首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In an attempt to assess the biochemical consequences resulting from structural differences between rat pulmonary and testicular angiotensin-converting enzyme, the thermal stability of crude and purified preparations of each enzyme was compared. Structural heterology was verified by molecular weight determinations and by peptide mapping after limited proteolysis with Staphylococcus V8 proteinase. Thermal stability was monitored by changes in catalytic activity following incubations at 55°C in the presence of chelators and CoCl2. Purified pulmonary angiotensin-converting enzyme was more sensitive to inhibition by the chelators EDTA and 1,10-phenanthroline and by the site-directed inhibitor captopril than was the testicular isozyme. Although the pulmonary holoenzyme was unaffected by cobalt, the testicular holoenzyme was inhibited by cobalt in a concentration-dependent manner. Crude pulmonary angiotensin-converting enzyme was significantly more resistant to thermal denaturation than its crude testicular counterpart. The differences in the thermal lability of each isozyme were still present in purified preparations, although the purified enzymes appeared to be more thermally stable than their crude counterparts. Both chelators and cobalt markedly potentiated the thermal denaturation of each isozyme. These data suggest that the structural heterology of the pulmonary and testicular isozymes may affect the interaction of zinc with the respective enzymes and that zinc may contribute to the structural integrity and thermal stability of angiotensin-converting enzyme in each tissue.  相似文献   

2.
Immunization of dog and rat high pure rabbit pulmonary angiotensin-converting enzyme elicited, in some individuals, antibodies that inhibited their own converting enzyme. Active immunization with an immunologically related enzyme is thus a plausible approach for developing biologically based inhibitors of enzymes that are either in or accessible to the circulation. Rabbit testicular peptidyldipeptide hydrolase was purified to homogeneity and found to be a considerably smaller (Mr approximately 100,000) glycoprotein than pulmonary converting enzyme (Mr approximately 140,000). The two enzymes differed at their amino- and carboxy-termini. However, they exhibited identical catalytic properties, and antibodies prepared against either inhibited both similarly. In competition radioimmunoassays, antibodies against the pulmonary enzyme preferred it to the testicular species, whereas those against the latter did not distinguish between the two molecules. The testicular isozyme thus resembles an internal part of the pulmonary polypeptide, which includes its active site. In a reticulocyte lysate, mRNA from the lungs of immature and mature rabbits comparably primed the synthesis of a polypeptide (Mr approximately 129,000) that reacted with anticonverting enzyme antibodies. In contrast, an immunoreactive species was programed only by mRNA from the testis of mature animals, and this protein was much smaller (Mr approximately 85,000). Maturation dependence and a shorter polypeptide chain, the regulatory and structural properties that distinguish the testicular isozyme, are thus each pretranslationally determined.  相似文献   

3.
The 20S proteasome from the extreme thermophile Methanococcus jannaschii (Mj) was purified and sequenced to facilitate production of the recombinant proteasome in E. coli. The recombinant proteasome remained in solution at a purity level of 80-85% (according to SDS PAGE) following incubation of cell lysates at 70 degrees C. Temperature-activity profiles indicated that the temperature optima of the wild-type and recombinant enzymes differed substantially, with optimal activities occurring at 119 degrees C and 95 degrees C, respectively. To ameliorate this discrepancy, two recombinant enzyme preparations were produced, each of which included denaturation of the proteasome by 4 M urea followed by high-temperature (85 degrees C) dialysis. The wild-type temperature optimum was restored, but only if proteasome subunits were denatured and refolded prior to assembly (a preparation designated as alpha & beta). In contrast, when proteasome assembly preceded denaturation (designated alpha + beta) the optimum temperature was raised to a lesser degree. Moreover, the alpha & beta and alpha + beta preparations had apparent thermal half-lives at 114 degrees C of 54.2 and 26.2 min, respectively, and the thermostability of the less stable enzyme was more sensitive to a reduction in pH. Attainment of wild-type activity and stability thus required the proper folding of both the alpha- and beta-subunits prior to proteasome assembly. Consistent with this behavior, dual-scanning calorimetry (DSC) measurements revealed differences in the reassembly efficiency of the two proteasome preparations. The ability to produce structural conformers with dramatically different thermal optima and thermostabilities may facilitate the determination of molecular forces and structural motifs responsible for enzyme thermostablity and high-temperature activity.  相似文献   

