首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为探究ERD15基因功能,利用反向遗传学,通过PCR及半定量PCR筛选鉴定出拟南芥(Arabidopsis thaliana) ERD15基因的T-DNA插入纯合突变体,并对其表型进行观察分析。结果表明,erd15突变体莲座叶数目显著增多,提前3~4 d开花,突变体比野生型更早从营养生长转向生殖生长。拟南芥野生型植株主茎为圆柱体,平均直径1.29 mm,而erd15突变体主茎扁平,平均直径达到2.27mm,具极显著差异。与野生型相比,erd15突变体果实心皮发育受到影响,隔膜上排列有多排种子,果荚顶端膨大,长度缩短37.67%,但角果平均结籽数升高。因此,ERD15基因参与了调控拟南芥植株的生殖生长过程。  相似文献   

2.
3.
4.
5.
6.
7.
8.
The clustered genes C-repeat (CRT) binding factor (CBF)1/ dehydration-responsive element binding protein (DREB)1B, CBF2/DREB1C, and CBF3/DREB1A play a central role in cold acclimation and facilitate plant resistance to freezing in Arabidopsis thaliana. Rice (Oryza sativa L.) is very sensitive to low temperatures; enhancing the cold stress tolerance of rice is a key challenge to increasing its yield. In this study, we demonstrate chilling acclimation, a phenomenon similar to Arabidopsis cold acclimation, in rice. To determine whether rice CBF/DREB1 genes participate in this cold-responsive pathway, all putative homologs of Arabidopsis DREB1 genes were filtered from the complete rice genome through a BLASTP search, followed by phylogenetic, colinearity and expression analysis. We thereby identified 10 rice genes as putative DREB1 homologs: nine of these were located in rice genomic regions with some colinearity to the Arabidopsis CBF1CBF4 region. Expression profiling revealed that six of these genes (Os01g73770, Os02g45450, Os04g48350, Os06g03670, Os09g35010, and Os09g35030) were similarly expressed in response to chilling acclimation and cold stress and were co-expressed with genes involved in cold signalling, suggesting that these DREB1 homologs may be involved in the cold response in rice. The results presented here serve as a prelude towards understanding the function of rice homologs of DREB1 genes in cold-sensitive crops.  相似文献   

9.
10.
11.
CBF/DREB是一类植物中特有的转录因子,在植物抵抗逆境胁迫过程中发挥重要功能。本研究从陆地棉(Gossypium hirsutum L.)Coker 312中克隆获得1个棉花CBF/DREB基因,命名为Gh CBF2,该基因编码一个由216个氨基酸组成的CBF蛋白。序列分析结果显示,Gh CBF2与其他植物的CBF蛋白类似,含有AP2转录因子典型的保守结构域。干旱或高盐胁迫处理明显增加了Gh CBF2基因的表达量。亚细胞定位分析结果发现Gh CBF2定位在细胞核中。将Gh CBF2基因构建到由35S启动子调控的植物表达载体p MD上并转化拟南芥(Arabidopsis thaliana L.),结果表明,在干旱和盐胁迫条件下,过量表达Gh CBF2基因拟南芥的成活率显著高于野生型,并且游离脯氨酸和可溶性糖含量也高于野生型,说明转Gh CBF2基因提高了拟南芥的耐盐抗旱能力。采用实时荧光定量PCR方法分析胁迫相关标记基因COR15A、RD29A和ERD6的表达情况,结果显示转基因株系中的表达量显著高于野生型,说明Gh CBF2参与调控拟南芥干旱和盐胁迫相关基因的表达。  相似文献   

12.
13.
干旱胁迫下白刺花种子大小与萌发对策   总被引:1,自引:0,他引:1  
种子大小与种子萌发及其与环境因子的关系是植物种子萌发对策研究中的重要科学问题之一。采用PEG模拟干旱法研究不同干旱胁迫强度(0,5%,10%,15%,20%)下,白刺花(Sophora davidii)种子萌发进程、种子大小与种子萌发及种子命运的关系。结果表明:不同干旱胁迫下,白刺花种子具有相似的萌发进程,但中度干旱处理(10%PEG)萌发率显著高于零干旱(0%PEG)和重度干旱处理(P0.05),重度干旱处理(20%PEG)种子萌发开始时间晚于零干旱和中度干旱处理;种子大小与种子萌发开始时间的关系表现为零干旱处理下呈极显著负线性关系,中度干旱处理(5%PEG,10%PEG)下无相关关系,重度干旱处理(15%PEG,20%PEG)下呈负二次曲线关系;种子大小对种子命运的影响表现为零干旱处理有利于大、小种子萌发和小种子休眠,中度干旱处理(10%PEG)增加中等种子萌发、大种子休眠和小种子死亡风险,重度干旱处理(15%PEG,20%PEG)增加大种子死亡风险、中等种子和小种子休眠。综合分析表明,白刺花种子大小与萌发行为及种子命运的关系具有较强的环境依赖性,即种子萌发行为表现为顺境下种子越大萌发越快,逆境下小种子和大种子较中等种子萌发更快;种子命运表现为顺境增加种子死亡的风险,中度干扰有利于种子萌发,逆境则有利于种子休眠。  相似文献   

