首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sulphobromophthalein (SBP) inhibits isolated glutathione S-transferase of the porcine nodule worm Oesophagostomum dentatum (Od-GST) and reduces larval development in vitro. In this study possible inhibitory effects of various inhibitors were evaluated in an enzymatic (CDNB) assay with isolated Od-GST and in a larval development assay (LDA). Reversibility was tested in the LDA by removing the inhibitor from culture halfway through the cultivation period. SBP, indomethacin and ethacrynic acid inhibited both enzyme activity and larval development in a dose-dependent and reversible manner. HQL-79 also reduced larval development but had only a minor effect on the isolated enzyme. The phospholipase A2 inhibitors dexamethasone and hydrocortisone had no major effect. High thermal stability of Od-GST was demonstrated with increasing activity between 4 and 50 °C. Differences between Od-GST and GST of other organisms indicate structural and possibly functional peculiarities and highlight the potential of such enzymes as targets of intervention.  相似文献   

2.
Prostaglandin D2 synthase (PGDS) catalyzes the isomerization of prostaglandin H2 (PGH2) to prostaglandin D2 (PGD2). PGD2 produced by hematopoietic prostaglandin D2 synthase (H-PGDS) in mast cells and Th2 cells is proposed to be a mediator of allergic and inflammatory responses. Consequently, inhibitors of H-PGDS represent potential therapeutic agents for the treatment of inflammatory diseases such as asthma. Due to the instability of the PGDS substrate PGH2, an in-vitro enzymatic assay is not feasible for large-scale screening of H-PGDS inhibitors. Herein, we report the development of a competition binding assay amenable to high-throughput screening (HTS) in a scintillation proximity assay (SPA) format. This assay was used to screen an in-house compound library of approximately 280,000 compounds for novel H-PGDS inhibitors. The hit rate of the H-PGDS primary screen was found to be 4%. This high hit rate suggests that the active site of H-PGDS can accommodate a large diversity of chemical scaffolds. For hit prioritization, these initial hits were rescreened at a lower concentration in SPA and tested in the LAD2 cell assay. 116 compounds were active in both assays with IC50s ranging from 6 to 807 nM in SPA and 82 nM to 10 μM in the LAD2 cell assay.  相似文献   

3.
Prostaglandin H2 (PGH2) inhibited noradrenaline induced cyclic AMP accumulation in isolated rat fat cells in a dose-dependent manner. IC50 was 10 – 25 ng/ml both in the absence and in the presence of theophylline. The degree of inhibition produced by PGH2 increased with time of incubation. A stable PGH2 analog did not inhibit cyclic AMP accumulation. PGH2 was rapidly converted by isolated fat cells to PGD2, PGE2 and PGH, but no formation of thromboxane B2 was found either or . PGE2 was a more potent inhibitor than PGH2 of noradrenaline induced cyclic AMP accumulation. PGD2 enhanced cyclic AMP accumulation in a limited concentration interval, while PGF was essentially uneffective.Our results suggest that PGH2 is an inhibitor of cyclic AMP formation in isolated rat fat cells only after conversion to PGE2. A physiological role for PGH2 as a modulator of lipolysis is considered unlikely.  相似文献   

4.
Onchocerciasis or river blindness, caused by the filarial worm Onchocerca volvulus, is the world’s second leading infectious cause of blindness. In order to chronically infect the host, O. volvulus has evolved molecular strategies that influence and direct immune responses away from the modes most damaging to it. The O. volvulus GST1 (OvGST1) is a unique glutathione S-transferase (GST) in that it is a glycoprotein and possesses a signal peptide that is cleaved off in the process of maturation. The mature protein starts with a 25-amino-acid extension not present in other GSTs. In all life stages of the filarial worm, it is located directly at the parasite-host interface. Here, the OvGST1 functions as a highly specific glutathione-dependent prostaglandin D synthase (PGDS). The enzyme therefore has the potential to participate in the modulation of immune responses by contributing to the production of parasite-derived prostanoids and restraining the host’s effector responses, making it a tempting target for chemotherapy and vaccine development. Here, we report the crystal structure of the OvGST1 bound to its cofactor glutathione at 2.0 Å resolution. The structure reveals an overall structural homology to the haematopoietic PGDS from vertebrates but, surprisingly, also a large conformational change in the prostaglandin binding pocket. The observed differences reveal a different vicinity of the prostaglandin H2 binding pocket that demands another prostaglandin H2 binding mode to that proposed for the vertebrate PGDS. Finally, a putative substrate binding mode for prostaglandin H2 is postulated based on the observed structural insights.  相似文献   