4.
M R Ehlers  J F Riordan 《Biochemistry》1991,30(29):7118-7126
The blood pressure regulating somatic isozyme of angiotensin-converting enzyme (ACE) consists of two homologous, tandem domains each containing a putative metal-binding motif (HEXXH), while the testis isozyme consists of just a single domain that is identical with the C-terminal half of somatic ACE. Previous metal analyses of somatic ACE have indicated a zinc stoichiometry of 1 mol of Zn2+/mol of ACE and inhibitor-binding studies have found 1 mol of inhibitor bound/mol of enzyme. These and other data have indicated that only one of the two domains of somatic ACE is catalytically active. We have repeated the metal and inhibitor-binding analyses of ACE from various sources and have determined protein concentration by quantitative amino acid analysis on the basis of accurate polypeptide molecular weights that are now available. We find that the somatic isozyme in fact contains 2 mol of Zn2+ and binds 2 mol of lisinopril (an ACE inhibitor) per mol of enzyme, whereas the testis isozyme contains 1 mol of Zn2+ and binds 1 mol of lisinopril. In the case of somatic ACE, the second equivalent of inhibitor binds to a second zinc-containing site as evidenced by the ability of a moderate excess of inhibitor to protect both zinc ions against dissociation. However, active site titration with lisinopril assayed by hydrolysis of furanacryloyl-Phe-Gly-Gly revealed that 1 mol of inhibitor/mol of enzyme abolished the activity of either isozyme, indicating that the principal angiotensin-converting site likely resides in the C-terminal (testicular) domain of somatic ACE and that binding of inhibitor to this site is stronger than to the second site.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Creatinine iminohydrolase (EC 3.5.4.21), which catalyzes hydrolysis of creatinine to N-methylhydantoin and ammonia, was purified from Flavobacterium filamentosum. The average molecular weight of the purified enzyme was 272,480, and the subunit molecular weight was 44,300. Extensive specificity studies indicated that the enzyme utilized cytosine (Km, 0.62 mM; Vm, 20.1 units/mg) as well as creatinine (Km, 5.00 mM; Vm, 40.4 units/mg) as a substrate. Each was a competitive inhibitor toward hydrolysis of the other compound. Dialysis of creatinine iminohydrolase in the presence of 0.01 M Tris phosphate buffer, pH 7.5, containing 1,10-phenanthroline decreased activity by 98%. Reactivation was accomplished by incubating the apoenzyme in the presence of certain divalent metal chlorides, listed in decreasing order of effectiveness: iron(II), zinc, cobalt(II), cadmium, and nickel. The extent of reactivation depended on the substrate and on which metal ion was added to the apoenzyme. Creatinine to cytosine activity ratios varied from 1:3.75 (iron(II) chloride), to 1:0.9 (zinc chloride), to 1:0.06 (nickel chloride). For different preparations of the holoenzyme that ratio ranged from 1:0.45 to 1:1.10. Variable but significant quantities of zinc and iron were present in all preparations of the purified enzyme.  相似文献   

6.
Only few enzymes from haloalkaliphiles are biochemically characterized for their kinetic behaviour and stability. In view of this realization, an alkaline protease from Bacillus sp. AH-6, displaying salt-dependent resistance against chemical denaturation by Urea and Guanidium hydrochloride was investigated for denaturation and in vitro protein folding. The crude enzyme was highly resistant against urea (8 M) denaturation up to 72 h; however, on purification, it turned sensitive and got denatured within 2 h. Interestingly, the purified enzyme regained the resistance in the presence of NaCl. Effective refolding of the purified enzyme was achieved with glycerol; however, other approaches such as lower protein concentrations, rapid dilution and slow removal of the denaturant did not further add to refolding. The results are important from the viewpoint that only few enzymes from haloalkaliphilic bacteria are characterized. Since the resistance against chemical denaturation is a rare phenomenon, the findings would enrich the knowledge on protein stability and denaturation. Besides, such biocatalysts would definitely have novel applications under harsh chemical environments.  相似文献   

7.
Ornithine transcarbamylase, the enzyme which catalyzes the formation of citrulline from ornithine and carbamoylphosphate, has been purified from guinea pig liver. By the procedure indicated in the present paper a 200 fold purification of the enzyme has been achieved. Using both the purified fraction and the crude extract, a parallel determination of some physicochemical properties has been carried out. The pH of maximal activity of OTC was 7.8 for both preparations. The maximal stability of the enzyme with respect of pH showed a plateau over the range of pH 7 to 9.5 in the purified fraction, whereas the crude extract exhibited a major stability which lay between pH and 10. Both OTC preparations showed similar behavior regarding thermal stability, the enzyme being still active at a 50 degrees C temperature. The values of the apparent Km's proved to be 4.4 mM for the substrate ornithine and 5 mM for carbamoylphosphate.  相似文献   

