首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alignment of the mitotic spindle to the cellular polarity axis is a prerequisite for asymmetric cell divisions. The protein network coordinating the spindle position with cortical polarity includes the molecular machinery pulling on astral microtubules, which is assembled on conserved NuMA:LGN:Gαi complexes, the polarity proteins Par3:Par6:aPKC and an adaptor molecule known as Inscuteable (Insc). To date, all these components were assumed to enter a macromolecular complex localized at polarity sites in mitosis. However, recent structural studies revealed the Insc and NuMA are mutually exclusive interactors of LGN, implying that the molecular mechanism of spindle coupling to polarity is more sophisticated than has been believed to date.  相似文献   

2.
Mauser JF  Prehoda KE 《PloS one》2012,7(1):e29611
During asymmetric cell division, alignment of the mitotic spindle with the cell polarity axis ensures that the cleavage furrow separates fate determinants into distinct daughter cells. The protein Inscuteable (Insc) is thought to link cell polarity and spindle positioning in diverse systems by binding the polarity protein Bazooka (Baz; aka Par-3) and the spindle orienting protein Partner of Inscuteable (Pins; mPins or LGN in mammals). Here we investigate the mechanism of spindle orientation by the Insc-Pins complex. Previously, we defined two Pins spindle orientation pathways: a complex with Mushroom body defect (Mud; NuMA in mammals) is required for full activity, whereas binding to Discs large (Dlg) is sufficient for partial activity. In the current study, we have examined the role of Inscuteable in mediating downstream Pins-mediated spindle orientation pathways. We find that the Insc-Pins complex requires Gαi for partial activity and that the complex specifically recruits Dlg but not Mud. In vitro competition experiments revealed that Insc and Mud compete for binding to the Pins TPR motifs, while Dlg can form a ternary complex with Insc-Pins. Our results suggest that Insc does not passively couple polarity and spindle orientation but preferentially inhibits the Mud pathway, while allowing the Dlg pathway to remain active. Insc-regulated complex assembly may ensure that the spindle is attached to the cortex (via Dlg) before activation of spindle pulling forces by Dynein/Dynactin (via Mud).  相似文献   

3.
Asymmetric division of neural progenitors is a key mechanism by which neuronal diversity in the Drosophila central nervous system is generated. The distinct fates of the daughter cells derived from these divisions are achieved through preferential segregation of the cell fate determinants Prospero and Numb to one of the two daughters. This is achieved by coordinating apical and basal mitotic spindle orientation with the basal cortical localization of the cell fate determinants during mitosis. A complex of apically localized proteins, including Inscuteable (Insc), Partner of Inscuteable (Pins), Bazooka (Baz), DmPar-6, DaPKC, and G alpha i, is required to mediate and coordinate basal protein localization with mitotic spindle orientation. Pins, a molecule which directly interacts with Insc, is a key component required for the integrity of this complex; in the absence of Pins, other components become mislocalized or destabilized, and basal protein localization and mitotic spindle orientation are defective. Here we define the functional domains of Pins. We show that the C-terminal region containing the G alpha i binding GoLoco motifs is necessary and sufficient for targeting to the neuroblast cortex, which appears to be a prerequisite for apical localization of Pins. The N-terminal tetratricopeptide repeat-containing region of Pins is required for two processes; TPR repeats 1 to 3 plus the C-terminal region are required for apical localization but are insufficient to recruit Insc to the apical cortex, whereas TPR repeats 1 to 7 plus C-terminal Pins can perform both functions. Hence, the abilities of Pins to cortically localize, to apically localize, and to restore Insc apical localization are all separable, and all three capabilities are necessary to mediate asymmetric division. Moreover, the need for N-terminal Pins can be obviated by fusing a minimal Insc functional domain with the C-terminal region of Pins; this chimeric molecule is apically localized and can fulfill the functions of both Insc and Pins.  相似文献   