5.
In human platelet-rich plasma (PRP) eicosapentaenoic acid (EPA) inhibited platelet aggregation induced by a stable analogue of PGH2 (U46619), arachidonic acid, collagen or ADP. EPA was more potent than oleic, linoleic, α-linolenic or γ-linolenic acids. In aspirin-treated platelets, aggregation induced by U46619 was inhibited to a similar extent by arachidonic acid or by EPA over a range of concentrations of 0.05–0.3 mM. EPA incubated with PRP did not induce the generation of a thromboxane (TXA)-like activity; indeed it prevented the formation of TXA2 induced by arachidonic acid or by collagen. The anti-aggregatory activity of EPA was not influenced by inhibitors of cyclo-oxygenase and lipoxygenase. The anti-aggregatory action of EPA may be caused by a rapid occupancy by EPA of TXA2/PGH2 “receptors” on platelet membrane as well as by a slower displacement of arachidonic acid from platelet phospholipids by chemically unchanged molecules of EPA.Not all samples of PRP were irreversibly aggregated by PGH2, but in those that were, PGH3 also induced an immediate dose-dependent but reversible aggregation. After a 4 min incubation of non-aggregating doses of PGH2 or PGH3 (100–300 nM) with PRP a stable anti-aggregatory compound was detected. The inhibitory activity produced from PGH3 was apparently more potent (ca 10 times) than that obtained from PGH2. The anti-aggregating compounds were identified by TLC and GLC-MS as PGD2 and PGD3. The apparent difference of potency between PGD2 and PGD3 was attributed to the concurrent production of PGE2 and PGE3. PGE2 prevented the inhibitory effect of PGD2 whereas PGE3 did not affect the activity of PGD3.It is concluded that one of the reasons for the low incidence of myocardial infarction in Eskimos could be that the pro-aggregatory arachidonic acid is replaced in their phospholipids by the anti-aggregatory EPA.  相似文献   

6.
The effect on smooth muscle of the endoperoxides PGG2 and PGH2, which are intermediates in prostaglandin biosynthesis, was studied in different systems in vitro and in vivo. On gastrointestinal smooth muscle (gerbil colon, rat stomach) PGG2 and PGH2 produced contractions comparable to those of PGE2 and PGF2a whereas contractions elicited on vascular (rabbit aorta) and airway (guinea-pig trachea) smooth muscle were considerably greater than those of PGE2 and PGF2a respectively. On intravenous injection into guinea-pigs PGG2 and PGH2 caused a triphasic change in blood pressure and were 8–10 times more effective than PGF2a in producing an increase in tracheal insufflation pressure. When given as aerosols the unstable endoperoxides were less effective than PGF2a. It is concluded that the endoperoxides are potent smooth muscle stimulants and that they are more effective than their degradation products (PGD2, PGE2, PGF2a) in some systems.  相似文献   

7.
The metabolism of PGH2 by human lung parenchymal microsomes was characterized by radiometric high performance liquid chromatography and compared with metabolism by pig, bovine, rat, mouse, and guinea pig lung microsomes. Microsomes from human lung synthesized 0.74 nmoles/mg protein and 0.72 nmoles/mg protein, PGI2 (6-Keto-PGF) and T×A2 (T×B2) respectively, upon incubation with 4.0 nmoles of PGH2. Pig, bovine, rat, mouse, and guinea pig microsomes respectively synthesized 0.1, 1.0, 0.9, 0.4, and 0.1 nmoles of PGI2/mg protein, and 0.9, 1.0, 0.7, 0.3, 1.8 nmoles of T×A2/mg protein, and preparations formed some PGE2, PGF, and PGD2. Mouse lung microsomes were unique in synthesizing PGE2 as the major prostaglandin. The thromboxane synthetase inhibitor 1-benzylimidazole was a specific inhibitor in these six species.  相似文献   

