首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In mast cells, activation of GTP-binding proteins induces centripetal reorganization of actin filaments. This effect is due to disassembly, relocalization, and polymerization of F-actin and is dependent on two small GTPases, Rac and Rho. Activities of Rac and Rho are also essential for the secretory function of mast cells. In response to GTP-gamma-S and/or calcium, only a proportion of permeabilized mast cells is capable of secretory response. Here, we have compared actin organization of secreting and nonsecreting cell populations. We show that the cytoskeletal and secretory responses are strongly correlated, indicating a common upstream regulator of the two functions. The secreting cell population preferentially displays both relocalization and polymerization of actin. However, when actin relocalization or polymerization is inhibited by phalloidin or cytochalasin, respectively, secretion is unaffected. Moreover, the ability of the constitutively active mutants of Rac and Rho to enhance secretion is also unaffected in the presence of cytochalasin. Therefore, Rac and Rho control these two functions by divergent, parallel signaling pathways. Cortical actin disassembly occurs in both secreting and nonsecreting populations and does not, by itself, induce exocytosis. A model for the control of exocytosis is proposed that includes at least four GTP-binding proteins and suggests the presence of both shared and divergent signaling pathways from Rac and Rho.  相似文献   

2.
Plant GTPases: the Rhos in bloom   总被引:17,自引:0,他引:17  
  相似文献   

3.
It is well known that the activation of mast cells due to the binding of mastoparan to the G(α) subunit of trimeric G proteins involves exocytosis regulation. However, experimental evidence in the literature indicates that mastoparan can also activate certain regulatory targets of exocytosis at the level of the mast cell endosomal membranes that have not yet been identified. Therefore, the aim of the present investigation was the proteomic identification of these targets. To achieve these objectives, mast cells were activated by the peptide Protopolybia MP-III, and the proteins of the endosomal membranes were converted to proteoliposomes using sonication. Proteins were separated from one another by affinity chromatography using proteoliposomes as analytes and Protopolybia MP III-immobilized Sepharose 4B resin as the ligand. This experimental approach, which used SDS-PAGE, in-gel trypsin digestion and proteomic analysis, permitted the identification of five endosomal proteins: Rho GTPase Cdc 42 and exocyst complex component 7 as components of the Ca(2+) -independent FcεRI-mediated exocytosis pathway, synaptosomal-associated protein 29, and GTP-binding protein Rab3D as components of the Ca(2+) -dependent FcεRI-mediated exocytosis pathway and Ras-related protein M-Ras, a protein that is related to the mediation of cell shaping and proliferation following exocytosis. The identification of the five proteins as targets of mastoparans may contribute in the near future to the use of this family of peptides as novel tools for dissecting the mechanism of exocytosis in mast cells.  相似文献   

4.
《The Journal of cell biology》1994,126(4):1005-1015
Rat peritoneal mast cells, both intact and permeabilized, have been used widely as model secretory cells. GTP-binding proteins and calcium play a major role in controlling their secretory response. Here we have examined changes in the organization of actin filaments in intact mast cells after activation by compound 48/80, and in permeabilized cells after direct activation of GTP-binding proteins by GTP-gamma-S. In both cases, a centripetal redistribution of cellular F-actin was observed: the content of F-actin was reduced in the cortical region and increased in the cell interior. The overall F-actin content was increased. Using permeabilized cells, we show that AIF4-, an activator of heterotrimeric G proteins, induces the disassembly of F-actin at the cortex, while the appearance of actin filaments in the interior of the cell is dependent on two small GTPases, rho and rac. Rho was found to be responsible for de novo actin polymerization, presumably from a membrane-bound monomeric pool, while rac was required for an entrapment of the released cortical filaments. Thus, a heterotrimeric G-protein and the small GTPases, rho and rac, participate in affecting the changes in the actin cytoskeleton observed after activation of mast cells.  相似文献   