4.
Mammalian LGN/AGS3 proteins and their Drosophila Pins orthologue are cytoplasmic regulators of G-protein signaling. In Drosophila, Pins localizes to the lateral cortex of polarized epithelial cells and to the apical cortex of neuroblasts where it plays important roles in their asymmetric division. Using overexpression studies in different cell line systems, we demonstrate here that, like Drosophila Pins, LGN can exhibit enriched localization at the cell cortex, depending on the cell cycle and the culture system used. We find that in WISH, PC12, and NRK but not COS cells, LGN is largely directed to the cell cortex during mitosis. Overexpression of truncated protein domains further identified the Galpha-binding C-terminal portion of LGN as a sufficient domain for cortical localization in cell culture. In mitotic COS cells that normally do not exhibit cortical LGN localization, LGN is redirected to the cell cortex upon overexpression of Galpha subunits of heterotrimeric G-proteins. The results also show that the cortical localization of LGN is dependent on microfilaments and that interfering with LGN function in cultured cell lines causes early disruption to cell cycle progression.  相似文献   

5.
Cell polarity is essential for generating cell diversity and for the proper function of most differentiated cell types. In many organisms, cell polarity is regulated by the atypical protein kinase C (aPKC), Bazooka (Baz/Par3), and Par6 proteins. Here, we show that Drosophila aPKC zygotic null mutants survive to mid-larval stages, where they exhibit defects in neuroblast and epithelial cell polarity. Mutant neuroblasts lack apical localization of Par6 and Lgl, and fail to exclude Miranda from the apical cortex; yet, they show normal apical crescents of Baz/Par3, Pins, Inscuteable, and Discs large and normal spindle orientation. Mutant imaginal disc epithelia have defects in apical/basal cell polarity and tissue morphology. In addition, we show that aPKC mutants show reduced cell proliferation in both neuroblasts and epithelia, the opposite of the lethal giant larvae (lgl) tumor suppressor phenotype, and that reduced aPKC levels strongly suppress most lgl cell polarity and overproliferation phenotypes.  相似文献   

6.
Yu F  Morin X  Cai Y  Yang X  Chia W 《Cell》2000,100(4):399-409
Asymmetric localization is a prerequisite for inscuteable (insc) to function in coordinating and mediating asymmetric cell divisions in Drosophila. We show here that Partner of Inscuteable (Pins), a new component of asymmetric divisions, is required for Inscuteable to asymmetrically localize. In the absence of pins, Inscuteable becomes cytoplasmic and asymmetric divisions of neuroblasts and mitotic domain 9 cells show defects reminiscent of insc mutants. Pins colocalizes with Insc and interacts with the region necessary and sufficient for directing its asymmetric localization. Analyses of pins function in neuroblasts reveal two distinct steps for Insc apical cortical localization: A pins-independent, bazooka-dependent initiation step during delamination (interphase) and a later maintenance step during which Baz, Pins, and Insc localization are interdependent.  相似文献   

7.
Mammalian Par3alpha and Par3beta/Par3L participate in cell polarity establishment and localize to tight junctions of epithelial cells; Par3alpha acts via binding to atypical PKC (aPKC). Here we show that Par3beta as well as Par3alpha interacts with 14-3-3 proteins in a phosphorylation-dependent manner. In the interaction, Ser-746 of Par3beta and the corresponding residue of Par3alpha (Ser-814) likely play a crucial role, since replacement of these residues by unphosphorylatable alanine results in a loss of interacting activity. The mutant Par3 proteins with the replacement are correctly recruited to tight junctions of MDCK cells and to membrane ruffles induced by an active form of the small GTPase Rac in HeLa cells. Thus, the interaction with 14-3-3 appears to be dispensable to Par3 localization. Consistent with this, the Par3alpha-14-3-3 interaction does not inhibit the Par3alpha-aPKC association required for the Par3alpha localization, although the aPKC-binding site lies close to the Ser-814-containing, 14-3-3-interacting region.  相似文献   

