首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The disaccharide alpha-L-Fucp-(1 --> 2)-beta-D-Galp-(1 --> O)-Octyl (1) is an acceptor for the human blood group A and B glycosyltransferases. Seven analogues of 1, containing deoxy, methoxy and arabino modifications of the Fuc residue, were chemically synthesized and kinetically evaluated in radioactive enzymatic assays. Both the enzymes tolerate modification of the 3'-OH on the fucose residue. The 2'-OH was found to be key to the recognition of the acceptors by these enzymes. The arabino derivative was recognized as an acceptor by the A transferase (Km of 200 microM), but not the B transferase and is the first synthetic acceptor capable of distinguishing between the two enzyme activities.  相似文献   

2.
Structural analysis of the lipopolysaccharide (LPS) of nontypeable Haemophilus influenzae strain 1003 has been achieved by the application of high-field NMR techniques, ESI-MS, capillary electrophoresis coupled to ESI-MS, composition and linkage analyses on O-deacylated LPS and core oligosaccharide material. It was found that the LPS contains the common structural element of H. influenzae, l-alpha-D-Hepp-(1-->2)-[PEtn-->6]-l-alpha-D-Hepp-(1-->3)-[beta-D-Glcp-(1-->4)]-l-alpha-D-Hepp-(1-->5)-[PP Etn-->4]-alpha-Kdop-(2-->6)-Lipid A, in which the beta-D-Glcp residue is substituted by phosphocholine at O-6 and an acetyl group at O-4. A second acetyl group is located at O-3 of the distal heptose residue (HepIII). HepIII is chain elongated at O-2 by either a beta-D-Glcp residue (major), lactose or sialyllactose (minor, i.e. alpha-Neu5Ac-(2-->3)-beta-D-Galp-(1-->4)-beta-D-Glcp), where a third minor acetylation site was identified at the glucose residue. Disialylated species were also detected. In addition, a minor substitution of ester-linked glycine at HepIII and Kdo was observed.  相似文献   

3.
Asnani A  Auzanneau FI 《Carbohydrate research》2008,343(10-11):1653-1664
Three analogues of the Le(x) trisaccharide: alpha-L-Fucp-(1-->3)-[beta-D-Galp-(1-->4)]-D-GlcNAcp as well as the Le(x) trisaccharide itself were synthesized as methyl glycosides. In the analogues, either only the fucose residue is replaced by rhamnose or both the N-acetylglucosamine and the fucosyl residues are replaced by glucose and rhamnose, respectively. Our synthetic strategy relied on the use of lactoside and 2-azido lactoside derivatives as disaccharide acceptors, which were submitted to either fucosylation or rhamnosylation. Our results confirm that the reactivity of lactose in protection and glycosylation reactions is greatly affected by (1) the structure of the aglycone and (2) the presence of an azido substituent at C-2 of the glucose moiety. Thus, a methyl lactoside acceptor was easily glycosylated at O-3 with perbenzylated beta-thiophenyl fucoside and rhamnoside to give anomerically pure alpha-fucosylated and alpha-rhamnosylated trisaccharides, respectively. In contrast, the same reactions on a 2-azido methyl lactoside acceptor led to the formation of anomeric mixtures. While the alpha- and beta-fucosylated 2-azido trisaccharides could be separated by RP-HPLC, such separation was not possible for the rhamnosylated anomers. The desired rhamnosylated trisaccharide was finally obtained anomerically pure using an isopropylidene-protected rhamnosyl donor. The deprotection sequences also showed that the presence of a 2-azido substituent at C-2 of the glucose residue conferred stability to the vicinal fucosidic linkage at C-3. To test their relative affinity for anti-Le(x) Abs the Le(x) analogues will be used as competitive inhibitors against methyl Le(x). In addition, their conformational behavior will be studied by NMR spectroscopy and molecular modeling experiments.  相似文献   

