZAG expression was only predicted by expression of ATGL.

Conclusions

ZAG could be involved in modulating lipid metabolism in adipose tissue and is associated with insulin resistance. These findings suggest that ZAG may be a useful target in obesity and related disorders, such as diabetes.  相似文献   

13.
14.

Aims

Visceral adipose tissue measured by CT or MRI is strongly associated with an adverse metabolic risk profile. We assessed whether similar associations can be found with ultrasonography, by quantifying the strength of the relationship between different measures of obesity and indices of glucose metabolism in a population at high risk of type 2 diabetes.

Methods

A cross-sectional analysis of 1342 participants of the ADDITION-PRO study. We measured visceral adipose tissue and subcutaneous adipose tissue with ultrasonography, anthropometrics and body fat percentage by bioelectrical impedance. Indices of glucose metabolism were derived from a three point oral glucose tolerance test. Linear regression of obesity measures on indices of glucose metabolism was performed.

Results

Mean age was 66.2 years, BMI 26.9kg/m2, subcutaneous adipose tissue 2.5cm and visceral adipose tissue 8.0cm. All measures of obesity were positively associated with indicators of glycaemia and inversely associated with indicators of insulin sensitivity. Associations were of equivalent magnitude except for subcutaneous adipose tissue and the visceral/subcutaneous adipose tissue ratio, which showed weaker associations. One standard deviation difference in BMI, visceral adipose tissue, waist circumference, waist/height ratio and body fat percentage corresponded approximately to 0.2mmol/l higher fasting glucose, 0.7mmol/l higher 2-hr glucose, 0.06-0.1% higher HbA1c, 30 % lower HOMA index of insulin sensitivity, 20% lower Gutt’s index of insulin sensitivity, and 100 unit higher Stumvoll’s index of beta-cell function. After adjustment for waist circumference visceral adipose tissue was still significantly associated with glucose intolerance and insulin resistance, whereas there was a trend towards inverse or no associations with subcutaneous adipose tissue. After adjustment, a 1cm increase in visceral adipose tissue was associated with ~5% lower insulin sensitivity (p≤0.0004) and ~0.18mmol/l higher 2-hr glucose (p≤0.001).

Conclusion

Visceral and subcutaneous adipose tissue assessed by ultrasonography are significantly associated with glucose metabolism, even after adjustment for other measures of obesity.  相似文献   

15.

Aims/hypothesis

The actions of peripherally administered nesfatin-1 on glucose homeostasis remain controversial. The aim of this study was to characterize the mechanisms by which peripheral nesfatin-1 regulates glucose metabolism.

Methods

The effects of nesfatin-1 on glucose metabolism were examined in mice by continuous infusion of the peptide via osmotic pumps. Changes in AKT phosphorylation and Glut4 were investigated by Western blotting and immnuofluorescent staining. Primary myocytes, adipocytes and hepatocytes were isolated from male mice.

Results

Continuous peripheral infusion of nesfatin-1 altered glucose tolerance and insulin sensitivity in mice fed either normal or high fat diet, while central administration of nesfatin-1 demonstrated no effect. Nesfatin-1 increases insulin secretion in vivo, and in vitro in cultured min6 cells. In addition, nesfatin-1 up-regulates the phosphorylation of AKT in pancreas and min6 islet cells. In mice fed normal diet, peripheral nesfatin-1 significantly increased insulin-stimulated phosphorylation of AKT in skeletal muscle, adipose tissue and liver; similar effects were observed in skeletal muscle and adipose tissue in mice fed high fat diet. At basal conditions and after insulin stimulation, peripheral nesfatin-1 markedly increased GLUT4 membrane translocation in skeletal muscle and adipose tissue in mice fed either diet. In vitro studies showed that nesfatin-1 increased both basal and insulin-stimulated levels of AKT phosphorylation in cells derived from skeletal muscle, adipose tissue and liver.

Conclusions

Our studies demonstrate that nesfatin-1 alters glucose metabolism by mechanisms which increase insulin secretion and insulin sensitivity via altering AKT phosphorylation and GLUT 4 membrane translocation in the skeletal muscle, adipose tissue and liver.  相似文献   

16.

Background

The aim of this study was to investigate the association of gene expression profiles in subcutaneous adipose tissue with weight change in kidney transplant recipients and to gain insights into the underlying mechanisms of weight gain.

Methodology/Principal Findings

A secondary data analysis was done on a subgroup (n = 26) of existing clinical and gene expression data from a larger prospective longitudinal study examining factors contributing to weight gain in transplant recipients. Measurements taken included adipose tissue gene expression profiles at time of transplant, baseline and six-month weight, and demographic data. Using multivariate linear regression analysis controlled for race and gender, expression levels of 1553 genes were significantly (p<0.05) associated with weight change. Functional analysis using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes classifications identified metabolic pathways that were enriched in this dataset. Furthermore, GeneIndexer literature mining analysis identified a subset of genes that are highly associated with obesity in the literature and Ingenuity pathway analysis revealed several significant gene networks associated with metabolism and endocrine function. Polymorphisms in several of these genes have previously been linked to obesity.

Conclusions/Significance

We have successfully identified a set of molecular pathways that taken together may provide insights into the mechanisms of weight gain in kidney transplant recipients. Future work will be done to determine how these pathways may contribute to weight gain.  相似文献   

17.

