共查询到20条相似文献,搜索用时 15 毫秒
1.
Parents face a timing problem as to when they should begin devoting resources from their own growth and survival to mating and offspring development. Seed mass and number, as well as maternal survival via plant size, are dependent on time for development. The time available in the favorable season will also affect the size of the developing juveniles and their survival through the unfavorable season. Flowering time may thus represent the outcome of such a time partitioning problem. We analyzed correlations between flowering onset time, seed mass, and plant height in a north-temperate flora, using both cross-species comparisons and phylogenetic comparative methods. Among perennial herbs, flowering onset time was negatively correlated with seed mass (i.e. plants with larger seeds started flowering earlier) while flowering onset time was positively correlated with plant height. Neither of these correlations was found among woody plants. Among annual plants, flowering onset time was positively correlated with seed mass. Cross-species and phylogenetically informed analyses largely agreed, except that flowering onset time was also positively correlated with plant height among annuals in the cross-species analysis. The different signs of the correlations between flowering onset time and seed mass (compar. gee regression coefficient=−7.8) and flowering onset time and plant height (compar. gee regression coefficient=+30.5) for perennial herbs, indicate that the duration of the growth season may underlie a tradeoff between maternal size and offspring size in perennial herbs, and we discuss how the partitioning of the season between parents and offspring may explain the association between early flowering and larger seed mass among these plants. 相似文献
3.
Flowering time and plant height are key agronomic traits that directly affect soybean ( Glycine max) yield. APETALA1 ( AP1) functions as a class A gene in the ABCE model for floral organ development, helping to specify carpel, stamen, petal, and sepal identities. There are four AP1 homologs in soybean, all of which are mainly expressed in the shoot apex. Here, we used clustered regularly interspaced short palindromic repeats (CRISPR) – CRISPR‐associated protein 9 technology to generate a homozygous quadruple mutant, gmap1, with loss‐of‐function mutations in all four GmAP1 genes. Under short‐day (SD) conditions, the gmap1 quadruple mutant exhibited delayed flowering, changes in flower morphology, and increased node number and internode length, resulting in plants that were taller than the wild type. Conversely, overexpression of GmAP1a resulted in early flowering and reduced plant height compared to the wild type under SD conditions. The gmap1 mutant and the overexpression lines also exhibited altered expression of several genes related to flowering and gibberellic acid metabolism, thereby providing insight into the role of GmAP1 in the regulatory networks controlling flowering time and plant height in soybean. Increased node number is the trait with the most promise for enhancing soybean pod number and grain yield. Therefore, the mutant alleles of the four AP1 homologs described here will be invaluable for molecular breeding of improved soybean yield. 相似文献
4.
Flowering time represents an important adaptive trait for temperate cereal crops and may also impact on frost damage in cereal
reproductive tissues by enabling escape or by influencing accumulation of genuine tolerance. The Flowering time-2L ( Flt-2L) quantitative trait locus (QTL) on the distal end of barley chromosome arm 2HL overlaps with QTL for rachis internode length
and reproductive frost damage. Flt-2L was also found to be associated with plant height. By combining marker analysis with phenotyping in progeny families of selected
Amagi Nijo × WI2585 F 6 recombinants, we were able to map quantitative flowering time, rachis internode length, and plant height effects on 2HL as
discrete Mendelian traits. The three developmental characters showed codominant modes of expression and perfectly cosegregated
with one another in a 1.3-cM marker interval, indicating control by the same gene or closely linked genes. Twelve genes were
identified in the related intervals in the rice and Brachypodium distachyon genomes. The HvAP2 gene cosegregated with Flt-2L and represents a plausible candidate for Flt-2L, since it is highly similar to the wheat domestication gene Q which has similar developmental effects. These data will contribute to isolation of the Flt-2L gene(s) and help establish the basis of the frost damage QTL.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
5.