14.
Molybdenum (Mo) was used to improve the cold tolerance of cauliflower microshoots/artificial seeds. The optimal stage to introduce Mo to the micropropagation system was found to be the microshoots liquid culture stage, since its use within artificial seed capsules or conversion media had negative effects on conversion rate and viability. Mo was found to improve the cold tolerance of both acclimated and non-acclimated microshoots/artificial seeds. The capacity of Mo to up-regulate CBF/DREB1 in cauliflower microshoots was confirmed. Moreover, this study is the first to confirm the ability of this element to up-regulate CBF/DREB1 without any low temperature treatment. Mo significantly increased the accumulation of 23 kDa polypeptide when it was used at 15 ppm concentration. However, Mo had a negative effect on the accumulation of dehydrin proteins which suggest that this group of proteins have no significant role in the cold tolerance of cauliflower microshoots. The study could help in improving the understanding of the abiotic stress network in plants and in improving the quality and efficiency of cauliflower artificial seed production systems.  相似文献   

15.
16.
17.
A cDNA, ERD1, isolated from one-hour-dehydrated plants of Arabidopsis thaliana L. encodes a putative protein that is similar to the regulatory ATPase subunit (ClpA) of the Clp protease and contains a putative chloroplast-targeting transit-peptide at the N-terminus. A chimeric gene with the putative plastid-targeting sequence of the erd1 gene fused to the synthetic green-fluorescent protein (sGFP) gene was constructed and introduced into Arabidopsis protoplasts. The N-terminal region of the ERD1 protein directed the sGFP protein into the plastids of the protoplasts, and functioned as a transit peptide. Northern blot analysis indicated that expression of the erd1 gene was induced not only by water stress, such as dehydration and high salinity, but also by natural senescence and dark-induced etiolation. The erd1 gene was not strongly induced by exogenous abscisic acid. A chimeric gene with the 0.9 kb promoter region of the erd1 gene fused to the β-glucuronidase (GUS) reporter gene was constructed, and tobacco plants transformed with the construct. The GUS reporter gene driven by the erd1 promoter was induced by dehydration and high salt stress at significant levels in the transgenic plants. The GUS gene was strongly expressed in older leaves without dehydration, and was induced by dark-induced etiolation. Furthermore, GUS activity was reduced by cytokinin treatment during dark-induced etiolation. These results indicate that expression of the erd1 gene is developmentally up-regulated by senescence as well as by water stress.  相似文献   

18.
19.
20.
Seed germination and innate immunity both have significant effects on plant life spans because they control the plant's entry into the ecosystem and provide defenses against various external stresses, respectively. Much ecological evidence has shown that seeds with high vigor are generally more tolerant of various environmental stimuli in the field than those with low vigor. However, there is little genetic evidence linking germination and immunity in plants. Here, we show that the rice lectin receptor‐like kinase OslecRK contributes to both seed germination and plant innate immunity. We demonstrate that knocking down the OslecRK gene depresses the expression of α–amylase genes, reducing seed viability and thereby decreasing the rate of seed germination. Moreover, it also inhibits the expression of defense genes, and so reduces the resistance of rice plants to fungal and bacterial pathogens as well as herbivorous insects. Yeast two‐hybrid and co‐immunoprecipitation experiments revealed that OslecRK interacts with an actin‐depolymerizing factor (ADF) in vivo via its kinase domain. Moreover, the rice adf mutant exhibited a reduced seed germination rate due to the suppression of α–amylase gene expression. This mutant also exhibited depressed immune responses and reduced resistance to biotic stresses. Our results thus provide direct genetic evidence for a common physiological pathway connecting germination and immunity in plants. They also partially explain the common observation that high‐vigor seeds often perform well in the field. The dual effects of OslecRK may be indicative of progressive adaptive evolution in rice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号