8.
The phosphofructokinase C isozyme (PFK-C) from ascites tumor cells has been cloned and characterized to investigate the particular properties of PFK activity in this type of cells. The isolated cDNA encodes a protein of 784 amino acids and 85.5 kDa, whose expression was constant along tumor growth and markedly decreased when cell proliferation stops. The enzyme was functionally expressed in a PFK-deficient strain of Saccharomyces cerevisiae and purified to homogeneity. Recombinant PFK-C exhibited the same subunit size as the tumor wild-type isozyme and its steady-state kinetic parameters were similar to those of the form present in normal cells. The regulatory properties of the C isozyme accounted for the lack of fructose-1,6-P(2) activation and the P-enolpyruvate inhibition of PFK activity observed in ascites tumor preparations containing the various isozyme types. Nevertheless, PFK-C binds fructose-1,6-P(2) to an allosteric site as suggested by protection against thermal denaturation. Our results indicate that glucose metabolism in tumor cells is not regulated by a mutant form of PFK-C but by a high level expression of the normal C isozyme.  相似文献   

9.
Metal cofactors of lysine-2,3-aminomutase.   总被引:1,自引:0,他引:1  
Lysine-2,3-aminomutase from Clostridium SB4 contains iron and sulfide in equimolar amounts, as well as cobalt, zinc, and copper. The iron and sulfide apparently constitute an Fe-S cluster that is required as a cofactor of the enzyme. Although no B12 derivative can be detected, enzyme-bound cobalt is a cofactor; however, the zinc and copper bound to the enzyme do not appear to play a role in its catalytic activity. These conclusions are supported by the following facts reported in this paper. Purification of the enzyme under anaerobic conditions increases the iron and sulfide content. Lysine-2,3-aminomutase purified from cells grown in media supplemented with added CoCl2 contains higher levels of cobalt and correspondingly lower levels of zinc and copper relative to enzyme from cells grown in media not supplemented with cobalt. The specific activity of the purified enzyme increases with increasing iron and sulfide content, and it also increases with increasing cobalt and with decreasing zinc and copper content. The zinc and copper appear to occupy cobalt sites under conditions of insufficient cobalt in the growth medium, and they do not support the activity of the enzyme. The best preparations of lysine-2,3-aminomutase obtained to date exhibit a specific activity of approximately 23 units/mg of protein and contain about 12 g atoms of iron and of sulfide per mol of hexameric enzyme. These preparations also contain 3.5 g atoms of cobalt per mol, but even the best preparations contain small amounts of zinc and copper. The sum of cobalt, zinc, and copper in all preparations analyzed to date corresponds to 5.22 +/- 0.75 g atoms per mol of enzyme. An EPR spectrum of the enzyme as isolated reveals a signal corresponding to high spin Co(II) at temperatures below 20 K. The signal appears as a partially resolved 59Co octet centered at an apparent g value of 7. The 59Co hyperfine splitting (approximately 35 G) is prominent at 4.2 K. These findings show that lysine-2,3-aminomutase requires Fe-S clusters and cobalt as cofactors, in addition to the known requirement for pyridoxal 5'-phosphate and S-adenosylmethionine.  相似文献   

10.
Adenylate kinase from Escherichia coli K12 (strains CR341 and CR341 T28, a temperature-sensitive mutant) was purified by a two-step chromatographic procedure. Denaturation by heat above 60 degrees C of pure or crude preparations of adenylate kinase from both strains of bacteria was shown to be "reversible" if the enzyme was converted to the random coiled state by guanidinium chloride after heat treatment. Like other small monomeric proteins, adenylate kinase refolded rapidly to the native active state by dilution of guanidinium chloride. Adenylate kinase from the mutant strain was irreversibly inactivated by exposure of crude extracts at 40 degrees C. This inactivation is due to proteolysis which follows thermal denaturation (or transconformation) of mutant adenylate kinase at 40 degrees C. ATP, P1, P5-di(adenosine 5')-pentaphosphate, and anti-adenylate kinase antibodies protected the thermosensitive adenylate kinase in crude extracts against denaturation and proteolysis at 40 degrees C.  相似文献   