Background and aimsSeeds are involved in the transmission of microorganisms from one plant generation to another and consequently may act as the initial inoculum source for the plant microbiota. In this work, we assessed the structure and composition of the seed microbiota of radish (Raphanus sativus) across three successive plant generations.MethodsStructure of seed microbial communities were estimated on individual plants through amplification and sequencing of genes that are markers of taxonomic diversity for bacteria (gyrB) and fungi (ITS1). The relative contribution of dispersal and ecological drift in inter-individual fluctuations were estimated with a neutral community model.ResultsSeed microbial communities of radish display a low heritability across plant generations. Fluctuations in microbial community profiles were related to changes in community membership and composition across plant generations, but also to variation between individual plants. Ecological drift was an important driver of the structure of seed bacterial communities, while dispersal was involved in the assembly of the fungal fraction of the seed microbiota.ConclusionsThese results provide a first glimpse of the governing processes driving the assembly of the seed microbiota. 相似文献
6.
Plant Molecular Biology - Silencing of SlCAND1 expression resulted in dwarfish, loss of apical dominance, early flowering, suppression of seed germination, and abnormal root architecture in tomato... 相似文献
7.
The inheritance was studied of plant height and flowering time in a hybrid between the short-stemmed, late-flowering introduction CPC 1339 of Solanum verrucosum and the tall-stemmed, early-flowering introduction PI 195172 of the same species. The range of plant height in CPC 1339 served as a criterion in classifying the populations into tall and short plants from measurements at four growth stages. The averages of these four measurements were used in the genetic analysis. The observed ratios fit a hypothesis of two dominant complementary genes for tall stem. Late flowering of CPC 1339 appears recessive to early flowering. The segregation ratios can be explained on the basis of two complementary dominant genes for early flowering. 相似文献
8.
We examine how species richness and species‐specific plant density (number of species and number of individuals per species, respectively) vary within community size frequency distributions and across latitude. Communities from Asia, Africa, Europe, and North, Central and South America were studied (60°4′N–41°4′S latitude) using the Gentry data base. Log–log linear stem size (diameter) frequency distributions were constructed for each community and the species richness and species‐specific plant density within each size class were determined for each frequency distribution. Species richness in the smallest stem size class correlated with the Y‐intercepts (β‐values) of the regression curves describing each log–log linear size distributions. Two extreme community types were identified (designated as type A and type B). Type A communities had steep size distributions (i.e. large β‐values), log–log linear species‐richness size distributions, low species‐specific plant density distributions, and a small size class (2–4 cm) containing the majority of all species but rarely conspecifics of the dominant tree species. Type B communities had shallow size distributions (i.e. small β‐values), more or less uniform (and low) size class species‐ richness and species‐specific density distributions and size‐dominant species resident in the smallest size class. Type A communities were absent in the higher latitudes but increased in number towards the equator, i.e. in the smallest size class, species richness increased (and species‐specific density decreased) towards the tropics. Based on our survey of type A and type B communities (and their intermediates), species richness evinces size‐dependent and latitudinal trends, i.e. species richness increased with decreasing body size and most species increasingly reside in the smallest plant size class towards the tropics. Across all latitudes, a trade‐off exists between the number of species and the number of individuals per species residing in the smaller size classes. 相似文献
9.
Recent studies have suggested that seed size and plant abundance in communities are associated. However, inconsistent patterns have emerged from these studies, with varying mechanisms proposed to explain emergent relationships. We employ a theoretical framework, based on key theory lineages of vegetation dynamics and species coexistence, to examine relationships between species abundance and seed size. From these theory lineages, we identified four models and their predictions: the Seed size/number trade‐off model (SSNTM), the Succession model (SM), the Spatial competition model (SCM), and the Lottery model (LM). We then explored empirical evidence from ten diverse plant communities for seed size and abundance patterns, and related these patterns to model predictions. The SSNTM predicts a negative correlation between seed size and abundance. The SM predicts either a negative, positive or no correlation dependent on time since disturbance, while the SCM and LM make no predictions for a relationship between seed size and abundance. We found no evidence for consistent relationships between seed size and abundance across the ten communities. There were no consistent differences in seed size and abundance relationships between communities dominated by annuals compared to perennials. In three of the ten communities a significant positive seed size and abundance correlation emerged, which falsified the SSNTM as an important determinant of abundance structure in these communities. For sites in coastal woodland, the relationships between seed size and abundance were consistent with the predictions of the SM (although generally not significant), with fire being the disturbance. We suggest that the significant positive seed size and abundance correlations found may be driven by the association between large seeds and large growth forms, as large growth forms tend to be dominant. It seems likely that patterns of seed size and abundance in communities are determined by a complex interaction between environmental factors and correlations of plant attributes that determine a species’ strategy. 相似文献
10.