8.
Metabolism and action of the prostaglandin endoperoxide PGH2 in rat kidney   总被引:3,自引:0,他引:3  
Kidney membrane fractions metabolized [1-14C]PGH2 to TXB2, PGE2, PGF, PGD2, 6-keto PGF, and HHT. TXA2, as measured by TXB2, was enzymatically formed in cortex microsomes and was identified by thin layer chromatography and gas chromatography - mass spectrometry. PGH2 caused a labile inhibition of cortical PGE2-stimulated adenylate cyclase. PGE2, PGF, and PGD2 are stimulators of cortical adenylate cyclase. The inability of two thromboxane synthetase inhibitors, imidazole and 9,11-azoprosta-5,13 dienoic acid, to block PGH2 inhibition suggested that TXA2 was not an obligatory intermediate in this process. Therefore, a potential function of cortical PGH2 is inhibition of adenylate cyclase.  相似文献   

9.
Partially purified prostacyclin synthase from pig aorta converted the prostaglandin (PG) endoperoxide PGH2 to prostacyclin (PGI2), and PGH1 to 12-hydroxy-8,10-heptadecadienoic acid (HHD). Both reactions were inhibited by 15-hydroperoxy-5,8,11,13-eicosatetraenoic acid (15-HP) in a dose-dependent fashion. However, the reactions PGH2 → PGI2 and PGH1 → HHD appeared to differ: substrate availability was rate limiting in the latter reaction, while the enzyme became rapidly saturated with PGH2 and a steady rate of prostacyclin formation was observed at higher substrate levels.  相似文献   

10.
Addition of the one-, two- or three- series endoperoxide to human platelet-rich plasma tend to supress aggregation, through the action of their respective non-enzymatic breakdown products PGE1, PGD2, or PGD3 all of which elevate cyclic AMP levels. On the other hand, these stable primary products do not arise in appreciable amounts from intrinsic endoperoxides generated from either endogenous or exogenous free fatty acids. 5,8,11,14,17-Eicosapentaenoic acid (EPA) suppresses arachidonic acid (5,8,11,14-eicosatetraenoic acid) conversion by cycloogygenase (as well as lipoxygenase) to aggregatory metabolites in platelets. Exogenously added EPA was capable of inhibiting PRP aggregation induced either by exogenous or endogenous (released by ADP or collagen) arachidonate. The hypothetical combination of an EPA-rich diet and a thromboxane synthetase inhibitor might abolish production of the pro-aggregatory species, thromboxane A2, and enhance formation of the anti-aggregatory metabolite, prostacyclin.Whereas EPA is not detectably metabolized by platelets, dihomo-γ-linolenic acid (8,11,14,-eicosatrienoic acid) is primariley converted by cyclooxygenase and thromboxane synthetase into the inactive metabolite, 12-hydroxyheptadecadienoic (HHD) acid. Pretreatment of human platelet suspensions with the thromboxane synthetase inhibitor imidazole unmasks the aggregatory property of PGH1 and DLL which was partially compromised by the PGE1 formed. The combination of the thromboxane synthetase inhibitor and an adenylate cyclase inhibitor unmasks a complete irreversible aggregation by DLL or PGH1. The basis of a dietary strategy that replaces AA with DLL must rely on the production by the platelet of an inactive metabolite (HHD) rather than thromboxane A2.  相似文献   

11.
During its development from free-living infectious third-stage larvae to the adult worms in the large intestines of pigs, Oesophagostomum dentatum experiences several environmental changes. Differences in protein patterns can reflect such changes. Somatic and ES antigens and glycoproteins of pre-parasitic, histotropic and intestinal stages were compared by single-dimension SDS–PAGE and stage-specific proteins were defined. Furthermore, fourth-stage larvae derived from different sources—in-vitro cultivation and intestinal contents—were compared and also found to be different. It is hypothesised that O. dentatum reacts to environmental stimuli by differential expression of specific proteins as a possible mode of adaptation to the host.  相似文献   

