首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A procedure for one-step growth experiments on Bdellovibrio bacteriovorus growing parasitically in Escherichia coli B was developed. The resulting one-step growth curves showed that, under defined conditions at 30 C, each singly infected E. coli host cell, on the average, gave rise to 5.7 Bdellovibrio cells. This value was confirmed by single-burst experiments and by microscopic observations. In the temperature range of 25 to 38 C, the average burst size and the duration of the latent period were inversely proportional to the temperature. The effect of hydrogen ion concentration on the one-step growth kinetics in this system indicated a broad pH optimum, ranging from neutrality to slightly alkaline pH values. After Bdellovibrio cells and host cells were mixed, there was always a delay (the so-called "lag phase") before the parasite titer increased in terms of plaque-forming units. Phase-contrast microscopic observations indicated that this delay stems in part from the polyphasic nature of the Bdellovibrio life cycle. We propose the following five terms to make explicit the sequence of events in this life cycle: "attachment," "penetration," "elongation," "fragmentation," and "burst." Nutritional experiments revealed that Bdellovibrio obtains a major fraction of its cellular components from host-cell material. Infection of E. coli by Bdellovibrio without added Mg(++) or Ca(++) (0.003 m Mg(++), 0.002 m Ca(++)) resulted in partial or total lysis of the host cell soon after infection. Protoplast integrity was necessary for the normal completion of the intracellular growth phase of Bdellovibrio in E. coli; normal development of the parasite took place only in the presence of Mg(++) or Ca(++).  相似文献   

2.
Two temperature-sensitive mutants (lysS1 and lysS2) of the lysyl-transfer ribonucleic acid synthetase (l-lysine:tRNA ligase [adenosine 5'-monophosphate], EC 6.1.1.6) of Bacillus subtilis have been isolated. Although protein synthesis is inhibited in both mutants at the restrictive temperature (42 to 45 C), the mutants remain viable in a minimal medium. In comparison with the wild-type lysyl-tRNA synthetase, the l-lysine-dependent exchange of [(32)P]pyrophosphate with adenosine 5'-triphosphate (ATP) for both mutant enzymes is decreased. The lysS1 enzyme is completely defective in the ATP-dependent attachment of l-lysine to tRNA, whereas the lysS2 enzyme has 3- to 10-fold reduced levels of this activity. Temperature-resistant transformants have wild-type enzyme levels, whereas partial revertants to temperature resistance have varied levels of enzyme activity. The attachment and exchange activities of the lysS2 enzyme are more heat labile in vitro than the wild-type enzyme, as is the attachment activity of a partial revertant of the lysS1 mutant. The lysS1 and the lysS2 lysyl-tRNA synthetases have higher apparent K(m) values for lysine and ATP, in both the activation and the attachment reactions. The lysS2 enzyme has a V(max) for tRNA(lys) one-third that of the wild-type enzyme. Molecular weights of approximately 150,000 for the wild-type and lysS2 enzymes and approximately 76,000 for the lysS1 enzyme were estimated from sedimentation positions in sucrose density gradients assayed by the ATP-pyrophosphate exchange activity. We propose that the two mutations (lysS1 and lysS2) directly affect the sites for exchange activity, but indirectly alter attachment activity as a consequence of defective subunit association.  相似文献   

3.
Wild-type bdellovibrios are obligate intraperiplasmic parasites of other gram-negative bacteria. However, spontaneous mutants that can be cultured in the absence of host cells occur at a frequency of 10(-6) to 10(-7). Such host-independent (H-I) mutants generally display diminished intraperiplasmic-growth capabilities and form plaques that are smaller and more turbid than those formed by wild-type strains on lawns of host cells. An analysis of the gene(s) responsible for the H-I phenotype should provide significant insight into the nature of Bdellovibrio host dependence. Toward this end, a conjugation procedure to transfer both IncQ and IncP vectors from Escherichia coli to Bdellovibrio bacteriovorus was developed. It was found that IncQ-type plasmids were capable of autonomous replication in B. bacteriovorus, while IncP derivatives were not. However, IncP plasmids could be maintained in B. bacteriovorus via homologous recombination through cloned B. bacteriovorus DNA sequences. It was also found that genomic libraries of wild-type B. bacteriovorus 109J DNA constructed in the IncP cosmid pVK100 were stably maintained in E. coli; those constructed in the IncQ cosmid pBM33 were unstable. Finally, we used the conjugation procedure and the B. bacteriovorus libraries to identify a 5.6-kb BamHI fragment of wild-type B. bacteriovorus DNA that significantly enhanced the plaque-forming ability of an H-I mutant, B. bacteriovorus BB5.  相似文献   

