首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Retinoic acid (RA) is an important mediator of cell differentiation. It stimulates hCG secretion by JEG-3 choriocarcinoma cells in vitro after a time lag. The first aim of this study was to characterize which types of retinoid receptors (RARs and RXRs) are present in JEG-3 cells. Using Western blot analysis and immunocytochemistry with specific antibodies as well as Northern blot analysis, we found that JEG-3 cells expressed RARα and RXRα, the latter being the predominant receptor. We then analyzed the action on cell proliferation and hCG secretion of the physiological retinoids all-trans RA (RA) and 9 cis RA as well as synthetic retinoids with specific affinity for RARα and RXRα. All these retinoids were potent inhibitors of cell growth, maximal inhibition (72 ± 2%) being observed after 4 days of treatment with Ro 25, a RXRα specific ligand. Within 24 h, 9 cis RA and Ro 25 stimulated hCG secretion, and maximal stimulation (1,472 ± 10%) occurred at 48 h with the RXRα-specific ligand. The RARα-specific ligand also stimulated hCG secretion but to a lower extend and after a delay of 48 h. These results suggest a predominant role of RXRα in mediating the biological effects of retinoids on JEG-3 cells and the possible induction by RA itself of the metabolic pathway leading to 9 cis RA. J. Cell. Physiol. 176:595–601, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

2.
3.
4.
5.
6.
The dopamine receptor subtype 2 (D2R) promoter contains a functional retinoic acid response element involved in the control of D2R expression. The aim of the study was to evaluate the effect of 9-cis retinoic acid (9-cis RA) on D2R protein expression in human pituitary adenomas and GH3 cell line. Treatment with 9-cis RA (100 nM for 48 hrs) caused a 109 +/- 32% increase of basal D2R levels in five of eight growth hormone (GH)-secreting adenomas (GH-omas), a 129 +/- 28% increase in 7 of 11 nonfunctioning adenomas, and no effect in two resistant prolactinomas by Western blotting. The lack of D2R induction in some tumors was not associated with a different pattern of retinoid x receptor (RXR) and retinoic acid receptor (RAR) isoform expression that was similar in all tumors by immunohistochemistry. While the induction of D2R did not affect the slight but significant inhibitory effect exerted by dopamine (10 nM) on in vitro GH release by GH-oma cultured cells, in pituitary GH3 cell lines cis-9 RA enhanced the dopamine-induced inhibition of in vitro GH release (% inhibition: 16 +/- 2 versus 26 +/- 5, P < 0.05), cell proliferation (25 +/- 2% versus 44 +/- 5%, P < 0.05) and cell viability (16 +/- 0.8% versus 29 +/- 1%, P < 0.05), likely by activating caspase-3 (28 +/- 3% versus basal, P < 0.05). In conclusion, this study provides novel evidence for a permissive role of retinoids on the expression of D2R in a good proportion of pituitary tumors and on the generation of pro-apoptotic signals in GH3 cell line.  相似文献   

7.
Changes in the expression level of the skeletal muscle LIM protein 1 (SLIM1) in cultured A10 cells were monitored in response to 25-hydroxycholesterol (25-HC), an oxidized form of cholesterol present in the oxidized low-density lipoproteins. The level of SLIM1 mRNA was elevated in a time- and concentration-dependent manner by treatment of 25-HC. Expressions of smooth muscle (SM) alpha-actin and calponin-1 (CNN-1), early markers for SMC differentiation, were also increased by the 25-HC treatments. Expressions of all three genes (SLIM1, SM alpha-actin and CNN-1) were simultaneously elevated in the cells treated with 9-cis retinoic acid (RA). On the other hand, the SLIM1 expression induced by the 25-HC or 9-cis RA (as well as SM alpha-actin and CNN-1) was decreased by the treatment of 15d-PGJ2. Since the 25-HC, 9-cis RA and 15d-PGJ2 were ligands for the LXR, RXRalpha and PPARgamma respectively, there might be a functional positive cross-talk between LXR and RXRalpha pathways and a negative cross-talk between PPARgamma and LXR and/or RXRalpha pathways in the regulation of SLIM1 expression. The cells stably transfected with the expressional vector for SLIM1 also showed an elevation in the levels of SM alpha-actin and CNN-1. In addition, an over-production of SLIM1 in the cells resulted in a change in the cell-shape into a spindle-like form, which is identical to that observed after a prolonged treatment of the cells with cholesterol.  相似文献   