8.
In many cell types, mitotic spindle orientation relies on the canonical “LGN complex” composed of Pins/LGN, Mud/NuMA, and Gαi subunits. Membrane localization of this complex recruits motor force generators that pull on astral microtubules to orient the spindle. Drosophila Pins shares highly conserved functional domains with its two vertebrate homologs LGN and AGS3. Whereas the role of Pins and LGN in oriented divisions is extensively documented, involvement of AGS3 remains controversial. Here, we show that AGS3 is not required for planar divisions of neural progenitors in the mouse neocortex. AGS3 is not recruited to the cell cortex and does not rescue LGN loss of function. Despite conserved interactions with NuMA and Gαi in vitro, comparison of LGN and AGS3 functional domains in vivo reveals unexpected differences in the ability of these interactions to mediate spindle orientation functions. Finally, we find that Drosophila Pins is unable to substitute for LGN loss of function in vertebrates, highlighting that species‐specific modulations of the interactions between components of the Pins/LGN complex are crucial in vivo for spindle orientation.  相似文献   

9.
To determine whether asymmetrical cell division takes place during growth and differentiation of corneal epithelial cells, we analyzed the expression of some proteins required for the correct execution of the asymmetric division in cultured RCE1‐(5T5) cells, which mimic the differentiation of corneal epithelial cells. RT‐PCR and immunostaining showed that Par‐3, LGN (GPSM2), NuMA, and the mammalian homolog of inscuteable (Insc) are expressed by the cultured cells. Semi‐quantitative RT‐PCR demonstrated that Insc mRNA levels were stable throughout the experiment. Conversely, LGN and NuMA mRNAs increased slightly and steadily in proliferative cells, reaching a peak of about 20% above basal levels when cells were confluent. At later times, LGN and NuMA mRNAs decreased to become barely detectable when cells organized into a four‐layered epithelium and expressed terminal phenotype as indicated by the highest expression of LDH‐H mRNA. Cultivation under low Ca2+ conditions (0.09 mM) reduced about 50% Insc mRNA expression both in proliferating and confluent cultures, but did not affect the levels of LGN and NuMA mRNAs. Hence, asymmetric cell division seems to take place with a lower frequency in cells grown with low Ca2+ concentrations, in spite of the absence of stratification. Immunostaining experiments raise the possibility of an interaction between k3/K12 keratin cytoskeleton and Par‐3. The results show for the first time the coordination between the expression of corneal epithelial cell differentiation and the expression of cell polarity machinery. They also suggest that asymmetric division does not depend on stratification; instead, it seems to be part of the differentiation program. J. Cell. Physiol. 226: 700–709, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

10.
Cellular signaling pathways exhibit complex response profiles with features such as thresholds and steep activation (i.e., ultrasensitivity). In a reconstituted mitotic spindle orientation pathway, activation of Drosophila Pins (LGN in mammals) by Gαi is ultrasensitive (apparent Hill coefficient of 3.1), such that Pins recruitment of the microtubule binding protein Mud (NuMA) occurs over a very narrow Gαi concentration range. Ultrasensitivity is required for Pins function in neuroblasts as a nonultrasensitive Pins mutant fails to robustly couple spindle position to cell polarity. Pins contains three Gαi binding GoLoco domains (GLs); Gαi binding to GL3 activates Pins, whereas GLs 1 and 2 shape the response profile. Although cooperative binding is one mechanism for generating ultrasensitivity, we find GLs 1 and 2 act as "decoys" that compete against activation at GL3. Many signaling proteins contain multiple protein interaction domains, and the decoy mechanism may be a common method for generating ultrasensitivity in regulatory pathways.  相似文献   