4.
Mutants of Escherichia coli K-12 defective in replication of F-like plasmids at a high temperature (42 degrees C) were found among threonine-independent (Thr+) revertants of a threonine-requiring F' stain after localized mutagenesis with N-methyl-N'-nitro-N-nitrosoguanidine. Transduction experiments with phage P1 permitted us to divide these mutations into two classes with respect to man location; some mutations were located between thr and ara at about 0.8 min, very close to maf-1 reported previously (Wada et al., J. Mol. Biol. 108:25-41, 1976 and the others probably were located between leu and azi at about 1.8 min. The former class of mutants designated mafA exhibited the same plasmid specificity as maf-1; replication of plasmids F and ColVB trp, but not R386 or R222, were affected at a high temperature. By contrast, the latter mutants designated mafB were defective in replication of nay of these plasmids at a high temperature. When a culture of mafA mutants carrying an F' plasmid was transferred from 30 to 42 degrees C, the plasmid replication as determined by incorporation of [3H]thymidine into covalently closed circular F DNA was markedly inhibited. Under certain conditions, the temperature shift-up caused severe growth inhibition of the mutant cells. Examination of merodiploids (mafA/FmafA+) for plasmid maintenance suggested that the two mafA mutations tested (mafA23 and mafA36) were both dominant, at least partially, over the wild-type mafA+ allele. These properties of the mafA mutants, manifested at the restrictive temperature, are similar to those previously reported for the maf-1 mutant. Taken together with other evidence it is likely that these mutations affect either the same gene (mafA) or a set of closely linked genes, playing a specific role in autonomous plasmid replication in E. coli.  相似文献   

5.
6.
The intracellular life cycle of Bdellovibrio bacteriovorus 109 growing on Escherichia coli in a dilute nutrient medium exhibits a period of constant infective titer while the parasite grows and elongates inside the host cell. This period is terminated after 2 to 4 hr, and the number of the plaque-forming units in the culture rises rapidly to as much as six times the initial titer. The growth pattern of Bdellovibrio is similar with actively growing or resting host cells, or with host cells killed by ultraviolet irradiation or by heating at 70 C. The yield of B. bacteriovorus strain 109 in two-membered cultures with E. coli B depends on the host concentration and may reach 7.5 x 10(10) cells per ml. Penicillin, which has no effect on the attachment and penetration of Bdellovibrio, inhibits its multiplication.  相似文献   

7.
Mutants of Escherichia coli Unable to Make Protein at 42 C   总被引:11,自引:9,他引:2       下载免费PDF全文
Members of a collection of mutants of Escherichia coli unable to form colonies on nutrient agar at 42 C have been characterized on the basis of their growth response to a shift from 32 to 42 C in liquid medium. Forty-four mutants, which show an abrupt, nonlethal cessation of growth when moved to the restrictive temperature, have been characterized with respect to the effect of the mutation responsible for temperature sensitivity on deoxyribonucleic acid, ribonucleic acid, and protein synthesis. In 12 mutants, the mutation causing temperature sensitivity of growth primarily affects protein synthesis, in each case through an altered aminoacyl-transfer ribonucleic acid synthetase. Mutants with temperature-sensitive glutamyl-, phenylalanyl-, and valyl-transfer ribonucleic acid synthetases have been obtained, and the genes specifying these enzymes have been mapped by conjugation and transduction. Another mutant has been shown to possess a temperature-sensitive tryptophanyl-transfer ribonucleic acid synthetase, but this is not responsible for inability to grow at 42 C on media containing tryptophan.  相似文献   