5.
Phospholipases stimulate secretion in RBL mast cells   总被引:2,自引:0,他引:2  
Cohen JS  Brown HA 《Biochemistry》2001,40(22):6589-6597
Roles for glycerophospholipids in exocytosis have been proposed, but remain controversial. Phospholipases are stimulated following the activation of the high-affinity receptor for immunoglobulin E (IgE) in mast cells. To study the biochemical sequelae that lead to degranulation, broken cell systems were employed. We demonstrate that the addition of three distinct types of exogenous phospholipases (i.e., bcPLC, scPLD, and tfPLA(2)), all of which hydrolyze phosphatidylcholine (PC), trigger degranulation in permeabilized RBL-2H3 cells, a mucosal mast cell line. Production of bioactive lipids by these phospholipases promotes release of granule contents through the plasma membrane and acts downstream of PKC, PIP(2), and Rho subfamily GTPases in regulated secretion. These exogenous phospholipase-induced degranulation pathways circumvent specific factors activated following stimulation of the IgE receptor as well as in ATP- and GTP-dependent intracellular pathways. Taken together, these results suggest that regulated secretion may be achieved in vitro in the absence of cytosolic factors via phospholipase activation and that products of PC hydrolysis can promote exocytosis in mast cells.  相似文献   

6.
Introducing non-hydrolysable analogues of GTP into the cytosolic compartment of mast cells results in exocytotic secretion through the activation of GTP binding proteins. The identity and mechanism of action of these proteins are not established. We have investigated the effects of Rho GDP dissociation inhibitor (RhoGDI) on exocytosis induced by guanosine 5'-O-(3-thiotriphosphate) (GTP-gamma-S) in rat mast cells, introducing the protein into cells by means of a patch pipette and recording the progress of exocytosis by monitoring cell capacitance. To allow time for the protein to enter the cells and find its correct location, stimulation was provided 5-10 min after patch rupture by photolysing caged GTP-gamma-S included in the pipette solution. When bovine RhoGDI was introduced into mast cells, exocytosis was inhibited at concentrations of 200-400 nM for native protein and 800 nM to 8 microM for the recombinant form. Protein denatured by heat or N-ethylmaleimide treatment did not inhibit. In permeabilized cells, recombinant RhoGDI increased the rate at which cells lose their ability to respond to GTP-gamma-S. These data demonstrate that one or more small GTP binding proteins of the Rho family has a central role in the exocytotic mechanism in mast cells.  相似文献   

7.
Rho, Rac, and Cdc42 monomeric GTPases are well known regulators of the actin cytoskeleton and phosphoinositide metabolism and have been implicated in hormone secretion in endocrine cells. Here, we examine their possible implication in Ca(2+)-dependent exocytosis of neurotransmitters. Using subcellular fractionation procedures, we found that RhoA, RhoB, Rac1, and Cdc42 are present in rat brain synaptosomes; however, only Rac1 was associated with highly purified synaptic vesicles. To determine the synaptic function of these GTPases, toxins that impair Rho-related proteins were microinjected into Aplysia neurons. We used lethal toxin from Clostridium sordellii, which inactivates Rac; toxin B from Clostridium difficile, which inactivates Rho, Rac, and Cdc42; and C3 exoenzyme from Clostridium botulinum and cytotoxic necrotizing factor 1 from Escherichia coli, which mainly affect Rho. Analysis of the toxin effects on evoked acetylcholine release revealed that a member of the Rho family, most likely Rac1, was implicated in the control of neurotransmitter release. Strikingly, blockage of acetylcholine release by lethal toxin and toxin B could be completely removed in <1 s by high frequency stimulation of nerve terminals. Further characterization of the inhibitory action produced by lethal toxin suggests that Rac1 protein regulates a late step in Ca(2+)-dependent neuroexocytosis.  相似文献   

8.
In every organism, GTP-binding proteins control many aspects of cell signaling. Here, we examine in silico several GTPase families from the Strongylocentrotus purpuratus genome: the monomeric Ras superfamily, the heterotrimeric G proteins, the dynamin superfamily, the SRP/SR family, and the "protein biosynthesis" translational GTPases. Identified were 174 GTPases, of which over 90% are expressed in the embryo as shown by tiling array and expressed sequence tag data. Phylogenomic comparisons restricted to Drosophila, Ciona, and humans (protostomes, urochordates, and vertebrates, respectively) revealed both common and unique elements in the expected composition of these families. Galpha and dynamin families contain vertebrate expansions, consistent with whole genome duplications, whereas SRP/SR and translational GTPases are highly conserved. Unexpectedly, Ras superfamily analyses revealed several large (5+) lineage-specific expansions in the sea urchin. For Rho, Rab, Arf, and Ras subfamilies, comparing total human gene numbers to the number of sea urchin genes with vertebrate orthologs suggests reduced genomic complexity in the sea urchin. However, gene duplications in the sea urchin increase overall numbers such that total sea urchin gene numbers approximate vertebrate gene numbers for each monomeric GTPase family. These findings suggest that lineage-specific expansions may be an important component of genomic evolution in signal transduction.  相似文献   