11.
Catabolic dehydroquinase which functions in the inducible quinic acid catabolic pathway in Neurospora crassa has been purified 8000-fold. The enzyme was purified by two methods. One used heat denaturation of contaminating proteins; the other used antibody affinity chromatography. The preparations obtained by these two methods were identical by all criteria. The purified enzyme is extremely resistant to thermal denaturation as well as denaturation 0y urea and guanidine hydrochloride at 25 degrees. It is irreversibly inactivated, although not efficiently dissociated, by sodium dodecyl sulfate and guanidine hydrochloride at 55 degrees. At pH 3.0, the enzyme is reversibly dissociated into inactive subunits. At high concentrations catabolic dehydroquinase aggregates into an inactive, high molecular weight complex. The native enzyme, which has a very high specific activity, has a molecular weight of approximately 220,000 and is composed of identical subunits of 8,000 to 12,000 molecular weight each. The native enzyme and the subunit are both asymmetric.  相似文献   

12.
Human angiotensin-converting enzyme has been purified, in a single chromatographic step, using a novel N-carboxyalkyl dipeptide CA-GlyGly (N-[1(S)-carboxy-5-aminopentyl]glycylglycine) synthesised in our laboratory. CA-GlyGly is a weak competitive inhibitor, Ki = 0.18 mM, and its inhibitory profile is markedly pH-dependent. Human lung and kidney angiotensin-converting enzyme were solubilised with Triton X-100 and after ammonium sulphate fractionation the crude extract was applied to a column containing CA-GlyGly coupled to agarose via a 2.8 nm spacer group. Electrophoretically pure human angiotensin-converting enzyme could be eluted by raising the pH of the chromatography buffer from 7.50 to 9.50. The specific activity of human angiotensin-converting enzyme purified from lung was 104 units/mg, while that from kidney was 88 units/mg. Molecular weight for both enzymes was estimated to be 160,000. The Km with respect to hippuryl-L-histidyl-L-leucine was 1.9 mM in the case of lung angiotensin-converting enzyme and 1.7 mM in that of kidney angiotensin-converting enzyme, while for the substrate angiotensin I Km values were 62 microM and 76 microM, respectively. Hydrolysis of either substrate was chloride-dependent and both enzymes were strongly inhibited by captopril.  相似文献   

13.
Native carboxypeptidase B and its Co2+-substituted derivative were oxidized by the active-site-directed agent m-chloroperbenzoic acid. The following results were obtained a) In the cobalt enzyme there was a decrease in both the peptidase and the esterase activities, whereas in the zinc enzyme only the peptidase activity decreased. Peptide or ester pseudo-substrates protected the cobalt enzyme but not the zinc enzyme against inactivation. b) Upon oxidation and formation of Co3+, cleavage of peptide bonds occurred in the cobalt enzyme but not in the zinc enzyme. Both enzymes retained their original metal content. c) Following oxidation of the enzymes, amino acid analysis revealed a modification of a methionyl residue in the zinc enzyme only; the cobalt enzyme, on the other hand, showed a modification of a histidyl residue. d) Peptide mapping of the enzymes after cleavage by cyanogen bromide indicated that two methionyl peptides were missing in the oxidized zinc enzyme. These peptides point to Met-64 as the site of modification. The peptide map of the oxidized cobalt enzyme was similar to that of the unmodified native (i.e., zinc) enzyme. These studies indicate that the specific metal ion present in the enzyme imposes certain structural and functional differences on the active site, leading to differing reactivities of specific amino acid residues and to a different alignment of the active-site-directed reagent in the two enzymes.  相似文献   

14.
The rates of thermal denaturation and the molecular weights of the two isofunctional enol-lactone hydrolases (ELH I and ELH II) of Acinetobacter calcoaceticus were determined. The molecular weights of ELH I and ELH II were found by gel filtration to be approximately 24,000 and 21,000, respectively. In crude extract at 45 C the two enzymes showed a marked difference in rate of thermal denaturation. After chromatography on Sephadex G-100, however, the rates were nearly identical. The thermolability of ELH II in crude extract was shown to be due to its sensitivity to an unidentified component of the crude extract which modified its rate of thermal denaturation. In the light of the physical similarities of the two enzymes, it is concluded that the different regulatory patterns imposed upon the two enzymes do not provide sufficient evidence that they are the product of two different structural genes.  相似文献   