We present a model for the coevolution of seed size and germination time within a season when both affect the ability of the seedlings to compete for space. We show that even in the absence of a morphological or physiological constraint between the two traits, a correlation between seed size and germination time is nevertheless likely to evolve. This raises the more general question to what extent a correlation between any two traits should be considered as an a priori constraint or as an evolved means (or “instrument”) to actually implement a beneficial combination of traits. We derive sufficient conditions for the existence of a positive or a negative correlation. We develop a toy model for seed and seedling survival and seedling growth and use this to illustrate in practice how to determine correlations between seed size and germination time. 相似文献
11.
DNA markers were used to identify quantitative trait loci (QTLs) for plant height, ear height, and three flowering traits
in hybrid progeny of two generations (F 2:3, F 6:8) of lines from a Mo17×H99 maize population. For both generations, testcross (TC) progeny were developed by crossing the lines
to three inbred testers (B91, A632, B73). The hybrid progeny from the two generations were evaluated at the same locations
but in different years as per an early generation testing program. QTLs were identified within each TC population and for
mean testcross (MTC) performance. Overall, more QTLs were detected in the F 6:8 than the F 2:3 generation. Totalled over all five traits, 41 (B91) to 69% (B73) of the QTLs for tester effects and 67% of the QTLs for MTC
detected in the F 2:3 generation were verified in the F 6:8 generation. Although differences in relative rank of the QTL effects across generations were observed, especially for the
flowering traits, parental contributions were nearly always consistent. Several (8–11) QTLs were identified with effects for
all three tester populations and for all traits except the anthesis-silk interval, which had only two such regions. Over all
five traits, previous evaluations in this population identified 26 QTLs with consistent effects for two (F 2:3, F 6:8) inbred-progeny evaluations, and 20 (77%) were also associated with MTC in at least one of the generations evaluated herein.
In all instances of common inbred and TC QTLs, parental contributions were the same.
Received: 26 November 1999 / Accepted: 18 April 2000 相似文献
12.
We tested the hypotheses that increased soil resource availability selects for larger seeded plants by: (1) increasing community seed density and seedling competition, (2) increasing light competition, which favours larger seeded species if their additional seed resources are allocated to shoots. We also tested the hypothesis that plants respond to increased nutrient availability by producing larger seeds. In a controlled environment experiment, we grew monocultures of five species of co-occurring annual plant species at two N addition rates and measured seed size and the number of seeds produced. In a second experiment, we sowed seed of the five species together, manipulated nitrogen (N) addition rate and community seed density and measured species performance. In the first experiment, elevated N addition increased seed size, but only in larger seeded species. In the second experiment, high N addition increased community seed production. However, contrary to our hypothesis small seeded species were selected under high seed density, possibly because they germinated and grew more rapidly thus enabling them to pre-empt limiting resources. Larger seeded species were favoured by high N addition, as hypothesised. However, our data suggest that this was due to their seed reserves boosting survival below the denser canopies of fertile conditions rather than via competitive advantages. Our results point to a largely overlooked role of recruitment in determining community response to fertilisation. Although our results may not generalise to all plant communities they suggest that seed traits play a role in community response to both the direct effect of N addition and the stimulation of seed density caused by increased productivity. These results are also consistent with the view that the advantage of large seed size is not a competitive one, but greater survival in the face of environmental hazards. 相似文献
16.