8.
9.
10.
9-cis Retinoic acid (RA) induces gene expression in neuroblastoma cells more effectively and with different kinetics than other RA isomers, and could be acting in part through Retinoid X Receptors (RXRs). The aim of this study was to characterise the effects of an RXR agonist and RXR homodimer antagonist on the induction of cellular RA binding protein II (CRABP-II) and RA receptor-beta (RARbeta) in neuroblastoma cells in response to different retinoids. The RXR agonist, LDG1069, was as effective as all-trans RA in inducing gene expression, but less effective than 9-cis RA. The RXR-homodimer antagonist, LG100754, inhibited the induction of CRABP-II mRNA in SH-SY5Y neuroblastoma cells by 9-cis RA or the RXR-specific agonist LGD1069, but had no effect when used with all-trans RA. Conversely, LG100754 did not inhibit induction of RARbeta mRNA by 9-cis or all-trans RA, or by LGD1069. RAR- and RXR-specific ligands used together induced CRABP-II and RARbeta as effectively as 9-cis RA. These results demonstrate the value of combining RXR- and RAR-specific ligands to regulate RA-inducible gene expression. The possibility that RXR-homodimers mediate, in part, the induction of CRABP-II by 9-cis RA and RXR-specific ligands is discussed.  相似文献   

11.
Retinoid X Receptor (RXR) specific ligands are currently being investigated for the treatment of metabolic diseases such as type II diabetes. We report the synthesis of conformationally locked retinoids, which are potent RXR selective ligands, and the attempted synthesis of 9-cyclopropyl locked analogs of RA and 9-cis RA.  相似文献   

12.
Recent studies have demonstrated that bone marrow stromal cells can undergo adipogenesis or osteoblastogenesis in vivo, and in vitro, and that peroxisome proliferator-activated receptor gamma (PPAR gamma) plays a central role in the control of adipocyte differentiation. In the present study, we treated a murine stromal cell line (TMS-14) with a cocktail of dexamethasone, insulin and glucose (DIG cocktail), which caused the cells to convert to fat-laden cells with adipocyte-like morphology. We also exposed TMS-14 cells to DIG cocktail followed by 15-deoxy Delta(12,14)-prostaglandin J2 (15d-PGJ2), a ligand of PPAR gamma, interleukin- 11 (IL-11), 9-cis retinoic acid (9-cis RA) and vitamin K2. 15d-PGJ2 enhanced DIG cocktail-induced adipogenesis, whereas IL-11, 9-cis RA and vitamin K2 each inhibited adipogenesis induced by DIG cocktail. The gene expressions of four adipogenesis markers, PPAR gamma 2, adipocyte P2 (aP2), adipocyte determination and differentiation factor 1 (ADD1), and fatty acid synthase (FAS) were enhanced by DIG cocktail and these expressions were more enhanced by 15d-PGJ2, in contrast they were attenuated by 9-cis RA. IL-11 also attenuated the adipogenesis markers except ADD1. Western blotting showed that 15d-PGJ2 enhanced the levels of PPAR gamma, C/EBP alpha and RXR alpha proteins, while IL-11 and 9-cis RA decreased the level of PPAR gamma protein, but not C/EBP alpha protein and vitamin K2 decreased the level of C/EBP alpha protein. We also tested the effect of 15d-PGJ2 on osteoblastogenesis, using TMS-12 cells, another stromal cell clone from the same mouse, which differentiate into osteoblasts spontaneously. 15d-PGJ2 did not affect osteoblastogenesis, as detected by von Kossa staining and Cbfa-1 gene expression. These data indicate that 15d-PGJ2 enhances the expression of both PPAR gamma and C/EBP alpha and as a result it stimulates adipogenesis in murine bone marrow cells.  相似文献   

13.
14.
15.
16.
HX531 is a retinoid X receptor (RXR) antagonist that inhibits 9-cis retinoic acid-induced neutrophilic differentiation of HL-60 cells. In order to elucidate the inhibitory mechanism of HX531, we have developed a novel ligand sensor assay for RXR in which the receptor-coactivator interaction is directly monitored using surface plasmon resonance (SPR) biosensor technology. A 20-mer peptide from steroid receptor coactivator-1 (SRC-1), containing nuclear receptor interaction motif LXXLL was immobilized on the surface of a BIAcore sensor chip. Injection of human recombinant RXR with or without 9-cis retinoic acid resulted in ligand-dependent interaction with the SRC-1 peptide. Kinetic analysis revealed dissociation constants (KD) of 9-cis RA-preincubated RXR to SRC-1 was 5.92 x 10(-8)M. Using this technique, we found that 1 microM HX531 reduced the ka value of liganded-RXR with SRC-1, suggesting that HX531 reduced the affinity of RXR to SRC-1. This SPR assay system was applied to obtain quantitative kinetic data of RXR ligand binding to the SRC-1 peptide and the alteration of these data by antagonists.  相似文献   