15.
The regulatory enzyme aspartate transcarbamoylase (ATCase), comprising 2 catalytic (C) trimers and 3 regulatory (R) dimers, owes its stability to the manifold interchain interactions among the 12 polypeptide chains. With the availability of a recombinant 70-amino acid zinc-containing polypeptide fragment of the regulatory chain of ATCase, it has become possible to analyze directly the interaction between catalytic and regulatory chains in a complex of simpler structure independent of other interactions such as those between the 2 C trimers, which also contribute to the stability of the holoenzyme. Also, the effect of the interaction between the polypeptide, termed the zinc domain, and the C trimer on the thermal stability and other properties can be measured directly. Differential scanning microcalorimetry experiments demonstrated that the binding of the zinc domain to the C trimer leads to a complex of markedly increased thermal stability. This was shown with a series of mutant forms of the C trimer, which themselves varied greatly in their temperature of denaturation due to single amino acid replacements. With some C trimers, for which tm varied over a range of 30 degrees C due to diverse amino acid substitutions, the elevation of tm resulting from the interaction with the zinc domain was as large as 18 degrees C. The values of tm for a variety of complexes of mutant C trimers and the wild-type zinc domain were similar to those observed when the holoenzymes containing the mutant C trimers were subjected to heat denaturation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Two tetrameric secondary alcohol dehydrogenases (ADHs), one from the mesophile Clostridium beijerinckii (CBADH) and the other from the extreme thermophile Thermoanaerobacter brockii (TBADH), share 75% sequence identity but differ by 26 °C in thermal stability. To explore the role of linear segments of these similar enzymes in maintaining the thermal stability of the thermostable TBADH, a series of 12 CBadh and TBadh chimeric genes and the two parental wild-type genes were expressed in Escherichia coli, and the enzymes were isolated, purified and characterized. The thermal stability of each chimeric enzyme was approximately exponentially proportional to the content of the amino acid sequence of the thermophilic enzyme, indicating that the amino acid residues contributing to the thermal stability of TBADH are distributed along the whole protein molecule. It is suggested that major structural elements of thermal stability may reside among the nine discrepant amino acid residues between the N-terminal 50-amino acid residues of TBADH and CBADH.  相似文献   

17.
Pulmonary angiotensin-converting enzyme antienzyme antibody.   总被引:1,自引:0,他引:1  
M Das  R L Soffer 《Biochemistry》1976,15(23):5088-5094
A method has been developed for quantitating anticatalytic activity in antibody preparations made in goats against pure solubilized angiotensin-converting enzyme from rabbit pulmonary membranes. Anticatalytic activity was purified about 90-fold from a single batch of serum by a procedure including diethylaminoethylcellulose chromatography and elution from Sepharose columns containing covalently bound pure enzyme. Antiholoenzyme antibody was fractionated with respect to charge and binding affinity; however, these different populations each inhibited enzymatic hydrolysis of hippurylhistidylleucine, angiotensin I, and bradykinin. The inhibition dose-response curves were similar for hydrolysis of hippurylhistidylleucine and angiotensin I despite the difference in molecular weight of these substrates. Evidence is presented suggesting that a single molecule of antibody can bind two molecules of enzyme and that at least 18% of the total antiholoenzyme antibody population is directed against determinants which influence catalytic activity. A competitive immunoassay was developed with radioiodinated pulmonary enzyme as displaceable antigen. The anticatalytic and radioimmune assays were used to examine immunological properties of converting enzymes in various rabbit organs and fluids. Kidney, brain, and serum were found to contain converting enzymes which were immunologically identified with that in rabbit lung. Converting enzyme in seminal plasma was similar to the lung enzyme in the anticatalytic assay, but showed lower immunoreactivity in the radioimmune assay.  相似文献   