Summary We conducted a greenhouse study of the effects of initial seed mass on seedling characteristics in a Panamanian population of Virola surinamensis, a canopy tree in which mean seed mass of different individuals ranges from 1.34 to 4.04g. The system is of particular interest because birds preferentially eat fruits of small-seeded plants, leaving seedlings of large-seeded individuals under conditions of potentially severe sibling competition (Howe and Vande Kerckhove 1980).Effects of differences of mean seed mass between trees are explored using an analysis of variance, while effects of seed-mass variation within crops are demonstrated with a regression analysis. A two-way analysis of variance decisively shows effects of parental source and light condition on seedling height, leaf length, and dry shoot mass (all P<0.0001). A posteriori tests show that differences in seedling characteristics reflect differences in initial seed mass, with especially strong differences apparent in shoot mass. Regression of seedling characteristics on initial seed mass shows that variation of seed size within a crop is sufficient to influence shoot mass at 15 weeks ( P<0.0001).Effects of size differences of seeds that land adjacent to each other, either under the parent or in monkey droppings, are documented with growth of pairs of seedlings in pots. Differences in shoot height and mass at 15 weeks are evident when seeds of average size differ by only 0.2 g, and dramatic differences are evident when paired seeds differ by an average of 1.5 g. Seedlings grow more when isolated than when planted with conspecifics.These experimental results offer indirect support for the hypothesis that small-seeded Virola parents secure an advantage in reproduction through differential dispersal, while large-seeded plants produce more competitive seedlings under their own crowns — an advantage most likely to be of importance when frugivores are scarce. 相似文献
17.
Understanding the interactions among microbial communities, plant communities and soil properties following deforestation could provide insights into the long-term effects of land-use change on ecosystem functions, and may help identify approaches that promote the recovery of degraded sites. We combined high-throughput sequencing of fungal rDNA and molecular barcoding of plant roots to estimate fungal and plant community composition in soil sampled across a chronosequence of deforestation. We found significant effects of land-use change on fungal community composition, which was more closely correlated to plant community composition than to changes in soil properties or geographic distance, providing evidence for strong links between above- and below-ground communities in tropical forests. 相似文献
18.
Invasions of natural communities by non‐indigenous species threaten native biodiversity and are currently rated as one of the most important global‐scale environmental problems. The mechanisms that make communities resistant to invasions and drive the establishment success of seedlings are essential both for management and for understanding community assembly and structure. Especially in grasslands, anecic earthworms are known to function as ecosystem engineers, however, their direct effects on plant community composition and on the invasibility of plant communities via plant seed burial, ingestion and digestion are poorly understood. In a greenhouse experiment we investigated the impact of Lumbricus terrestris, plant functional group identity and seed size of plant invader species and plant functional group of the established plant community on the number and biomass of plant invaders. We set up 120 microcosms comprising four plant community treatments, two earthworm treatments and three plant invader treatments containing three seed size classes. Earthworm performance was influenced by an interaction between plant functional group identity of the established plant community and that of invader species. The established plant community and invader seed size affected the number of invader plants significantly, while invader biomass was only affected by the established community. Since earthworm effects on the number and biomass of invader plants varied with seed size and plant functional group identity they probably play a key role in seedling establishment and plant community composition. Seeds and germinating seedlings in earthworm burrows may significantly contribute to earthworm nutrition, but this deserves further attention. Lumbricus terrestris likely behaves like a ‘farmer’ by collecting plant seeds which cannot directly be swallowed or digested. Presumably, these seeds are left in middens and become eatable after partial microbial decay. Increased earthworm numbers in more diverse plant communities likely contribute to the positive relationship between plant species diversity and resistance against invaders. 相似文献
20.
据调查统计浙江大山峰野生种子植物140科524属1032种(含种下分类群)。科、属、种的分布区类型分析表明,科以泛热带分布最多(43.6%),其次是世界分布(20%)和北温带(18.6%),温带分布少于热带分布(35∶77);属以泛热带分布最多(22.9%),其次是北温带分布(17.4%)和东亚分布(17.0%),温带分布多于热带分布(237∶230);种以中国特有分布最多(44.4%),其次是东亚分布(21.0%)和热带亚洲分布(17.4%),温带分布明显多于热带分布(317∶252),显示大山峰植物区系处于温带和热带分布的过渡区,具亚热带性质和地理成分复杂的特征,且与日本植物区系有密切关系。通过与邻近诸山属种相似性系数比较,说明它们关系密切,属同一自然区系。 相似文献
|