17.
Embryonal carcinoma cell lines (F9 EC and P19 EC) were stably transfected with 1.8 kb promoter sequence of RARbeta2 coupled to the lacZ gene as a system for measuring active retinoids. These stable transfectants, designated F9-1.8 and P19-1.8, were used as reporter cell lines to investigate different retinoids for their ability to activate the reporter gene. F9-1.8 cells showed similar EC(50) values for the acidic retinoids all-trans retinoic acid (RA), 4-oxo RA, 9-cis RA, and 13-cis RA, in the range of 1-7 nM, while P19-1.8 cells were less sensitive. Retinal showed decreased activity compared to the RA isomers in both lines. However, P19-1.8 cells hardly showed beta-gal activity after treatment with retinol, while the lacZ reporter in F9-1.8 cells was still inducible by this retinoid. In addition, the reporter system was used to investigate RA metabolism and its inhibition by P450 inhibitors. A combination of RA and liarozole showed a 10 times greater induction of the RARbeta2-lacZ reporter in P19-1.8 cells, but not in F9-1.8 cells. The EC(50) value for 4-oxo RA, however, was not altered, indicating that metabolic conversion of RA to 4-oxo RA is the target for inhibition by liarozole in P19-1.8 cells. HPLC analysis revealed nearly complete inhibition of RA metabolism after liarozole treatment in P19-1.8 cells, resulting in higher levels of RA. Finally, the F9-1.8 cells were used to detect active retinoids during different stages of chick limb bud development, demonstrating that it is the limb bud mesenchyme which generates RA and not the epidermis, with a twofold higher level of RA in the posterior half than in the anterior half.  相似文献   

18.
19.
In vivo activation of PPAR target genes by RXR homodimers   总被引:7,自引:0,他引:7  
The ability of a retinoid X receptor (RXR) to heterodimerize with many nuclear receptors, including LXR, PPAR, NGF1B and RAR, underscores its pivotal role within the nuclear receptor superfamily. Among these heterodimers, PPAR:RXR is considered an important signalling mediator of both PPAR ligands, such as fatty acids, and 9-cis retinoic acid (9-cis RA), an RXR ligand. In contrast, the existence of an RXR/9-cis RA signalling pathway independent of PPAR or any other dimerization partner remains disputed. Using in vivo chromatin immunoprecipitation, we now show that RXR homodimers can selectively bind to functional PPREs and induce transactivation. At the molecular level, this pathway requires stabilization of the homodimer-DNA complexes through ligand-dependent interaction with the coactivator SRC1 or TIF2. This pathway operates both in the absence and in the presence of PPAR, as assessed in cells carrying inactivating mutations in PPAR genes and in wild-type cells. In addition, this signalling pathway via PPREs is fully functional and can rescue the severe hypothermia phenotype observed in fasted PPARalpha-/- mice. These observations have important pharmacological implications for the development of new rexinoid-based treatments.  相似文献   

20.
Abstract. Prior work has shown that all-trans retinoic acid (t-RA) treatment of the human teratocarcinoma (TC) cell line NTERA-2 clone D1 (abbreviated NT2/D1) induces a neuronal phenotype and other cell lineages. This study sought to explore the potential of 9-cis retinoic acid (9-cis RA) as a differentiation-inducing agent of this multipotent cell. Findings reported here show that 9-cis RA induced a phenotype similar to t-RA treatment of NT2/D1 cells. This similarity extended to their effects on the nuclear receptors retinoic acid receptor-β (RAR-β) and retinoid X receptor-α (RXR-α). Both retinoids prominently augmented RAR-β expression and transactivated a reporter plasmid containing putative RAR response elements (RAREs) with direct repeats separated by five nucleotides (DR5). Both retinoids had no appreciable effect on RXR-α expression and both minimally transactivated a reporter plasmid containing putative RXR response elements (RXREs) with direct repeats separated by one nucleotide (DR1). These studies suggest that 9-cis RA and t-RA activate common events during retinoid-mediated NT2/D1 differentiation. This hypothesis was supported by the finding that NT2/D1 cells rendered refractory to t-RA (NTZ/D1-R1) were also resistant to 9-cis RA. To discover alterations that could confer retinoid-refractoriness, retinoid receptor expression was examined in NT2/D1-R1 cells. In contrast to NT2/D1, the NT2/D1-R1 cell was found to have reduced RXR-α expression at the level of total cellular RNA. These studies establish the effectiveness of 9-cis RA as a differentiation agent of human TC cells and demonstrate that retinoids with different nuclear receptor affinities can induce similar phenotypes in NT2/D1 cells. In addition, the findings in the retinoid resistant NT2/Dl-R1 cell implicate a role for specific retinoid receptors in this human TC differentiation program.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号