12.
Joachim A  Ruttkowski B 《Parasitology》2008,135(10):1215-1223
Oesophagostomum dentatum stages were investigated for glutathione S-transferase (GST) expression at the protein and mRNA levels. GST activity was detected in all stages (infectious and parasitic stages including third- and fourth-stage larvae of different ages as well as males and females) and could be dose-dependently inhibited with sulfobromophthalein (SBP). Addition of SBP to in vitro larval cultures reversibly inhibited development from third- to fourth-stage larvae. Two glutathione-affinity purified proteins (23 and 25 kDa) were detected in lysates of exsheathed third-stage larvae by SDS-PAGE. PCR-primers were designed based on peptide sequences and conserved GST sequences of other nematodes for complete cDNA sequences (621 and 624 nt) of 2 isoforms, Od-GST1 and Od-GST2, with 72% nucleotide similarity and 75% for the deduced proteins. Genomic sequences consisted of 7 exons and 6 introns spanning 1296 bp for Od-GST1 and 1579 and 1606 bp for Od-GST2. Quantitative real-time-PCR revealed considerably elevated levels of Od-GST1 in the early parasitic stages and slightly reduced levels of Od-GST2 in male worms. Both Od-GSTs were most similar to GST of Ancylostoma caninum (nucleotides: 73 and 70%; amino acids: 80 and 73%). The first three exons (75 amino acids) corresponded to a synthetic prostaglandin D2 synthase (53% similarity). O. dentatum GSTs might be involved in intrinsic metabolic pathways which could play a role both in nematode physiology and in host-parasite interactions.  相似文献   

13.
Prostaglandin D2 was found to be a potent inhibitor of platelet aggregation. Aggregation of human platelets by ADP, collagen and prostaglandin G2 was inhibited more strongly by PGD2 than by PGE1. Although ADP-induced aggregation of rabbit platelets was inhibited more strongly by PGE1 than by PGD2 the latter prostaglandin gave a more long-lasting inhibitory effect on platelet aggregation following intravenous or oral administration. These results coupled with the finding that PGD2 has less hypotensive effects on the cardiovascular system than PGE1 suggest the possible use of PGD2 as an antithrombotic agent.  相似文献   

14.
Previously, we demonstrated that prostaglandin D2 (PGD2), a natural product of the endoperoxide PGH2, evoked bronchoconstriction when given I.V. to dogs (PROSTAGLANDINS 13:255–269, 1977). The present investigation in anesthetized dogs demonstrated that aerosols of PGD2 (0.001–0.1%) produced concentration-dependent increases in pulmonary resistance (RL) and decreases in dynamic lung compliance (CDYN) which were short-lived and equipotent to PGF. These alterations in pulmonary mechanics were partially, yet significantly, inhibited by atropine, thereby suggesting that at least a portion of the bronchoconstriction may be cholinergically mediated. Concomitant cardiovascular depressant effects of both PGD2 and PGF aerosols were much less and more variable than their bronchopulmonary effects.These results demonstrate a potent bronchoconstrictor effect of aerosolized PGD2 in dogs. PGD2 warrants further attention as a possible mediator of the bronchospasm seen in acute, reversible airways obstruction.  相似文献   

15.
Prostaglandin D2 was found to be a potent inhibitor of platelet aggregation. Aggregation of human platelets by ADP, collagen and prostaglandin G2 was inhibited more strongly by PGD2 than by PGE1. Although ADP-induced aggregation of rabbit platelets was inhibited more strongly by PGE1 than by PGD2 the latter prostaglandin gave a more long-lasting inhibitory effect on platelet aggregation following intravenous or oral administration. These results coupled with the finding that PGD2 has less hypotensive effects on the cardiovascular system than PGE1 suggest the possible use of PGD2 as an antithrombotic agent.  相似文献   