9.
Analysis of the small GTPase gene superfamily of Arabidopsis   总被引:29,自引:0,他引:29       下载免费PDF全文
Small GTP-binding proteins regulate diverse processes in eukaryotic cells such as signal transduction, cell proliferation, cytoskeletal organization, and intracellular membrane trafficking. These proteins function as molecular switches that cycle between "active" and "inactive" states, and this cycle is linked to the binding and hydrolysis of GTP. The Arabidopsis genome contains 93 genes that encode small GTP-binding protein homologs. Phylogenetic analysis of these genes shows that plants contain Rab, Rho, Arf, and Ran GTPases, but no Ras GTPases. We have assembled complete lists of these small GTPases families, as well as accessory proteins that control their activity, and review what is known of the functions of individual members of these families in Arabidopsis. We also discuss the possible roles of these GTPases in relation to their similarity to orthologs with known functions and localizations in yeast and/or animal systems.  相似文献   

10.
Rho GTPases are ubiquitously expressed across the eukaryotes where they act as molecular switches participating in the regulation of many cellular processes. We present an inventory of proteins involved in Rho-regulated signaling pathways in Dictyostelium discoideum that have been identified in the completed genome sequence. In Dictyostelium the Rho family is encoded by 18 genes and one pseudogene. Some of the Rho GTPases (Rac1a/b/c, RacF1/F2 and RacB) are members of the Rac subfamily, and one, RacA, belongs to the RhoBTB subfamily. The Cdc42 and Rho subfamilies, characteristic of metazoa and fungi, are absent. The activities of these GTPases are regulated by two members of the RhoGDI family, by eight members of the Dock180/zizimin family and by a surprisingly large number of proteins carrying RhoGEF (42 genes) or RhoGAP (43 genes) domains or both (three genes). Most of these show domain compositions not found in other organisms, although some have clear homologs in metazoa and/or fungi. Among the (in many cases putative) effectors found in Dictyostelium are the CRIB domain proteins (WASP and two related proteins, eight PAK kinases and a novel gelsolin-related protein), components of the Scar/WAVE complex, 10 formins, four IQGAPs, two members of the PCH family, numerous lipid kinases and phospholipases, and components of the NADPH oxidase and the exocyst complexes. In general, the repertoire of Rho signaling components of Dictyostelium is similar to that of metazoa and fungi.  相似文献   

11.
Rho GTPases and their regulators in neuronal functions and development   总被引:2,自引:0,他引:2  
Koh CG 《Neuro-Signals》2006,15(5):228-237
Neurons are specialized cell types which send out processes in order to communicate with other cells, which can be immediate neighbors or whose cell bodies are far distant. Neuronal morphology as in all cells is determined in large part through the regulation of the cytoskeleton. One of the key regulators of the actin cytoskeleton is the Rho family of GTPases. The Rho GTPases function as molecular switches to turn on or off downstream biochemical pathways depending on the stimuli. Their activities and their regulation are controlled by many other proteins such as the guanine nucleotide exchange factors and the GTPase-activating proteins. The activities of some of the Rho family members are reported to be antagonistic to one another. In general, Rac and Cdc42 promote neurite outgrowth while RhoA stimulates retraction. The balance of these opposing activities of the different Rho GTPases is crucial for the morphology and function of the neurons.  相似文献   

12.
The human genomic sequencing effort has revealed the presence of a large number of Rho GTPases encoded by the human genome. Here we report the characterization of a new family of Rho GTPases with atypical features. These proteins, which were called Miro-1 and Miro-2 (for mitochondrial Rho), have tandem GTP-binding domains separated by a linker region containing putative calcium-binding EF hand motifs. Genes encoding Miro-like proteins were found in several eukaryotic organisms from Saccharomyces cerevisiae, Caenorhabditis elegans, and Drosophila melanogaster to mammals, indicating that these genes evolved early during evolution. Immunolocalization experiments, in which transfected NIH3T3 and COS 7 cells were stained for ectopically expressed Miro as well as for the endogenous Miro-1 protein, showed that Miro was present in mitochondria. Interestingly, overexpression of a constitutively active mutant of Miro-1 (Miro-1/Val-13) induced an aggregation of the mitochondrial network and resulted in an increased apoptotic rate of the cells expressing activated Miro-1. These data indicate a novel role for Rho-like GTPases in mitochondrial homeostasis and apoptosis.  相似文献   

