首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Membrane protein redistribution during Xenopus first cleavage   总被引:7,自引:5,他引:2       下载免费PDF全文
A large increase in surface area must accompany formation of the amphibian embryo first cleavage furrow. The additional membrane for this areal expansion has been thought to be provided entirely from cytoplasmic stores during furrowing. We have radioiodinated surface proteins of fertilized, precleavage Xenopus laevis embryos and followed their redistribution during first cleavage by autoradiography. Near the end of first cleavage, membrane of the outer, pigmented surface of the embryo and a short band of membrane at the leading edge of the furrow displayed a high silver grain density, but the remainder of the furrow membrane was lightly labeled. The membrane of the cleavage furrow is thus mosaic in character; the membrane at the leading edge originates in part from the surface of the zygote, but most of the membrane lining the furrow walls is derived from a source inaccessible to surface radioiodination. The furrow membrane adjacent to the outer, pigmented surface consistently showed a very low silver grain density and was underlain by large membranous vesicles, suggesting that new membrane derived from cytoplasmic precursors is inserted primarily in this location, at least during the later phase of cleavage. Radioiodinated membrane proteins and surface-attached carbon particles, which lie in the path of the future furrow, contract toward the animal pole in the initial stages of cleavage while markers in other regions do not. We suggest that the domain of heavily labeled membrane at the leading edge of the definitive furrow contains the labeled elements that are gathered at the animal pole during the initial surface contraction and that they include membrane anchors for the underlying contractile ring of microfilaments.  相似文献   

2.
In embryos of the frog Xenopus laevis, the dorsal structures normally develop from regions of the egg opposite the side of sperm entry. Gravity and centrifugal force, applied at an angle of 90 degrees to the animal-vegetal axis of the egg, can override this topographic relationship and can cause the dorsal structures to be positioned according to the force vector (S. Black and J. Gerhart, 1985, Dev. Biol. 108, 310-324). We report here that at time 0.40 (40% of the first cleavage interval), an average of 60% of eggs centrifuged at 30g for 4 min in this orientation form conjoined twins with one body axis arising from the centripetal side of the egg and one arising from the centrifugal side of the egg. This positioning is observed regardless of the orientation of the side of sperm entry in the centrifugal field. If, after the 0.40 centrifugation, the eggs are inclined with the centripetal side up, they do not make twins; instead, they make only a single axis at the centripetal side. This indicates that the second axis in twins is caused to form by postcentrifugation gravity-driven internal rearrangements of materials that were displaced by the centrifugation. Twins also form at high frequency in eggs centrifuged twice, first at an inclination of 90 degrees, and then at an inclination of 0 degrees. The second centrifugation yields secondary axes even when it is begun midway in the second cell cycle, well after the time of grey crescent formation. Double centrifugation also causes twinning ("double rescue") of uv-irradiated eggs which otherwise would not develop axial structures. This suggests that the internal displacements caused by the centrifugations can substitute for a step in the normal axis specification process that is impaired in irradiated eggs.  相似文献   

3.
Direct measurements of intracellular pH was made with recessed-tip pH microelectrodes in fertilized eggs of the frog, Xenopus laevis, from approximately 1 h after fertilization to mid-blastula. The intracellular pH just before first cleavage was 7.65 +/- 0.04 (SD; n = 9). By stage 5 to the middle of stage 6, average intracellular pH was 7.70 +/- 0.06 (SD; n = 16). A statistically significant alkalization of 0.18 +/- 0.03 pH unit (SD; n = 5) was observed beginning in early blastula. A cycle of less than or equal to 0.05 pH unit was occasionally observed during the pre-blastula period, but its significance is unknown. By exposing the early cleavage embryo to saline buffered with sodium propionate, pH 4.7-5.0, it was possible to lower intracellular pH with some degree of control. Apparently, normal cleavage continued to occur when intracellular pH had been forced as much as 0.3 unit below normal. We conclude that this implies no specific involvement of intracellular pH in mitosis and cytokinesis. If intracellular pH was lowered further, cell division ceased at about pH 7.2, and furrow regression began at about pH 7.0. Once furrow regression occurred, subsequent development was usually arrested or abnormal when the embryo was transferred back to normal saline.  相似文献   

4.
Alpha-actinin localization in the cleavage furrow during cytokinesis   总被引:24,自引:18,他引:6  
We used antibodies against alpha-actinin and myosin labeled directly with contrasting fluorochromes to localize these contractile proteins simultaneously in dividing chick embryo cells. During mitosis anti-alpha-actinin stains diffusely the entire cytoplasm including the mitotic spindle, while in the same cells intense antimyosin staining delineates the spindle. During cytokinesis both antibodies stain the cleavage furrow intensely, and until the midbody forms the two staining patterns in the same cell are identical at the resolution of the light microscope. Thereafter the anti-alpha-actinin staining of the furrow remains strong, but the antimyosin staining diminishes. These observations suggest that alpha-actinin participates along with actin and myosin in the membrane movements associated with cytokinesis.  相似文献   