16.
Previous studies have demonstrated that 13-azaprostanoic acid (13-APA) is a potent and specific antagonist of thromboxane A2/prostaglandin H2 (TXA2/PGH2) at the platelet receptor level. In the present study we evaluated the effects of a new azaprostanoid, 2-(6-carboxyhexyl) cyclopentanone hexylhydrazone (CPH), on human platelet function. This hydrazone was found to completely inhibit arachidonic acid (AA)-induced platelet aggregation at 1 uM CPH. On the other hand, CPH was not an effective inhibitor of PGH2-induced aggregation. Furthermore, 100 uM CPH was completely ineffective in blocking platelet aggregation stimulated by adenosine diphosphate (ADP) or the stable prostaglandin endoperoxide analog U46619 (which presumably acts at the TXA2/PGH2 receptor). Measurement of platelet thromboxane B2 (TXB2) production demonstrated that the primary site-of-action of CPH is at the cyclo-oxygenase level. Thus, CPH inhibited TXB2 formation from AA in a dose-dependent manner (0.1 uM–100 uM CPH)2. In contrast, CPH blocked TXB2 production from PGH2 only at the highest CPH concentration tested, i.e., 100 uM. These results indicate that relative to 13-APA, addition of a second nitrogen at C14 and a double bond between the 12- and 13- positions results in a loss of receptor activity but produces a high affinity for the platelet cyclo-oxygenase.  相似文献   

17.
Effects of the prostaglandin endoperoxide, PGH2, were investigated in the renal and superior mesenteric vascular beds in anesthetized dogs. Vascular effects of a stable PGH2 analog were also studied in the intestine. Blood flow was measured with electromagnetic flowmeters and vasoactive hormones were administered by close intra-arterial injection. Authentic PGH2 increased blood flow in the kidney and intestine in a dose-related manner. Mesenteric blood flow was reduced by the PGH2 analog in a dose-dependent fashion which was similar to the vasoconstrictor activity of norepinephrine in this organ. PGH2 is biologically unstable and the type and activity of its metabolic products may vary in different regional vascular beds. Most of the known products of PGH2 metabolism in the kidney are vasodilators whereas in the intestine both vasodilator and vasoconstrictor metabolites are formed. It has been suggested that the vascular activity of PGH2 in an organ is dependent on the predominant type and activity of specific terminal enzymes that convert PGH2 to its various vaso-active products.  相似文献   

18.
The thromboxane synthetase inhibitor, 9,11-azoprosta-5,13-dienoic acid, blocks both platelet aggregation and the cyclic AMP lowering activity of the prostaglandin endoperoxide PGH2. These data indicate PGH2 must be converted into thromboxane A2 in order to lower cAMP or induce platelet aggregation.  相似文献   

19.
At some life-cycle stages, it is impossible to distinguish between the two species of porcine nodular worm, Oesophagostomum dentatum and Oesophagostomum quadrispinulatum, using morphological features. A PCR-based single-strand conformation polymorphism technique was established to overcome this limitation. The rDNA region spanning the second internal transcribed spacer was amplified by PCR from genomic DNA from morphologically well-defined adult worms. The PCR products were then denatured and subjected to electrophoresis in a non-denaturing gel matrix. Single-strand conformation polymorphism analysis of the products generated characteristic and reproducible patterns for each of the two species and allowed their unequivocal delineation. The single-strand conformation polymorphism was also applied effectively to assess the purity of nine laboratory-maintained cultures of infective third-stage larvae believed to be monospecific for O. dentatum or O. quadrispinulatum. The analysis showed that all six O. dentatum cultures were indeed monospecific, whereas the three cultures believed to be monospecific for O. quadrispinulatum were either a mixture of O. dentatum and O. quadrispinulatum larvae or pure O. dentatum larvae. These findings demonstrated the usefulness of the single-strand conformation polymorphism approach for the routine monitoring of the purity of parasite lines and indicated its value for studies on the population biology of porcine nodular worms.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号