4.
Synthesis and biological evaluation are described of seven new analogues (3-9) of two potent thymidylate synthase inhibitors, 10-propargyl-5,8-dideazafolate (1) and its 2-methyl-2-deamino congener ICI 198583 (2). While the new compunds 3 and 4 were analogues of 1 and 2, respectively, containing a p-aminobenzenesulfonyl residue in place of the p-aminobenzoic acid residue, the remaining 5 new compounds were analogues of 4 with the L-glutamic acid residue replaced by glycine (5), L-valine (6), L-alanine (7), L-phenylglycine (8) or L-norvaline (9). The new analogues were tested as inhibitors of thymidylate synthases isolated from tumour (Ehrlich carcinoma), parasite (Hymenolepis diminuta) and normal tissue (regenerating rat liver) and found to be weaker inhibitors than the parent 10-propargyl-5,8-dideazafolic acid. Selected new analogues, tested as inhibitors of growth of mouse leukemia L 5178Y cells, were less potent than the parent 10-propargyl-5,8-dideazafolic acid. Substitution of the glutamyl residue in compound 4 with L-norvaline (9) resulted in only a 5-fold stronger thymidylate synthase inhibitor, but a 40-fold weaker cell growth inhibitor.  相似文献   

5.
Bovine beta-(1-->4)-galactosyltransferase was assayed with a series of 5a-carba-sugars, i.e., sugar analogues in which the ring oxygen of pyranose is replaced by a methylene group. The analogues are 5a-carba-sugar of 2-acetamido-2-deoxy-alpha-DL-galactopyranose, both alpha and beta anomers of 2-acetamido-2-deoxy-DL-glucopyranose (5a-carba-DL-GlcNAc), and 2-acetamido-2-deoxy-DL-mannopyranose. Of these analogues, both alpha and beta anomers of 5a-carba-DL-GlcNAc act as an acceptor. Enzymatic synthesis using the alpha and beta anomers of 5a-carba-DL-GlcNAc afforded the corresponding D-Gal-beta-(1-->4)-5a-carba-alpha-D-GlcNAc and D-Gal-beta-(1-->4)-5a-carba-beta-D-GlcNAc on a practical scale, and these structures were confirmed by NMR spectroscopy. These results indicate that the ring oxygen atom in the 5a-carba-D-GlcNAc is not used for specific recognition by bovine beta-(1-->4)-galactosyltransferase.  相似文献   

6.
1-D-6-O-(2-amino-2-deoxy-alpha-D-glucopyranosyl)-1-O-hexadecyl-myo-inositol (14), 1-D-6-O-(2-amino-2-deoxy-alpha-D-glucopyranosyl)-myo-inositol 1-(octadecyl phosphate) (18), 1-D-6-O-(2-amino-2-deoxy-beta-D-glucopyranosyl)-myo-inositol 1-(1,2-di-O-hexadecanoyl-sn-glycerol 3-phosphate) (24), 1-D-6-O-(2-amino-2-deoxy-alpha-D-mannopyranosyl)-myo-inositol 1-(1,2-di-O-hexadecanoyl-sn-glycerol 3-phosphate) (30) and the corresponding 2-amino-2-deoxy-alpha-D-galactopyranosyl analogue 36 have been prepared and tested in cell-free assays as substrate analogues/inhibitors of alpha-(1 --> 4)-D-mannosyltransferases that are active early on in the glycosylphosphatidylinositol (GPI) biosynthetic pathways of Trypanosoma brucei and HeLa (human) cells. The corresponding N-acetyl derivatives of these compounds were similarly tested as candidate substrate analogues/inhibitors of the N-deacetylases present in both systems. Following on from an early study, 1-L-6-O-(2-amino-2-deoxy-alpha-D-glucopyranosyl)-2-O-methyl-myo-inositol 1-(1,2-di-O-hexadecanoyl-sn-glycerol 3-phosphate) (44) was prepared and tested as an inhibitor of the trypanosomal alpha-(1 --> 4)-D-mannosyltransferase. A brief summary of the biological evaluation of the various analogues is provided.  相似文献   