5.
In Xenopus laevis, the dorsal structures normally develop from regions of the egg opposite the side of sperm entry. Gravity is known to affect this topographic relationship in eggs inclined obliquely from their normal vertical orientation in the period before first cleavage. This effect has been explored in detail, making use of low-speed centrifugation (10-50 g) for short durations (4 min). Eggs were immobilized in gelatin and oriented with their animal-vegetal axes 90 degrees to the force vector, with the sperm entry point (SEP) side of the egg either toward or away from the center of the rotor. It has been found that the egg shows three distinct periods of response to centrifugal force in the interval from fertilization to first cleavage: Prior to 0.4 (40% of the first cleavage interval), the egg is very sensitive to centrifugal force and develops dorsal structures from its centrifugal side, regardless of the position of the SEP in the centrifugal field. Thus, the dorsal structures of the embryo are reversed from normal in eggs centrifuged with the SEP away from the center of the rotor. In the period 0.4 to 0.7, the egg is still very sensitive to centrifugal force and develops dorsal structures from its centripetal side, regardless of the position of the SEP in the centrifugal field. Thus, the dorsal structures of the embryo are reversed from normal in eggs centrifuged with the SEP toward the center of the rotor. In the period 0.7-1.0, the egg becomes increasingly resistant to centrifugal force and forms dorsal structures at the normal position opposite the SEP side. This resistance can be overcome in some egg clutches by 50 g centrifugation followed by prolonged 90 degrees off-axis inclination at 1g. Midway in the second cell cycle, there is a brief period of sensitivity to centrifugal force. These These results are discussed in terms of the types of cytoplasmic rearrangements occurring in the egg at different times of the cell cycle, and in terms of the process of cytoplasmic localization of determinants of dorsal axial development.  相似文献   

6.
Eggs of Xenopus laevis were exposed to ultraviolet (uv) radiation (2537 Å) on the vegetal hemisphere soon after fertilization at doses sufficient to impair greatly the subsequent development of dorsal structures. It was found that temporary orientation of irradiated eggs 90° off the natural vertical axis rescues these eggs, allowing them to develop into normal embryos. Complete rescue results when oblique orientation is initiated well before first cleavage, and eggs remain in this position until the 16-cell stage. Significant rescue is seen, however, in eggs which remain off axis for shorter periods of time or when eggs are obliquely oriented, even after first cleavage. Furthermore, a period of oblique orientation prior to uv irradiation results in insensitivity of eggs to irradiation. Ultraviolet irradiation is found to randomize the position of the dorsal side with respect to the sperm entrance point, whereas the position of the dorsal side of rescued embryos is strongly specified by the orientation of the egg during the rescue period, and not by the sperm entrance point. Other effects of uv irradiation on early development include decreased pigmentation differences among 4-cell stage blastomeres and delayed gastrulation. It is proposed (1) that oblique orientation promotes in irradiated eggs a set of internal rearrangements mimicking those normally accomplished by the unirradiated egg in a period prior to first cleavage and as part of an early dorsalization process, and (2) that the uv-sensitive targets are part of the morphogenic machinery used by the egg for internal rearrangements in this period and are not elements of a system of transmitted particulate dorsal determinants.  相似文献   

7.
8.
9.
Anti-tubulin antibodies and confocal immunofluorescence microscopy were used to examine the organization and regulation of cytoplasmic and cortical microtubules during the first cell cycle of fertilized Xenopus eggs. Appearance of microtubules in the egg cortex temporally coincided with the outgrowth of the sperm aster. Microtubules of the sperm aster first reached the animal cortex at 0.25, (times normalized to first cleavage), forming a radially organized array of cortical microtubules. A disordered network of microtubules was apparent in the vegetal cortex as early as 0.35. Cortical microtubule networks of both animal and vegetal hemispheres were reorganized at times corresponding to the cortical rotation responsible for specification of the dorsal-ventral (D-V) axis. Optical sections suggest that the cortical microtubules are continuous with the microtubules of the sperm aster in fertilized eggs, or an extensive activation aster in activated eggs. Neither assembly and organization, nor disassembly of the cortical microtubules coincided with MPF activation during mitosis. However, cycloheximide or 6-dimethylaminopurine, which arrest fertilized eggs at interphase, blocked cortical microtubule disassembly. Injection of p13, a protein that specifically inhibits MPF activation, delayed or inhibited cortical microtubule breakdown. In contrast, eggs injected with cyc delta 90, a truncated cyclin that arrest eggs in M-phase, showed normal microtubule disassembly. Finally, injection of partially purified MPF into cycloheximide-arrested eggs induced cortical microtubule breakdown. These results suggest that, despite a lack of temporal coincidence, breakdown of the cortical microtubules is dependent on the activation of MPF.  相似文献   