8.
Mutants of Pseudomonas aeruginosa were isolated that were acetamide-negative in growth phenotype at 41 degrees C and constitutive for amidase synthesis at 28 degrees C. Two mutants were derived from the magno-constitutive amidase mutant PAC111 (C11), and a third from a mutant that had enhanced inducibility by formamide, PAC153 (F6). The three temperature-sensitive mutants produced amidases with the same thermal stabilities as the wild-type enzyme. Cultures growing exponentially at 28 degrees C, synthesizing amidase constitutively, ceased amidase synthesis almost immediately on transfer to 41 degrees C. Cultures growing at 41 degrees C were transferred to 28 degrees C and had a lag of about 0.5 of a generation before amidase synthesis became detectable. Pulse-heating for 10 min at 45 degrees C of a culture growing exponentially at 28 degrees C resulted in a lag of about 0.5 of a generation before amidase synthesis recommenced after returning to 28 degrees C. Acetamide-negative mutants that were unable to synthesize amidase at any growth temperature were isolated from an inducible strain producing the mutant B amidase PAC398 (IB10). Two mutants were examined that gave revertants producing B amidase but with novel regulatory phenotypes. It is suggested that amidase synthesis is regulated by positive control exerted by gene amiR.  相似文献   

9.
Bacillus subtilis mutants deficient in the 2-ketoglutarate dehydrogenase enzymatic complex required aspartate for growth at wild-type rates on carbon sources for which synthesis of the degradative enzymes is sensitive to catabolite repression (e.g., poor carbon sources), but did not require aspartate for growth on carbon sources which exert catabolite repression (e.g., good carbon sources). Measurement of metabolite pools in a mutant lacking the 2-ketoglutarate dehydrogenase active complex showed that the aspartate requirement for growth on poor carbon sources resulted from a deficiency in intracellular oxaloacetate pools even through pyruvate carboxylase was present at levels corresponding to those in wild-type cells. The oxaloacetate deficiency most likely resulted from the inability of the mutant to regenerate oxaloacetate from citrate due to the enzymatic block in the tricarboxylic acid cycle. Mutants in the enzymes of the dicarboxylic acid half of the citric acid cycle similarly required aspartate for wild-type growth in minimal medium. These results suggested that the complete turning of the tricarboxylic acid cycle is involved in the maintainance of oxaloacetate levels in B. subtilis. The ability of the mutants lacking the 2-ketoglutarate dehydrogenase enzymatic complex to grow at wild-type rates on media containing good carbon sources in the absence of exogenous aspartate is not understood.  相似文献   

10.
During intraperiplasmic growth of Bdellovibrio bacteriovorus 109J, the substrate cell surface becomes more hydrophobic. This was shown (i) by comparing the sensitivity to hydrophobic antibiotics of wild-type and lipopolysaccharide mutant strains of Salmonella typhimurium to that of the bdellovibrio growing on these strains and (ii) by measuring the binding efficiency of these strains, Escherichia coli, and their derived bdelloplasts to octyl Sepharose. The kinetics of increase in surface hydrophobicity was similar to the kinetics of the conversion of the substrate cell peptidoglycan to a lysozyme-resistant form (M. Thomashow and S. Rittenberg, J. Bacteriol. 135:1008-1014, 1978), and hydrophobicity reached a maximum at about 60 min in a synchronous culture. The change in hydrophobicity was inhibited by chloramphenicol, suggesting that bdellovibrio protein synthesis was required. Control experiments revealed that the free-swimming bdellovibrio had a more hydrophobic surface than the deep rough mutants of S. typhimurium.  相似文献   

11.
Abstract Mutants unable to use ethanol for carbon and energy were counterselected from an ethanolutilizing mutant of Escherichia coli K12 derepressed for alcohol dehydrogenase (ADH). Mutants of one class were devoid of ADH activity under anaerobic conditions but exhibited aerobic activities comparable to those of wild-type E. coli. Mutants of a second class exhibited ADH activity levels intermediate between those of the wild-type and derepressed parent. Immunological studies showed that mutants of the former class synthesized far less ADH protein than did the derepressed parent while mutants of the latter class synthesized about the same amount. The ADH mutations in both classes were located within the previously described adh region which contains the structural gene for the activity that is derepressed in the parent. An Eth adh-lac fusion mutant with an insertion in the structural gene was also isolated and characterized. It exhibited no ADH activity under anaerobic conditions and wild-type levels under aerobic conditions. These data are consistent with the existence in E. coli of distinct aerobic and anaerobic ADH enzymes and a derepression of the anaerobic but not the aerobic enzyme in the ethanol utilizing strain.  相似文献   