18.
Stabilization of restriction endonuclease Bam HI by cross-linking reagents   总被引:1,自引:0,他引:1  
Bacillus amyloliquefaciens H produces a restriction endonuclease enzyme BamHl which is heat labile even at low temperatures. Studies were conducted to enhance thermal stability of BamHl using cross-linking reagents, namely, glutaraldehyde, dimethyl adipimidate (DMA), dimethyl suberimidate (DMS), and dimethyl 3,3'-dithiobispropionimidate (DTBP). Reaction with glutaraldehyde did not result in a preparation with enhanced thermal stability. However, the DMA-, DMS-, and DTBP-cross-linked preparations of BamHI exhibited significant improvement in thermal stability. Studies on thermal denaturation of the cross-linked enzyme preparations revealed that these do not follow a true first-order kinetics A possible deactivation scheme has been proposed in which the enzyme has been envisaged to go through a fully active but more susceptible transient state which, on prolonged heat exposure, exhibits a first-order decay kinetics. At 35 degrees C, which is close to the optimum reaction temperature of 37 degrees C for BamHl activity, the half-line of DMA-, DMS-, and DTBP-cross-linked preparations were 4.0, 5.25, and 5.5 h, respectively, whereas the native enzyme exhibited a half-line of 1.2 h only. The apparent values of deactivation rate constants for native, DMA-, DMS-, and DTBP-cross-linked BamHl were 1.13, 0.39, 0.29, and 0.26 h(-1), respectively, at the same temperature, and the apparent values of activation energies for denaturation of native, DMA-, DMS-, and DTBP-cross-linked BamHl were 2.63, 5.24, 6.55, and 9.2 kcal/mol, respectively. The DTBP-cross-linked Bam HI was, therefore, the best heat-stable preparation among those tested. The unusually low values of activation energies for denaturation of Bam Hl represent their highly thermolabile nature compared to other commonly encountered enzymes such as trypsin, having activation energies of more than 40 kcal/mol for their denaturation.  相似文献   

19.
Crude and purified xanthine dehydrogenase preparations from rat liver were examined for the existence of a naturally occurring inactive form. Reduction of the purified enzyme by xanthine under anaerobic conditions proceeded in two phases. The enzyme was inactivated by cyanide, which caused the release of a sulfur atom from the molybdenum center as thiocyanate. The amount of thiocyanate released was almost in parallel with the initial specific activity. The active and inactive enzymes could be resolved by affinity chromatography on Sepharose 4B/folate gel. These results provided evidence that the purified enzyme preparation from rat liver contained an inactive form. A method for the determination of the active and inactive enzymes in crude enzyme preparations from rat liver was devised based on the fact that only active enzyme could react with [14C]allopurinol and both active and inactive enzymes could be immunoprecipitated quantitatively by excess specific antibody to xanthine dehydrogenase. The amount of [14C]alloxanthine (derived from [14C]allopurinol) bound to the active sulfo enzyme in crude rat liver extracts was about 0.5 mol/mol of FAD. As this content is closely similar to that in the purified enzyme, these results suggest the existence of an inactive desulfo form in vivo.  相似文献   

20.
The content of cytochrome P-450, isozyme 6, in the rabbit pulmonary microsomal fraction was estimated by immunochemical methods to be 1 to 3% of the total cytochrome P-450. Following treatment of rabbits with 2,3,7,8-tetrachlorodibenzo-p-dioxin, the pulmonary microsomal concentration of isozyme 6 increased 16-fold. Isozyme 6 was also detected by immunochemical methods, but not by electrophoresis and staining for protein, in preparations of isozyme 5 isolated from the pulmonary microsomal fraction of untreated rabbits. The metabolism of benzo[a]pyrene in these preparations was found to be catalyzed by isozyme 6, not by isozyme 5 as previously concluded. Cytochrome P-450, isozyme 4, was not detected in the pulmonary microsomal fraction from untreated or 2,3,7,8-tetrachlorodibenzo-p-dioxin-treated rabbits. Although benzo[a]pyrene and 7-ethoxyresorufin are both substrates for isozyme 6, the pulmonary microsomal metabolism of these compounds was not increased to the same extent by treatment of rabbits with 2,3,7,8-tetrachlorodibenzo-p-dioxin (about 13-fold for 7-ethoxyresorufin and less than 2-fold for BP). However, lack of agreement between increases in isozyme 6 content and activity, and between the relative increases of the activities with the two substrates, was overcome by the addition of purified NADPH-cytochrome P-450 reductase to the microsomal incubations. When alpha-naphthoflavone, at the minimum concentration required for greater than 90% inhibition of isozyme 6 catalysis, was present in the incubations, no increases in activity were obtained by the addition of purified reductase. The turnover numbers of isozyme 6 in microsomal preparations incubated with purified reductase were similar to those of the purified isozyme in a reconstituted monooxygenase system. The relevance of our results to determinations of the substrate specificities and the microsomal concentrations and activities of isozymes of cytochrome P-450 is discussed. In addition, these parameters are used to assess the extent to which the catalytic potential of isozyme 6 is expressed in the rabbit pulmonary microsomal fraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号