10.
Cleavage furrows of amphibian eggs exhibit characteristic morphological features: the presence of finger-like microvilli (MV) along their outer edges, the formation of furrow walls from new plasma membrane lacking MV, and the subsequent retrieval of this membrane during the infolding of the furrow. A similar structure can be induced, specifically, by certain cytoplasmic components such as centrosomes, polyamines and calcium. Their respective roles in the events associated with the furrowing process have been investigated by injecting these agents into nucleated and enucleated Pleurodeles eggs and evaluating their effects using cytochemical labelling of the egg surface with a biotin-streptavidin system. The injection of polyamines (spermine or spermidine) and in some cases, calcium into enucleated eggs provoked MV elongation and the appearance of newly formed, smooth plasma membrane. In these eggs, this membrane was not incorporated into the furrows, and as a consequence, the blastomeres did not actually separate. In contrast, the injection of centrosomes into enucleated eggs induced both the incorporation and internalization of new membrane, resulting in the formation of furrows and a true cellularization of the eggs, identical to the cleavage process observed in fertilized eggs. The present results provide further evidence that the establishment of the furrow depends on two complementary interacting systems: the contractile elements of the egg cortex which regulate the insertion of new membrane and the mitotic center which is essential for the invagination of the furrow.  相似文献   

11.
It has been proposed that a localized calcium (Ca) signal at the growing end of the cleavage furrow triggers cleavage furrow formation in large eggs. We have examined the possible role of a Ca signal in cleavage furrow formation in the Xenopus laevis egg during the first cleavage. We were able to detect two kinds of Ca waves along the cleavage furrow. However, the Ca waves appeared after cleavage furrow formation in late stages of the first cleavage. In addition, cleavage was not affected by injection of dibromoBAPTA or EGTA into the eggs at a concentration sufficient to suppress the Ca waves. Furthermore, even smaller classes of Ca release such as Ca puffs and Ca blips do not occur at the growing end of the cleavage furrow. These observations demonstrate that localized Ca signals in the cleavage furrow are not involved in cytokinesis. The two Ca waves have unique characteristics. The first wave propagates only in the region of newly inserted membrane along the cleavage furrow. On the other hand, the second wave propagates along the border of new and old membranes, suggesting that this wave might be involved in adhesion between two blastomeres.  相似文献   

12.
Nuclei were isolated from Echinus eggs through the first cleavage cycle by modification of existing techniques. When these nuclei were extracted with 2 M NaCl and the supernatant diluted to 0.15 M, large amounts of non-histone proteins remained in solution. The precipitated nucleoprotein contained expected amounts of DNA and a protein analogous to mammalian histone H1. Extrachromosomal histone H1 was eliminated by the modified isolation procedure. Amounts of nuclear proteins soluble in 0.15 M NaCl reached a peak in G2. Histones and non-histone proteins were phosphorylated postfertilization, in early prophase and in telophase.  相似文献   

13.
To determine the relationship between the first cleavage furrow and the dorsal-ventral axis of the Xenopus embryo, a heritable intracellular marker was injected into one blastomere at the two-cell stage. Embryos were selected in which the cleavage furrow bisected the crescent-shaped region of pale pigmentation or in which it formed 45-90 degrees from this region. This region, which is located in the animal hemisphere of the Xenopus embryo, meets the criteria of the grey crescent as defined in other amphibian species. At tailbud stages the interface between the labeled and unlabeled halves was always coincident with the midsagittal plane. This correlation shows that the first cleavage furrow demarcates the dorsal-ventral axis. The labeling pattern was the same whether the first cleavage furrow bisected the region of pale pigmentation or whether it formed 90 degrees from it. However, when this region was bisected (70% of embryos) it always was located on the dorsal side of the embryo. Thus the region of pale pigmentation indicates the dorsal side of the embryo only when it is bisected by the first cleavage furrow.  相似文献   

14.
We have used Thomas-type recessed-tip pH-sensitive microelectrodes to measure the intracellular pH (pHi) in Xenopus eggs during both fertilization and ionophore activation. The average pHi in unfertilized eggs is 7.33 +/- 0.11 (SD; n = 21) with a resting membrane potential of -10.1 +/- 3.5 (SD; n = 38) mV. Within 2 min after the onset of the fertilization potential, there is a slight, transient pHi decrease of 0.03 +/- (SD, n = 8), followed by a distinct, permanent pHi increase of 0.31 +/- 0.11 (SD; n = 7) beginning approximately 10 min after the start of the fertilization potential and becoming complete approximately 1 h later. The pHi remains near this level of 7.67 +/- 0.13 (SD, n = 10) through at least 10 cleavage cycles, but it is possible to discern pHi oscillations with a mean amplitude of 0.03 +/- 0.02 (SD, n = 38). Eggs perfused for at least 2 h in Na+-free solution with 1 mM amiloride exhibited all of these pHi changes, so these changes do not require extracellular Na+. Similar cytoplasmic alkalinizations that accompany the activation of metabolism and the cell cycle in a wide variety of cell types are discussed.  相似文献   