7.
Structural elucidation of the lipopolysaccharide (LPS) from three nontypeable Haemophilus influenzae clinical isolates, 1209, 1207 and 1233 was achieved using NMR spectroscopy and ESI-MS on O-deacylated LPS and core oligosaccharide (OS) material as well as ESI-MS(n) on permethylated dephosphorylated OS. It was found that the organisms expressed a tremendous heterogeneous glycoform mixture resulting from the variable length of the OS chains attached to the common structural element of H. influenzae, L-alpha-D-Hepp-(1-->2)-[PEtn-->6]-L-alpha-D-Hepp-(1-->3)-[beta-D-Glcp-(1-->4)]-L-alpha-D-Hepp-(1-->5)-[PPEtn-->4]-alpha-Kdop-(2-->6)-Lipid A. Notably, the O-6 position of the beta-D-Glcp residue could either be occupied by PCho or L-glycero-D-manno-heptose (L,D-Hep), which is a location for L,D-Hep that has not been seen previously in H. influenzae LPS. The outer-core L,D-Hep residue was further chain elongated at the O-6 position by the structural element beta-D-GalpNAc-(1-->3)-alpha-D-Galp-(1-->4)-beta-D-Galp, or sequentially truncated versions thereof. The distal heptose residue in the inner-core was found to be chain elongated at O-2 by the globotetraose unit, beta-D-GalpNAc-(1-->3)-alpha-D-Galp-(1-->4)-beta-D-Galp-(1-->4)-beta-D-Glcp, or sequentially truncated versions thereof. Investigation of LPS from an lpsA mutant of isolate 1233 and a lic1 mutant of isolate 1209 was also performed, which aside from confirming the functions of the gene products, simplified elucidation of the OS extending from the proximal heptose (the lpsA mutant), and showed that the organism exclusively expresses LPS glycoforms comprising the outer-core l,d-Hep residue when PCho is not expressed (the lic1 mutant).  相似文献   

8.
A structural characterization of bound water molecules in the cyclic tetrasaccharide, cyclo-{-->6}-alpha-D-Glcp-(1-->3)-alpha-D-Glcp-(1-->6)-alpha-D-Glcp-(1-->3)-alpha-D-Glcp-(1-->), was carried out by NMR spectroscopy. H-1', 2'-OH, H-3', and 4'-OH of the 3-O-glycosylated residue and H-1 of the 6-O-glycosylated residue were found to cross-relax with protons of bound waters using the double-pulsed field-gradient spin-echo ROESY experiment. In the crystal structure, one water molecule is located in the center of the plate, and its temperature factor is very low, indicating that this water molecule is an intrinsic component.  相似文献   

9.
The glucosyl transfer reaction of kojibiose phosphorylase (KPase) from Thermoanaerobacter brockii ATCC35047 was examined using cyclo-{-->6)-alpha-d-Glcp-(1-->3)-alpha-d-Glcp-(1-->6)-alpha-d-Glcp-(1-->3)-alpha-d-Glcp-(1-->} (CTS) as an acceptor. KPase produced four transfer products, saccharides 1-4. The structure of a major product, saccharide 4, was 2-O-alpha-d-glucopyranosyl-CTS, cyclo-{-->6)-alpha-d-Glcp-(1-->3)-alpha-d-Glcp-(1-->6)-[alpha-d-Glcp-(1-->2)]-alpha-d-Glcp-(1-->3)-alpha-d-Glcp-(1-->}. The other transfer products, saccharides 1-3, were 2-O-alpha-kojibiosyl-, 2-O-alpha-kojitriosyl-, and 2-O-alpha-kojitetraosyl-CTS, respectively. These results showed that KPase transferred a glucose residue to the C-2 position at the ring glucose residue of CTS. This enzyme also catalyzed the chain-extending reaction of the side chain of 2-O-alpha-d-glycopyranosyl-CTS.  相似文献   