11.
LGN is closely related to a Drosophila protein, Partner of inscuteable (Pins), which is required for polarity establishment and asymmetric cell divisions during embryonic development. In mammalian cells, LGN binds with high affinity to the C-terminal tail of NuMA, a large nuclear protein that is required for spindle organization, and accumulates at the spindle poles during mitosis. LGN also regulates spindle organization, possibly through inhibition of NuMA function, but the mechanism of this effect has not yet been understood. Using mammalian cells, frog egg extracts, and in vitro assays, we now show that a small domain within the C terminus of NuMA stabilizes microtubules (MTs), and that LGN blocks stabilization. The nuclear localization signal adjacent to this domain is not involved in stabilization. NuMA can interact directly with MTs, and the MT binding domain on NuMA overlaps by ten amino acid residues with the LGN binding domain. We therefore propose that a simple steric exclusion model can explain the inhibitory effect of LGN on NuMA-dependent mitotic spindle organization.  相似文献   

12.
Asymmetric cell division is a conserved mechanism to generate cellular diversity during animal development and a key process in cancer and stem cell biology. Despite the increasing number of proteins characterized, the complex network of proteins interactions established during asymmetric cell division is still poorly understood. This suggests that additional components must be contributing to orchestrate all the events underlying this tightly modulated process. The PDZ protein Canoe (Cno) and its mammalian counterparts AF-6 and Afadin are critical to regulate intracellular signaling and to organize cell junctions throughout development. Here, we show that Cno functions as a new effector of the apical proteins Inscuteable (Insc)-Partner of Inscuteable (Pins)-Galphai during the asymmetric division of Drosophila neuroblasts (NBs). Cno localizes apically in metaphase NBs and coimmunoprecipitates with Pins in vivo. Furthermore, Cno functionally interacts with the apical proteins Insc, Galphai, and Mushroom body defect (Mud) to generate correct neuronal lineages. Failures in muscle and heart lineages are also detected in cno mutant embryos. Our results strongly support a new function for Cno regulating key processes during asymmetric NB division: the localization of cell-fate determinants, the orientation of the mitotic spindle, and the generation of unequal-sized daughter cells.  相似文献   

13.
Hepatocytes differ from columnar epithelial cells by their multipolar organization, which follows the initial formation of central lumen-sharing clusters of polarized cells as observed during liver development and regeneration. The molecular mechanism for hepatocyte polarity establishment, however, has been comparatively less studied than those for other epithelial cell types. Here, we show that the tight junction protein Par3 organizes hepatocyte polarization via cooperating with the small GTPase Cdc42 to target atypical protein kinase C (aPKC) to a cortical site near the center of cell–cell contacts. In 3D Matrigel culture of human hepatocytic HepG2 cells, which mimics a process of liver development and regeneration, depletion of Par3, Cdc42, or aPKC results in an impaired establishment of apicobasolateral polarity and a loss of subsequent apical lumen formation. The aPKC activity is also required for bile canalicular (apical) elongation in mouse primary hepatocytes. The lateral membrane-associated proteins Lgl1 and Lgl2, major substrates of aPKC, seem to be dispensable for hepatocyte polarity establishment because Lgl-depleted HepG2 cells are able to form a single apical lumen in 3D culture. On the other hand, Lgl depletion leads to lateral invasion of aPKC, and overexpression of Lgl1 or Lgl2 prevents apical lumen formation, indicating that they maintain proper lateral integrity. Thus, hepatocyte polarity establishment and apical lumen formation are organized by Par3, Cdc42, and aPKC; Par3 cooperates with Cdc42 to recruit aPKC, which plays a crucial role in apical membrane development and regulation of the lateral maintainer Lgl.  相似文献   

14.
During animal development, a complex of Par3, Par6 and atypical protein kinase C (aPKC) plays a central role in cell polarisation. The small G protein Cdc42 also functions in cell polarity and has been shown in some cases to act by regulating the Par3 complex. However, it is not yet known whether Cdc42 and the Par3 complex widely function together in development or whether they have independent functions. For example, many studies have implicated Cdc42 in cell migrations, but the Par3 complex has only been little studied, with conflicting results. Here we examine the requirements for CDC-42 and the PAR-3/PAR-6/PKC-3 complex in a range of different developmental events. We found similar requirements in all tissues examined, including polarised growth of vulval precursors and seam cells, migrations of neuroblasts and axons, and the development of the somatic gonad. We also propose a novel role for primordial germ cells in mediating coalescence of the Caenorhabditis elegans gonad. These results indicate that CDC-42 and the PAR-3/PAR-6/aPKC complex function together in diverse cell types.  相似文献   