15.
16.
17.
Different models for animal cell cytokinesis posit that the stiffness of the equatorial cortex is either increased or decreased relative to the stiffness of the polar cortex. A recent work has suggested that the critical cytokinesis signaling complex centralspindlin may reduce the stiffness of the equatorial cortex by inactivating the small GTPase Rac. To determine if such a reduction occurs and if it depends on centralspindlin, we devised a method to estimate cortical bending stiffness with high spatio-temporal resolution from in vivo cell shapes. Using the early Caenorhabditis elegans embryo as a model, we show that the stiffness of the equatorial cell surface is reduced during cytokinesis, whereas the stiffness of the polar cell surface remains stiff. The equatorial reduction of stiffness was compromised in cells with a mutation in the gene encoding the ZEN-4/kinesin-6 subunit of centralspindlin. Theoretical modeling showed that the absence of the equatorial reduction of stiffness could explain the arrest of furrow ingression in the mutant. By contrast, the equatorial reduction of stiffness was sufficient to generate a cleavage furrow even without the constriction force of the contractile ring. In this regime, the contractile ring had a supportive contribution to furrow ingression. We conclude that stiffness is reduced around the equator in a centralspindlin-dependent manner. In addition, computational modeling suggests that proper regulation of stiffness could be sufficient for cleavage furrow ingression.  相似文献   

18.
Developmental modifications in cell shape depend on dynamic interactions between the extracellular matrix and cytoskeleton. In contrast, existing models of cytokinesis describe substantial cell surface remodeling that involves many intracellular regulatory and structural proteins but includes no contribution from the extracellular matrix [1-3]. Here, we show that extracellular hemicentins assemble at the cleavage furrow of dividing cells in the C.?elegans germline and in preimplantation mouse embryos. In the absence of hemicentin, cleavage furrows form but retract prior to completion, resulting in multinucleate cells. In addition to their role in tissue organization, the data indicate that hemicentins are the first secreted proteins required during mammalian development and the only known secreted proteins required for cytokinesis, with an evolutionarily conserved role in stabilizing and preventing retraction of nascent cleavage furrows. Together with studies showing that extracellular polysaccharides are required for cytokinesis in diverse species [4-9], our data suggest that assembly of a cell type-specific extracellular matrix may be a general requirement for cleavage furrow maturation and contractile ring function during cytokinesis.  相似文献   

19.
Xenopus laevis histone H4 and H1 genes were transcribed in vitro to generate artificial precursor mRNAs (pre-mRNAs). These pre-mRNAs were microinjected into oocytes, matured oocytes, and unfertilized eggs of Xenopus laevis and their 3' cleavage and polyadenylation were investigated. In the oocyte nucleus both H4 and H1 pre-mRNAs were 3' cleaved but were not detectably polyadenylated. In the oocyte cytoplasm there was neither 3' cleavage nor polyadenylation of these histone pre-mRNAs. When injected into either matured oocytes or unfertilized eggs, the pre-mRNAs underwent 3' cleavage but this was inefficient when compared to the oocyte nucleus. In addition approximately 50% of the remaining uncleaved pre-mRNA was subject to a polyadenylation activity which added A tails of approximately 70 A residues. In contrast, artificial mouse beta-globin pre-mRNAs were not detectably 3' cleaved or polyadenylated in either microinjected oocytes or unfertilized eggs.  相似文献   

20.
Cytokinesis is a crucial step in the creation of two daughter cells by the formation and ingression of the cleavage furrow. Here, we show that sphingomyelin (SM), one of the major sphingolipids in mammalian cells, is required for the localization of phosphatidylinositol-4,5-bisphosphate (PIP(2)) to the cleavage furrow during cytokinesis. Real-time observation with a labeled SM-specific protein, lysenin, revealed that SM is concentrated in the outer leaflet of the furrow at the time of cytokinesis. Superresolution fluorescence microscopy analysis indicates a transbilayer colocalization between the SM-rich domains in the outer leaflet and PIP(2)-rich domains in the inner leaflet of the plasma membrane. The depletion of SM disperses PIP(2) and inhibits the recruitment of the small GTPase RhoA to the cleavage furrow, leading to abnormal cytokinesis. These results suggest that the formation of SM-rich domains is required for the accumulation of PIP(2) to the cleavage furrow, which is a prerequisite for the proper translocation of RhoA and the progression of cytokinesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号