10.
Acidic glycosphingolipid components were extracted from the opportunistic mycopathogen Aspergillus fumigatus and identified as inositol phosphorylceramide and glycosylinositol phosphorylceramides (GIPCs). Using nuclear magnetic resonance sppectroscopy, mass spectrometry, and other techniques, the structures of six major components were elucidated as Ins-P-Cer (Af-0), Manp(alpha1-->3)Manp(alpha1-->2)Ins-P-Cer (Af-2), Manp(alpha1-->2)Manp(alpha1-->3)Manp(alpha1-->2)Ins-P-Cer (Af-3a), Manp(alpha1-->3)[Galf(beta1-->6)]Manp(alpha1-->2)-Ins-P-Cer (Af-3b), Manp(alpha1-->2)-Manp(alpha1-->3)[Galf(beta1-->6)]Manp(alpha1-->2)Ins-P-Cer (Af-4), and Manp(alpha1-->3)Manp(alpha1-->6)GlcpN(alpha1-->2)Ins-P-Cer (Af-3c) (where Ins = myo-inositol and P = phosphodiester). A minor A. fumigatus GIPC was also identified as the N-acetylated version of Af-3c (Af-3c*), which suggests that formation of the GlcNalpha1-->2Ins linkage may proceed by a two-step process, similar to the GlcNalpha1-->6Ins linkage in glycosylphosphatidylinositol (GPI) anchors (transfer of GlcNAc, followed by enzymatic de-N-acetylation). The glycosylinositol of Af-3b, which bears a distinctive branching Galf(beta1-->6) residue, is identical to that of a GIPC isolated previously from the dimorphic mycopathogen Paracoccidioides brasiliensis (designated Pb-3), but components Af-3a and Af-4 have novel structures. Overlay immunostaining of A. fumigatus GIPCs separated on thin-layer chromatograms was used to assess their reactivity against sera from a patient with aspergillosis and against a murine monoclonal antibody (MEST-1) shown previously to react with the Galf(beta1-->6) residue in Pb-3. These results are discussed in relation to pathogenicity and potential approaches to the immunodiagnosis of A. fumigatus.  相似文献   

11.
The structure of the lipopolysaccharide (LPS) of non-typeable Haemophilus influenzae strain 723 has been elucidated using NMR spectroscopy and electrospray ionization mass spectrometry (ESI-MS) on O-deacylated LPS and core oligosaccharide material (OS), as well as ESI-MSn on permethylated dephosphorylated OS. It was found that the LPS contains the common structural element of H. influenzae, l-alpha-D-Hepp-(1-->2)-[PEtn-->6]-l-alpha-D-Hepp-(1-->3)-[beta-D-Glcp-(1-->4)]-l-alpha-D-Hepp-(1-->5)-[PPEtn-->4]-alpha-Kdo-(2-->6)-Lipid A, in which the beta-D-Glcp residue (GlcI) is substituted by phosphocholine at O-6 and the distal heptose residue (HepIII) by PEtn at O-3, respectively. In a subpopulation of glycoforms O-2 of HepIII was substituted by beta-D-Galp-(1-->4)-beta-D-Glcp-(1--> or beta-D-Glcp-(1-->. Considerable heterogeneity of the LPS was due to the extent of substitution by O-acetyl groups (Ac) and ester-linked glycine of the core oligosaccharide. The location for glycine was found to be at Kdo. Prominent acetylation sites were found to be at GlcI, HepIII, and the proximal heptose (HepI) residue of the triheptosyl moiety. Moreover, GlcI was acetylated at O-3 and/or O-4 and HepI was acetylated at O-2 as evidenced by capillary electrophoresis ESI-MSn in combination with NMR analyses. This is the first study to show that an acetyl group can substitute HepI of the inner-core region of H. influenzae LPS.  相似文献   