15.
Du Q  Macara IG 《Cell》2004,119(4):503-516
During asymmetric cell divisions, mitotic spindles align along the axis of polarization. In invertebrates, spindle positioning requires Pins or related proteins and a G protein alpha subunit. A mammalian Pins, called LGN, binds Galphai and also interacts through an N-terminal domain with the microtubule binding protein NuMA. During mitosis, LGN recruits NuMA to the cell cortex, while cortical association of LGN itself requires the C-terminal Galpha binding domain. Using a FRET biosensor, we find that LGN behaves as a conformational switch: in its closed state, the N and C termini interact, but NuMA or Galphai can disrupt this association, allowing LGN to interact simultaneously with both proteins, resulting in their cortical localization. Overexpression of Galphai or YFP-LGN causes a pronounced oscillation of metaphase spindles, and NuMA binding to LGN is required for these spindle movements. We propose that a related switch mechanism might operate in asymmetric cell divisions in the fly and nematode.  相似文献   

16.
The partitioning-defective 3 (Par3),a key component in the conserved Par3/Par6/aPKC complex,plays fundamentalroles in cell polarity.Herein we report the identification of Ku70 and Ku80 as novel Par3-interacting proteins throughan in vitro binding assay followed by liquid chromatography-tandem mass spectrometry.Ku70/Ku80 proteins are twokey regulatory subunits of the DNA-dependent protein kinase (DNA-PK),which plays an essential role in repairingdouble-strand DNA breaks (DSBs).We determined that the nuclear association of Par3 with Ku70/KuS0 was enhancedby y-irradiation (IR),a potent DSB inducer.Furthermore,DNA-PKcs,the catalytic subunit of DNA-PK,interacted withthe Par3/Ku70/Ku80 complex in response to IR.Par3 over-expression or knockdown was capable of up-or downregulat-ing DNA-PK activity,respectively.Moreover,the Par3 knockdown cells were found to be defective in random plasmidintegration,defective in DSB repair following IR,and radiosensitive,phenotypes similar to that of Ku70 knockdowncells.These findings identify Par3 as a novel component of the DNA-PK complex and implicate an unexpected link ofcell polarity to DSB repair.  相似文献   

17.
Zhu J  Wen W  Zheng Z  Shang Y  Wei Z  Xiao Z  Pan Z  Du Q  Wang W  Zhang M 《Molecular cell》2011,43(3):418-431
Asymmetric cell division requires the establishment of cortical cell polarity and the orientation of the mitotic spindle along the axis of cell polarity. Evidence from invertebrates demonstrates that the Par3/Par6/aPKC and NuMA/LGN/Gαi complexes, which are thought to be physically linked by the adaptor protein mInscuteable (mInsc), play indispensable roles in this process. However, the molecular basis for the binding of LGN to NuMA and mInsc is poorly understood. The high-resolution structures of the LGN/NuMA and LGN/mInsc complexes presented here provide mechanistic insights into the distinct and highly specific interactions of the LGN TPRs with mInsc and NuMA. Structural comparisons, together with biochemical and cell biology studies, demonstrate that the interactions of NuMA and mInsc with LGN are mutually exclusive, with mInsc binding preferentially. Our results suggest that the Par3/mInsc/LGN and NuMA/LGN/Gαi complexes play sequential and partially overlapping roles in asymmetric cell division.  相似文献   