13.
Ferry X  Brehin S  Kamel R  Landry Y 《Peptides》2002,23(8):1507-1515
Signaling pathways leading to exocytosis and arachidonate release from serosal mast cells by basic secretagogues, including cationic peptides, arise from the involvement of betagamma subunits from G(i2) and G(i3) GTP-binding proteins. The original concept that basic secretagogues directly interact with G proteins implicated the entry of secretagogues into mast cells. This has been demonstrated only for the neuropeptide substance P. Basic secretagogues might share a common mechanism of penetration with the newly described cell-penetrating peptides. The involvement of some membrane transporter or non-selective membrane receptor to basic secretagogues cannot be excluded.  相似文献   

14.
Small GTP-binding proteins of the Rho family play a critical role in signal transduction. However, there is still very limited information on how they are activated by cell surface receptors. Here, we used a consensus sequence for Dbl domains of Rho guanine nucleotide exchange factors (GEFs) to search DNA data bases, and identified a novel human GEF for Rho-related GTPases harboring structural features indicative of its possible regulatory mechanism(s). This protein contained a tandem DH/PH domain closely related to those of Rho-specific GEFs, a PDZ domain, a proline-rich domain, and an area of homology to Lsc, p115-RhoGEF, and a Drosophila RhoGEF that was termed Lsc-homology (LH) domain. This novel molecule, designated PDZ-RhoGEF, activated biological and biochemical pathways specific for Rho, and activation of these pathways required an intact DH and PH domain. However, the PDZ domain was dispensable for these functions, and mutants lacking the LH domain were more active, suggesting a negative regulatory role for the LH domain. A search for additional molecules exhibiting an LH domain revealed a limited homology with the catalytic region of a newly identified GTPase-activating protein for heterotrimeric G proteins, RGS14. This prompted us to investigate whether PDZ-RhoGEF could interact with representative members of each G protein family. We found that PDZ-RhoGEF was able to form, in vivo, stable complexes with two members of the Galpha12 family, Galpha12 and Galpha13, and that this interaction was mediated by the LH domain. Furthermore, we obtained evidence to suggest that PDZ-RhoGEF mediates the activation of Rho by Galpha12 and Galpha13. Together, these findings suggest the existence of a novel mechanism whereby the large family of cell surface receptors that transmit signals through heterotrimeric G proteins activate Rho-dependent pathways: by stimulating the activity of members of the Galpha12 family which, in turn, activate an exchange factor acting on Rho.  相似文献   

15.
Fluoride is not an activator of the smaller (20-25 kDa) GTP-binding proteins   总被引:33,自引:0,他引:33  
Effects of aluminum, magnesium, and fluoride (AMF) on members of both the trimeric G protein and smaller (20-25 kDa) monomeric GTP-binding protein families were examined. The dissociation of GDP from G proteins was blocked by AMF but was unchanged with the addition of AMF to any of six of the monomeric GTP-binding proteins. Biochemical activities and properties of one of the smaller GTP-binding proteins, ADP-ribosylation factor, were also found to be unaffected by AMF. It is concluded that the ability of AMF to activate the trimeric G proteins is not shared by the smaller GTP-binding proteins and thus should prove to be a useful discriminator between cellular activities regulated by these two families of regulatory proteins.  相似文献   

16.
Rho GTPase signaling in Dictyostelium discoideum: Insights from the genome   总被引:1,自引:0,他引:1  
Rho GTPases are ubiquitously expressed across the eukaryotes where they act as molecular switches participating in the regulation of many cellular processes. We present an inventory of proteins involved in Rho-regulated signaling pathways in Dictyostelium discoideum that have been identified in the completed genome sequence. In Dictyostelium the Rho family is encoded by 18 genes and one pseudogene. Some of the Rho GTPases (Rac1a/b/c, RacF1/F2 and RacB) are members of the Rac subfamily, and one, RacA, belongs to the RhoBTB subfamily. The Cdc42 and Rho subfamilies, characteristic of metazoa and fungi, are absent. The activities of these GTPases are regulated by two members of the RhoGDI family, by eight members of the Dock180/zizimin family and by a surprisingly large number of proteins carrying RhoGEF (42 genes) or RhoGAP (43 genes) domains or both (three genes). Most of these show domain compositions not found in other organisms, although some have clear homologs in metazoa and/or fungi. Among the (in many cases putative) effectors found in Dictyostelium are the CRIB domain proteins (WASP and two related proteins, eight PAK kinases and a novel gelsolin-related protein), components of the Scar/WAVE complex, 10 formins, four IQGAPs, two members of the PCH family, numerous lipid kinases and phospholipases, and components of the NADPH oxidase and the exocyst complexes. In general, the repertoire of Rho signaling components of Dictyostelium is similar to that of metazoa and fungi.  相似文献   