12.
An alpha-L-fucosidase from porcine liver produced alpha-L-Fuc-(1-->2)-beta-D-Gal-(1-->4)-D-GlcNAc (2'-O-alpha-L-fucosyl-N-acetyllactosamine, 1) together with its isomers alpha-L-Fuc-(1-->3)-beta-D-Gal-(1-->4)-D-GlcNAc (2) and alpha-L-Fuc-(1-->6)-beta-D-Gal-(1-->4)-D-GlcNAc (3) through a transglycosylation reaction from p-nitrophenyl alpha-L-fucopyranoside and beta-D-Gal-(1-->4)-D-GlcNAc. The enzyme formed the trisaccharides 1-3 in 13% overall yield based on the donor, and in the ratio of 40:37:23. In contrast, transglycosylation by Alcaligenes sp. alpha-L-fucosidase led to the regioselective synthesis of trisaccharides containing a (1-->3)-linked alpha-L-fucosyl residue. When beta-D-Gal-(1-->4)-D-GlcNAc and lactose were acceptors, the enzyme formed regioselectively compound 2 and alpha-L-Fuc-(1-->3)-beta-D-Gal-(1-->4)-D-Glc (3'-O-alpha-L-fucosyllactose, 4), respectively, in 54 and 34% yields, based on the donor.  相似文献   

13.
Zhao YB  He HP  Lu CH  Mu QZ  Shen YM  Hao XJ 《Steroids》2006,71(11-12):935-941
Two new C21-steroidal glycosides having hepta-saccharide residue were isolated from the rhizome of Cynanchum otophyllum Schneid. Their structures were determined to be caudatin 3-O-alpha-L-cymaropyranosyl-(1-->4)-alpha-D-oleandropyranosyl-(1-->4)-alpha-l-cymaropyranosyl-(1-->4)-beta-d-glucopyranosyl-(1-->4)-alpha-D-oleandropyranosyl-(1-->4)-beta-D-oleandropyranosyl-(1-->4)-beta-D-diginopyranoside (1), and caudatin 3-O-beta-D-cymaropyranosyl-(1-->4)-alpha-D-oleandropyranosyl-(1-->4)-alpha-L-cymaropyranosyl-(1-->4)-beta-D-glucopyranosyl-(1-->4)-beta-D-oleandropyranosyl-(1-->4)-beta-D-cymaropyranosyl-(1-->4)-beta-D-diginopyranoside (2) by spectral methods, respectively.  相似文献   

14.
In order to prepare 3-aminopropyl glycosides of Neu5Ac-alpha-(2-->6')-lactosamine trisaccharide 1, and its N-glycolyl containing analogue Neu5Gc-alpha-(2-->6')-lactosamine 2, a series of lactosamine acceptors with two, three, and four free OH groups in the galactose residue was studied in glycosylations with a conventional sialyl donor phenyl [methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-2-thio-D-glycero-alpha- and beta-D-galacto-2-nonulopyranosid]onates (3) and a new donor phenyl [methyl 4,7,8,9-tetra-O-acetyl-5-(N-tert-butoxycarbonylacetamido)-3,5-dideoxy-2-thio-D-glycero-alpha- and beta-D-galacto-2-nonulopyranosid]onates (4), respectively. The lactosamine 4',6'-diol acceptor was found to be the most efficient in glycosylation with both 3 and 4, while imide-type donor 4 gave slightly higher yields with all acceptors, and isolation of the reaction products was more convenient. In the trisaccharides, obtained by glycosylation with donor 4, the 5-(N-tert-butoxycarbonylacetamido) moiety in the neuraminic acid could be efficiently transformed into the desired N-glycolyl fragment, indicating that such protected oligosaccharide derivatives are valuable precursors of sialo-oligosaccharides containing N-modified analogues of Neu5Ac.  相似文献   

15.
Structural analysis of the lipopolysaccharide (LPS) from nontypeable Haemophilus influenzae strain 981 has been achieved using NMR spectroscopy and ESI-MS on O-deacylated LPS and core oligosaccharide (OS) material as well as by ESI-MSn on permethylated dephosphorylated OS. A heterogeneous glycoform population was identified, resulting from the variable length of the OS branches attached to the glucose residue in the common structural element of H. influenzae LPS, l-alpha-d-Hepp-(1-->2)-[PEtn-->6]-l-alpha-d-Hepp-(1-->3)-[beta-d-Glcxp-(1-->4)]-l-alpha-d-Hepp-(1-->5)-[PPEtn-->4]-alpha-Kdop-(2-->6)-Lipid A. Notably, the O-6 position of the beta-d-Glcp residue was either substituted by PCho or the disaccharide branch beta-d-Galp-(1-->4)-d-alpha-d-Hepp, while the O-4 position was substituted by the globotetraose unit, beta-d-GalpNAc-(1-->3)-alpha-d-Galp-(1-->4)-beta-d-Galp-(1-->4)-beta-d-Glcp, or sequentially truncated versions thereof. This is the first time a branching sugar residue has been reported in the outer-core region of H. influenzae LPS. Additionally, a PEtn group was identified at O-3 of the distal heptose residue in the inner-core.  相似文献   

