首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Members of the YABBY gene family have a general role that promotes abaxial cell fate in a model eudicot, Arabidopsis thaliana. To understand the function of YABBY genes in monocots, we have isolated all YABBY genes in Oryza sativa (rice), and revealed the spatial and temporal expression pattern of one of these genes, OsYABBY1. In rice, eight YABBY genes constitute a small gene family and are classified into four groups according to sequence similarity, exon-intron structure, and organ-specific expression patterns. OsYABBY1 shows unique spatial expression patterns that have not previously been reported for other YABBY genes, so far. OsYABBY1 is expressed in putative precursor cells of both the mestome sheath in the large vascular bundle and the abaxial sclerenchyma in the leaves. In the flower, OsYABBY1 is specifically expressed in the palea and lemma from their inception, and is confined to several cell layers of these organs in the later developmental stages. The OsYABBY1-expressing domains are closely associated with cells that subsequently differentiate into sclerenchymatous cells. These findings suggest that the function of OsYABBY1 is involved in regulating the differentiation of a few specific cell types and is unrelated to polar regulation of lateral organ development.  相似文献   

2.
3.
4.
克隆了非洲爪蟾的Sox1基因并研究了它在非洲爪蟾早期发育过程中的时空表达图式,比较了Sox1—3基因在发育的脑和眼中的表达图式。序列比对分析显示Sox1—3蛋白在其HMG框结构域具有高度的保守性。通过RT-PCR方法分析了Sox1基因在爪蟾早期不同发育时段的表达情况,结果显示Sox1基因从未受精卵到尾芽期均有表达,但表达强度有所差异。原位杂交结果显示,在早期卵裂阶段和囊胚期,Sox1基因主要在动物极表达;从神经板期开始,Sox1基因主要在中枢神经系统和眼原基中表达。在蝌蚪期,Sox1与Sox2、Sox3在脑部和眼睛的表达区域有所不同。对于爪蟾Sox1基因时空表达图式的研究将有助于阐明SoxB1基因家族在脊椎动物神经系统发生过程中的作用。  相似文献   

5.
Double in situ hybridization techniques in zebrafish   总被引:11,自引:0,他引:11  
  相似文献   

6.
7.
8.
9.
10.
Large Maf proteins, which are members of the basic leucine zipper (b-Zip) superfamily, are involved in the determination and control of cellular differentiation. The expression patterns of various vertebrate large Maf mRNAs were described previously. Here, we report the cloning of a novel zebrafish large Maf cDNA, SMaf1 (Somite Maf1), and other zebrafish large Mafs, the N-terminus domains of which possess transactivational activity. We also analyzed the expression patterns of SMaf1 and SMaf2 (Somite Maf2)/Krml2 as well as MafB/Val and c-Maf during zebrafish embryogenesis. In particular, the robust expression of the novel SMaf1 mRNA, which overlapped that of MyoD, in somitic cells during somitogenesis was noteworthy. In addition, the expression patterns of SMaf2 and MafB in the blood-forming regions, and those of c-Maf and MafB in the lens cells showed spatial redundancy, although the temporal appearance of these genes at these sites differed. These data indicate that SMafs may play important roles in somitogenesis, and that Maf proteins may have overlapping and yet specific functions as to the determination and differentiation of cell lineages.  相似文献   

11.
12.
13.
14.
Hox genes are necessary for proper morphogenesis and organization of various body structures along the anterior-posterior body axis. These genes exist in clusters and their expression pattern follows spatial and temporal co-linearity with respect to their genomic organization. This colinearity is conserved during evolution and is thought to be constrained by the regulatory mechanisms that involve higher order chromatin structure. Earlier studies, primarily in Drosophila, have illustrated the role of chromatin-mediated regulatory processes, which include chromatin domain boundaries that separate the domains of distinct regulatory features. In the mouse HoxD complex, Evx2 and Hoxd13 are located ~ 9 kb apart but have clearly distinguishable temporal and spatial expression patterns. Here, we report the characterization of a chromatin domain boundary element from the Evx2-Hoxd13 region that functions in Drosophila as well as in mammalian cells. We show that the Evx2-Hoxd13 region has sequences conserved across vertebrate species including a GA repeat motif and that the Evx2-Hoxd13 boundary activity in Drosophila is dependent on GAGA factor that binds to the GA repeat motif. These results show that Hox genes are regulated by chromatin mediated mechanisms and highlight the early origin and functional conservation of such chromatin elements.  相似文献   

15.
16.
17.
We report the isolation, sequence, and pattern of gene expression of members of the KNOTTED1 (KN1)-type class 1 homeobox gene family from rice. Phylogenetic analysis and mapping of the rice genome revealed that all of the rice homeobox genes that we have isolated have one or two direct homologs in maize. Of the homeobox genes that we tested, all exhibited expression in a restricted region of the embryo that defines the position at which the shoot apical meristem (SAM) would eventually develop, prior to visible organ formation. Several distinct spatial and temporal expression patterns were observed for the different genes in this region. After shoot formation, the expression patterns of these homeobox genes were variable in the region of the SAM. These results suggest that the rice KN1-type class 1 homeobox genes function cooperatively to establish the SAM before shoot formation and that after shoot formation, their functions differ.  相似文献   

18.
19.
The expression pattern of zebrafish hoxa1a mRNA during embryonic development was studied. Herein, we show that hoxa1a mRNA is expressed in the ventral region of both the midbrain and anterior hindbrain during the developmental period from the pharyngula to the protruding-mouth stages via whole-mount in situ hybridization. Furthermore, double-labeling with anti-zHu antibody confirms that the zebrafish hoxa1a gene is expressed in neuronal cells. The observed temporal and spatial distributions of zebrafish hoxa1a mRNA differ greatly from the expression patterns of zebrafish hoxb1a and hoxb1b paralagous genes. In addition, in embryos injected with mouse ihh mRNA, hoxa1a-expressing cells increase in number with a dorsalized expression pattern in the midbrain.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号