12.
Sporulation of Tricarboxylic Acid Cycle Mutants of Bacillus subtilis   总被引:18,自引:13,他引:5       下载免费PDF全文
A mutant of Bacillus subtilis 168 lacking aconitase (EC 4.2.1.3) was found to be blocked at stage 0 or I of sporulation. Although adenosine triphosphate levels, which normally decrease in tricarboxylic acid cycle mutants at the completion of exponential growth, could be maintained at higher levels by feeding metabolizable carbon sources, this did not permit the cells to progress further into the sporulation sequence. When post-exponential-phase cells of mutants blocked in the first half of the tricarboxylic acid cycle were resuspended with an energy source in culture fluid from post-exponential-phase wild-type B. subtilis or Escherichia coli, good sporulation occurred. The spores produced retained the mutant genotype and were heat stable but lost refractility and heat stability several hours after their production.  相似文献   

13.
Suppressor mutations for crs mutants of Bacillus subtilis   总被引:1,自引:0,他引:1  
Mutants of Bacillus subtilis which carried suppressor mutations for catabolite-resistance gene crsA47 were isolated from methylmethanesulfonate-treated cultures of GLU-47 (crsA47). The suppressor mutation, sca19, suppressed resistance of crsA47 mutant to glucose and other inhibitors of sporulation. Moreover, the suppressor mutation could restore the rate of growth and the level of IMP dehydrogenase and alkaline phosphatase of crsA47 mutant to the wild-type level. The scal19 mutation was also able to suppress catabolite resistance of other crs mutants. The map position of the sca19 mutation indicated that this mutation was an intergenic suppressor for the crs mutants. It was also found that an erythromycin-resistance mutation, eryl, could suppress the catabolite resistance of some of the crs mutants. Our results were discussed in relation to the importance of a proper state of metabolic activities and membrane functions during the initiation of sporulation.  相似文献   

14.
We have generated a mouse carrying the human G551D mutation in the cystic fibrosis transmembrane conductance regulator gene (CFTR) by a one-step gene targeting procedure. These mutant mice show cystic fibrosis pathology but have a reduced risk of fatal intestinal blockage compared with 'null' mutants, in keeping with the reduced incidence of meconium ileus in G551D patients. The G551D mutant mice show greatly reduced CFTR-related chloride transport, displaying activity intermediate between that of cftr(mlUNC) replacement ('null') and cftr(mlHGU) insertional (residual activity) mutants and equivalent to approximately 4% of wild-type CFTR activity. The long-term survival of these animals should provide an excellent model with which to study cystic fibrosis, and they illustrate the value of mouse models carrying relevant mutations for examining genotype-phenotype correlations.  相似文献   

15.
Two types of fosfomycin-resistant mutants of Bacillus subtilis were isolated. Mutants of the first type (GlpT mutants) were resistant to at least 200 microgram of fosfomycin per ml and failed to take up exogenous glycerol 3-phosphate. Mutants of the second type were resistant to lower concentrations of fosfomycin and transported glycerol-3-phosphate as efficiently as wild-type bacteria. The glpT mutations, but not the mutations in the second type of fosfomycin-resistant mutants, map in the cysA-aroI region of the B. subtilis chromosome.  相似文献   

16.
Mutants of the Cucumber mosaic virus (CMV) movement protein (MP) were generated and analyzed for their effects on virus movement and pathogenicity in vivo. Similar to the wild-type MP, mutants M1, M2, and M3, promoted virus movement in eight plant species. Mutant M3 showed some differences in pathogenicity in one host species. Mutant M8 showed some host-specific alterations in movement in two hypersensitive hosts of CMV. Mutant M9 showed altered pathogenicity on three hosts and was temperature sensitive for long-distance movement, demonstrating that cell-to-cell and long-distance movement are distinct movement functions for CMV. Four mutants (M4, M5, M6, and M7) were debilitated from movement in all hosts tested. Mutants M4, M5, and M6 could be complemented in trans by the wild-type MP expressed transgenically, although not by each other or by mutant M9 (at the restrictive temperature). Mutant M7 showed an inability to be complemented in trans. From these mutants, different aspects of the CMV movement process could be defined and specific roles for particular sequence domains assigned. The broader implications of these functions are discussed.  相似文献   