18.
The prostate‐apoptosis‐response‐gene‐4 (Par‐4) is up‐regulated in prostate cells undergoing programmed cell death. Furthermore, Par‐4 protein has been shown to function as an effector of cell death in response to various apoptotic stimuli that trigger mitochondria and membrane receptor‐mediated cell death pathways. In this study, we investigated how Par‐4 modulates TRAIL‐mediated apoptosis in TRAIL‐resistant Caki cells. Par‐4 overexpressing cells were strikingly sensitive to apoptosis induced by TRAIL compared with control cells. Par‐4 overexpressing Caki cells treated with TRAIL showed an increased activation of the initiator caspase‐8 and the effector caspase‐3, together with an enforced cleavage of XIAP and c‐FLIP. TRAIL‐induced reduction of XIAP and c‐FLIP protein levels in Par‐4 overexpressing cells was prevented by z‐VAD pretreatment. In addition, the surface DR5 protein level was increased in TRAIL‐treated Par‐4 overexpressing cells. Interestingly, even though a deletion of leucine zipper domain in Par‐4 recovered Bcl‐2 level to basal level induced by wild type Par‐4, it partly decreased sensitivity to TRAIL in Caki cells. In addition, exposure of Caki/Par‐4 cells to TRAIL led to reduction of phosphorylated Akt levels, but deletion of leucine zipper domain of Par‐4 did not affect these phosphorylated Akt levels. In conclusion, we here provide evidence that ectopic expression of Par‐4 sensitizes Caki cells to TRAIL via modulation of multiple targets, including DR5, Bcl‐2, Akt, and NF‐κB. J. Cell. Biochem. 109: 885–895, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

19.
The position of the mitotic spindle plays a key role in spatial control of cell division. It is generally believed that when a spindle is positioned asymmetrically in a dividing cell, the resulting daughter cells are usually unequal in size due to eccentric cleavage of the mother cell. Molecular mechanisms underlying the generation of unequal sized daughter cells have been extensively studied in Drosophila neuroblast and Caenorhabditis elegans zygote where the Gα subunit of the heterotrimeric G proteins and its binding partner - Pins in Drosophila and GPR-1/2 in C. elegans - are shown to be critical in governing spindle positioning and asymmetric cleavage of the mother cell. In mammalian system, although Gα and LGN (mammalian Pins homolog) are also required for spindle orientation, whether they can mediate asymmetric spindle positioning or asymmetric cleavage of the mother cell is not known. Here, by artificially targeting Gαi to the apical cortex in 3-D cultured MDCK cells, we established a system where asymmetric spindle positioning can be consistently induced. Interestingly, this asymmetrically positioned spindle does not lead to asymmetric cleavage; instead it results in equal sized daughter cells. Live cell time-lapse analysis revealed that anaphase spindle elongation compensated the original asymmetric spindle positioning. Our findings demonstrate that asymmetric spindle positioning does not necessarily lead to unequal sized daughter cells in mammalian system. We discuss potential mechanisms in generating unequal sized daughter cells.  相似文献   

20.
The position of the mitotic spindle controls the plane of cell cleavage and determines whether polarized cells divide symmetrically or asymmetrically. In animals, an evolutionarily conserved pathway of LIN-5 (homologues: Mud and NuMA), GPR-1/2 (homologues: Pins, LGN, AGS-3) and Gα mediates spindle positioning, and acts downstream of the conserved PAR-3-PAR-6-aPKC polarity complex. However, molecular interactions between polarity proteins and LIN-5-GPR-Gα remain to be identified. Here we describe a quantitative mass spectrometry approach for in vivo identification of protein kinase substrates. Applying this strategy to Caenorhabditis elegans embryos, we found that depletion of the polarity kinase PKC-3 results in markedly decreased levels of phosphorylation of a cluster of four LIN-5 serine residues. These residues are directly phosphorylated by PKC-3 in vitro. Phospho-LIN-5 co-localizes with PKC-3 at the anterior cell cortex and temporally coincides with a switch from anterior- to posterior-directed spindle movements in the one-cell embryo. LIN-5 mutations that prevent phosphorylation increase the extent of anterior-directed spindle movements, whereas phosphomimetic mutations decrease spindle migration. Our results indicate that anterior-located PKC-3 inhibits cortical microtubule pulling forces through direct phosphorylation of LIN-5. This molecular interaction between polarity and spindle-positioning proteins may be used broadly in cell cleavage plane determination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号