Background

Liraglutide is a glucagon-like peptide-1 analogue that stimulates insulin secretion and improves β-cell function. However, it is not clear whether liraglutide achieves its glucose lowering effect only by its known effects or whether other as yet unknown mechanisms are involved. The aim of this study was to examine the effects of liraglutide on Fibroblast growth factor-21 (FGF-21) activity in High-fat diet (HFD) fed ApoE−/− mice with adiponectin (Acrp30) knockdown.

Method

HFD-fed ApoE−/− mice were treated with adenovirus vectors expressing shAcrp30 to produce insulin resistance. Hyperinsulinemic-euglycemic clamp studies were performed to evaluate insulin sensitivity of the mouse model. QRT-PCR and Western blot were used to measure the mRNA and protein expression of the target genes.

Results

The combination of HFD, ApoE deficiency, and hypoadiponectinemia resulted in an additive effect on insulin resistance. FGF-21 mRNA expressions in both liver and adipose tissues were significantly increased while FGF-21 receptor 1 (FGFR-1) and β-Klotho mRNA levels in adipose tissue, as well as FGFR-1-3 and β-Klotho mRNA levels in liver were significantly decreased in this model. Liraglutide treatment markedly improved insulin resistance and increased FGF-21 expression in liver and FGFR-3 in adipose tissue, restored β-Klotho mRNA expression in adipose tissue as well as FGFR-1-3, β-Klotho levels and phosphorylation of FGFR1 up to the levels observed in control mice in liver. Liraglutide treatment also further increased FGF-21 proteins in liver and plasma. In addition, as shown by hyperinsulinemic-euglycemic clamp, liraglutide treatment also markedly improved glucose metabolism and insulin sensitivity in these animals.

Conclusion

These findings demonstrate an additive effect of HFD, ApoE deficiency, and adiponectin knockdown on insulin resistance and unveil that the regulation of glucose metabolism and insulin sensitivity by liraglutide may be partly mediated via increased FGF-21 and its receptors action.  相似文献   

18.

Aim

Weight loss reduces risk factors associated with obesity. However, long-term metabolic improvement remains a challenge. We investigated quantitative gene expression of subcutaneous adipose tissue in obese individuals and its relationship with low calorie diet and long term weight maintenance induced changes in insulin resistance.

Research Design

Three hundred eleven overweight and obese individuals followed a dietary protocol consisting of an 8-week low calorie diet followed by a 6-month ad libitum weight-maintenance diet. Individuals were clustered according to insulin resistance trajectories assessed using homeostasis model assessment of insulin resistance (HOMA-IR) index. Adipose tissue mRNA levels of 267 genes selected for regulation according to obesity, metabolic status and response to dieting was assessed using high throughput RT-qPCR. A combination of discriminant analyses was used to identify genes with regulation according to insulin resistance trajectories. Partial correlation was used to control for change in body mass index.

Results

Three different HOMA-IR profile groups were determined. HOMA-IR improved during low calorie diet in the 3 groups. At the end of the 6-month follow-up, groups A and B had reduced HOMA-IR by 50%. In group C, HOMA-IR had returned to baseline values. Genes were differentially expressed in the adipose tissue of individuals according to groups but a single gene, CIDEA, was common to all phases of the dietary intervention. Changes in adipose tissue CIDEA mRNA levels paralleled variations in insulin sensitivity independently of change in body mass index. Overall, CIDEA was up-regulated in adipose tissue of individuals with successful long term insulin resistance relapse and not in adipose tissue of unsuccessful individuals.

Conclusion

The concomitant change in adipose tissue CIDEA mRNA levels and insulin sensitivity suggests a beneficial role of adipose tissue CIDEA in long term glucose homeostasis, independently of weight variation.

Trial Registration

ClinicalTrials.gov NCT00390637  相似文献   

19.

Background

Previously, in boars with extreme androstenone levels, differential expression of the CYP11A1 gene in the testes has been characterised. CYP11A1 is located in a region where a QTL influencing boar fat androstenone levels has been detected in a Large White pig population. Clarifying the role of CYP11A1 in boar taint is important because it catalyses the initial step of androstenone synthesis and also of steroid synthesis.

Results

A genome-wide association study located CYP11A1 at approximately 1300 kb upstream from SNP H3GA0021967, defining the centre of the region containing the QTL for androstenone variation. In this study, we partially sequenced the CYP11A1 gene and identified several new single nucleotide polymorphisms (SNP) within it. Characterisation of one animal, heterozygous for CYP11A1 testicular expression but homozygous for a haplotype of a large region containing CYP11A1, revealed that variation of CYP11A1 expression is probably regulated by a mutation located downstream from the SNP H3GA0021967. We analysed CYP11A1 expression in LW families according to haplotypes of the QTL region''s centre. Effects of haplotypes on CYP11A1 expression and on androstenone accumulation were not concordant.

Conclusion

This study shows that testicular expression of CYP11A1 is not solely responsible for the QTL influencing boar fat androstenone levels. As a conclusion, we propose to refute the hypothesis that a single mutation located near the centre of the QTL region could control androstenone accumulation in fat by regulating the CYP11A1 expression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号