17.
The methyltransferase RsmG methylates the N7 position of nucleotide G535 in 16S rRNA of Bacillus subtilis (corresponding to G527 in Escherichia coli). Disruption of rsmG resulted in low-level resistance to streptomycin. A growth competition assay revealed that there are no differences in fitness between the rsmG mutant and parent strains under the various culture conditions examined. B. subtilis rsmG mutants emerged spontaneously at a relatively high frequency, 10(-6). Importantly, in the rsmG mutant background, high-level-streptomycin-resistant rpsL (encoding ribosomal protein S12) mutants emerged at a frequency 200 times greater than that seen for the wild-type strain. This elevated frequency in the emergence of high-level streptomycin resistance was facilitated by a mutation pattern in rpsL more varied than that obtained by selection of the wild-type strain.  相似文献   

18.
Hydroperoxidase I (HPI) of Escherichia coli is a bifunctional enzyme exhibiting both catalase and peroxidase activities. Mutants lacking appreciable HPI have been generated using nitrosoguanidine and the gene encoding HPI, katG, has been cloned from three of these mutants using either classical probing methods or polymerase chain reaction amplification. The mutant genes were sequenced and the changes from wild-type sequence identified. Two mutants contained G to A changes in the coding strand, resulting in glycine to aspartate changes at residues 119 (katG15) and 314 (katG16) in the deduced amino acid sequence of the protein. A third mutant contained a C to T change resulting in a leucine to phenylalanine change at residue 139 (katG14). The Phe139-, Asp119-, and Asp314-containing mutants exhibited 13, less than 1, and 18%, respectively, of the wild-type catalase specific activity and 43, 4, and 45% of the wild-type peroxidase specific activity. All mutant enzymes bound less protoheme IX than the wild-type enzyme. The sensitivities of the mutant enzymes to the inhibitors hydroxylamine, azide, and cyanide and the activators imidazole and Tris were similar to those of the wild-type enzyme. The mutant enzymes were more sensitive to high temperature and to beta-mercaptoethanol than the wild-type enzyme. The pH profiles of the mutant catalases were unchanged from the wild-type enzyme.  相似文献   

19.
Ten temperature-sensitive (ts) mutants of adenovirus type 12 which produce plaques at 31 but not at 38.5 C have been isolated after mutagenesis with nitrosoguanidine or nitrous acid. The mutants have been classified into six separate complementation groups. DNA-DNA hybridizations have shown that at 38.5 C the ts 401 and 406 mutants of groups B and E, respectively, synthesized less than 10% of the normal level of viral DNA. The two mutants were also defective in the production of late proteins at the nonpermissive temperature, as shown by fluorescent-antibody tests and analysis by sodium dodecyl sulfatepolyacrylamide gel electrophoresis. Genetic recombination between the ts viruses 401 and 406 has been demonstrated; the recombination frequency for the wild-type virus production was 17.7%. Both mutants induced an increase in thymidine kinase activity at 38.5 C. Moreover, the two viral DNA-defective mutants shut off host DNA synthesis at the restrictive temperature. It is striking that at 38.5 C ts virus 401 transformed two to eight times more hamster cells than the wild-type virus, whereas ts virus 406 transformed at a frequency similar to the wild-type virus.  相似文献   

20.
Mutants of Escherichia coli which have a defect in their permeability barrier were selected. The technique used was to employ a strain of E. coli having a deletion in the gene for lactose permease and to select for mutants which can grow on lactose at 40 C. Twenty such mutants were isolated and six of these were found to be more sensitive to actinomycin D, sodium deoxycholate, and sodium dodecyl sulfate than was the parental strain. They were also more sensitive to the antibiotics vancomycin and bacitracin, which inhibit peptidoglycan biosynthesis. These mutants were no more sensitive to several different colicins or phages than was the wild-type strain. One of the mutants selected by this technique has an abnormal morphology when grown on certain carbon sources in minimal medium, and this mutant is more extensively studied in the accompanying paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号