16.
K Yamashita  K Umetsu  T Suzuki  T Ohkura 《Biochemistry》1992,31(46):11647-11650
Two lectins were purified from tuberous roots of Trichosanthes japonica. The major lectin, which was named TJA-II, interacted with Fuc alpha 1-->2Gal beta/GalNAc beta 1-->groups, and the other one, which passed through a porcine stomach mucin-Sepharose 4B column, was purified by sequential chromatography on a human alpha 1-antitrypsin-Sepharose 4B column and named TJA-I. The molecular mass of TJA-I was determined to be 70 kDa by sodium dodecyl sulfate gel electrophoresis. TJA-I is a heterodimer of 38-kDa (36-kDa) and 32-kDa (30-kDa) subunits with disulfide linkage(s), and the difference between 38 and 36 kDa, and between 32 and 30 kDa, is due to secondary degradation of the carboxyl-terminal side. It was determined by equilibrium dialysis that TJA-I has four equal binding sites per molecule, and the association constant toward tritium-labeled Neu5Ac alpha 2-->6Gal beta 1-->4GlcNAc beta 1-->3Gal beta 1-->4GlcOT is Ka = 8.0 x 10(5) M-1. The precise carbohydrate binding specificity was studied using hemagglutinating inhibition assay and immobilized TJA-I. A series of oligosaccharides possessing a Neu5Ac alpha 2-->6Gal beta 1-->4GlcNAc or HSO3(-)-->6Gal beta 1-->4GlcNAc group showed tremendously stronger binding ability than oligosaccharides with a Gal beta 1-->4GlcNAc group, indicating that TJA-I basically recognizes an N-acetyllactosamine residue and that the binding strength increases on substitution of the beta-galactosyl residue at the C-6 position with a sialic acid or sulfate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
An acidic O-specific polysaccharide was obtained by mild acid degradation of the Shewanella algae strain BrY lipopolysaccharide and was found to contain L-rhamnose, 2-acetamido-4-[D-3-hydroxybutyramido)]-2,4,6-trideoxy-D-glucose (D-BacNAc4NHbu), and 2-amino-2,6-dideoxy-L-galactose, N-acylated by the 4-carboxyl group of L-malic acid (L-malyl-(4-->2)-alpha-L-FucN) in the ratio 2:1:1. 1H and 13C NMR spectroscopy was applied to the intact polysaccharide, and the following structure of the repeating unit was established:-3)-alpha-D-BacNAc4NHbu-(1-->3)-alpha-L-Rha-(1-->2)-alpha-L-Rha-(1-->2)-L-malyl-(4-->2)-alpha-L-FucN-(1-. The repeating unit includes linkage via the residue of malic acid, reported here for the first time as a component of bacterial polysaccharides.  相似文献   