17.
Signal transduction in neutrophil chemotaxis   总被引:4,自引:0,他引:4  
This review discusses current knowledge on signal transduction pathways controlling chemotaxis of neutrophils and similar cells. Most neutrophil chemoattractants bind to seven-transmembrane-helix receptors. These receptors activate trimeric G proteins of the Gi class in neutrophils to initiate chemotaxis. Phospholipases Cbeta, phosphoinositide 3-kinase gamma, and PH domain-containing proteins play various roles in signaling further downstream. The actin cytoskeleton is crucial for cell motility, and is controlled by Rho family GTP-binding proteins. PIP 5-kinase, LIM kinase, myosin light chain kinase and phosphatase, or WASP-like proteins may be important links between Rho GTPases and actin during chemotaxis. Newly emerging ideas on the regulation of the "compass" of chemotaxing cells, which may involve Cdc42 and certain PH domain-containing proteins, are also presented.  相似文献   

18.
Foraging experience is correlated with structural plasticity of the mushroom bodies of the honey bee brain. While several neurotransmitter and intracellular signaling pathways have been previously implicated as mediators of these structural changes, none interact directly with the cytoskeleton, the ultimate effector of changes in neuronal morphology. The Rho family of GTPases are small, monomeric G proteins that, when activated, initiate a signaling cascade that reorganizes the neuronal cytoskeleton. In this study, we measured activity of two members of the Rho family of GTPases, Rac and RhoA, in the mushroom bodies of bees with different durations of foraging experience. A transient increase in Rac activity coupled with a transient decrease in RhoA activity was found in honey bees with 4 days foraging experience compared with same-aged new foragers. These observations are in accord with previous reports based on studies of other species of a growth supporting role for Rac and a growth opposing role for RhoA. This is the first report of Rho GTPase activation in the honey bee brain.  相似文献   

19.
Typical members of the Ras superfamily of small monomeric GTP-binding proteins function as regulators of diverse processes by cycling between biologically active GTP- and inactive GDP-bound conformations. Proteins that control this cycling include guanine nucleotide exchange factors or GEFs, which activate Ras superfamily members by catalyzing GTP for GDP exchange, and GTPase activating proteins or GAPs, which accelerate the low intrinsic GTP hydrolysis rate of typical Ras superfamily members, thus causing their inactivation. Two among the latter class of proteins have been implicated in common genetic disorders associated with an increased cancer risk, neurofibromatosis-1, and tuberous sclerosis. To facilitate genetic analysis, I surveyed Drosophila and human sequence databases for genes predicting proteins related to GAPs for Ras superfamily members. Remarkably, close to 0.5% of genes in both species (173 human and 64 Drosophila genes) predict proteins related to GAPs for Arf, Rab, Ran, Rap, Ras, Rho, and Sar family GTPases. Information on these genes has been entered into a pair of relational databases, which can be used to identify evolutionary conserved proteins that are likely to serve basic biological functions, and which can be updated when definitive information on the coding potential of both genomes becomes available.  相似文献   

20.
The Rho3 and Cdc42 members of the Rho GTPase family are important regulators of exocytosis in yeast. However, the precise mechanism by which they regulate this process is controversial. Here, we present evidence that the Exo70 component of the exocyst complex is a direct effector of both Rho3 and Cdc42. We identify gain-of-function mutants in EXO70 that potently suppress mutants in RHO3 and CDC42 defective for exocytic function. We show that Exo70 has the biochemical properties expected of a direct effector for both Rho3 and Cdc42. Surprisingly, we find that C-terminal prenylation of these GTPases both promotes the interaction and influences the sites of binding within Exo70. Finally, we demonstrate that the phenotypes associated with novel loss-of-function mutants in EXO70, are entirely consistent with Exo70 as an effector for both Rho3 and Cdc42 function in secretion. These data suggest that interaction with the Exo70 component of the exocyst is a key event in spatial regulation of exocytosis by Rho GTPases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号