18.
Monomeric rhamnogalacturonan II (mRG-II) was isolated from red wine and the reducing-end galacturonic acid of the backbone converted to L-galactonic acid by treatment with NaBH4. The resulting product (mRG-II'ol) was treated with a cell-free extract from Penicillium daleae, a fungus that has been shown to produce RG-II-fragmenting glycanases. The enzymatically generated products were fractionated by size-exclusion and anion-exchange chromatographies and the quantitatively major oligosaccharide fraction isolated. This fraction contained structurally related oligosaccharides that differed only in the presence or absence of a single Kdo residue. The Kdo residue was removed by acid hydrolysis and the resulting oligosaccharide then characterized by 1- and 2D 1H NMR spectroscopy, ESMS, and by glycosyl-residue and glycosyl-linkage composition analyses. The results of these analyses provide evidence for the presence of at least two structurally related oligosaccharides in the ratio approximately 6:1. The backbone of these oligosaccharides is composed of five (1-->4)-linked alpha-D-GalpA residues and a (1-->3)-linked L-galactonate. The (1-->4)-linked GalpA residue adjacent to the terminal non-reducing GalpA residue of the backbone is substituted at O-2 with an apiosyl-containing side chain. Beta3-L-Araf-(1-->5)-beta-D-DhapA is likely to be linked to O-3 of the GalpA residue at the non-reducing end of the backbone in the quantitatively major oligosaccharide and to O-3 of a (1-->4)-linked GalpA residue in the backbone of the minor oligosaccharide. Furthermore, the results of our studies have shown that the enzymically generated aceryl acid-containing oligosaccharide contains an alpha-linked aceryl acid residue and a beta-linked galactosyl residue. Thus, the anomeric linkages of these residues in RG-II should be revised.  相似文献   

19.
Sugar-beet pulp was de-esterified and submitted to 72 h hydrolysis by 0.1 M HCl at 80 degrees C. Oligomers containing a single glucuronic acid (GlcA) moiety in addition to n(>/= 2) repeats of the dimer -->4)-alpha-D-GalpA-(1-->2)-alpha-L-Rhap-(1--> were isolated from the hydrolysate by ion-exchange and gel-permeation. Glycosyl linkage composition analysis and 1H NMR studies indicated that the GlcA was attached to O-3 of a galacturonic acid (GalA) residue, as shown for the two pentamers beta-D-GlcpA-(1-->3)-alpha-D-GalpA-(1-->2)-alpha-L-Rhap-(1-->4)-alpha-D-GalpA-(1-->2)-L-Rhap and alpha-D-GalpA-(1-->2)-alpha-L-Rhap-(1-->4)-[beta-D-GlcpA-(1-->3)]-alpha-D-GalpA-(1-->2)-L-Rhap. Substitution by GlcA was estimated as occurring on one GalA residue out of 72 in the rhamnogalacturonan fraction of the backbone of beet pectins.  相似文献   

20.
Lipopolysaccharide (LPS) is a major virulence determinant of the human bacterial pathogen Haemophilus influenzae. Structural elucidation of the LPS from H. influenzae type b strain RM7004 was achieved by using electrospray ionization mass spectrometry (ESI-MS) and high-field NMR techniques on delipidated LPS and core oligosaccharide samples of LPS. It was found that the organism elaborates a series of related LPS glycoforms having a common inner-core structure, but differing in the number and position of attached hexose residues. LPS glycoforms containing between four and nine hexose residues were structurally characterized. The inner-core element was determined to be L-alpha-D-Hepp-(1-->2)-[PEA-->6]-L-alpha-D-Hepp-(1-->3)-[beta-D-Glcp-(1-->4)]-L-alpha-D-Hepp-(1-->5)-[P-->4]-alpha-KDOp-(2-->, a structural feature which has been identified in every H. influenzae strain investigated to date. Two major groups of isomeric glycoforms were characterized in which the terminal Hepp residue of the inner-core element was either substituted at the O-2 position with a beta-D-Galp residue or not. The structures of the major LPS glycoforms were found to have oligosaccharide chain extensions from O-3 of the middle Hepp residue. Glycoforms containing five and six hexose residues were most abundant and were shown to carry the tetrasaccharide unit alpha-D-Galp-(1-->4)-beta-D-Galp-(1-->4)-beta-D-Glcp-(1-->4)-alpha-D-Glcp at the O-3 position of the middle heptose. This tetrasaccharide displays the globoside trisaccharide (globotriose) as a terminal epitope, a structure that is found on many human cells (P(k) blood group antigen) and which is thought to be an important virulence determinant for H. influenzae. LPS glycoforms were characterized that had further chain extension from the beta-D-Glcp-(1--> residue of the proximal Hepp. In the fully extended LPS (Hex9/Hex8' glycoforms), both the proximal and middle heptose residues carried tetrasaccharide chains displaying terminal globotriose epitopes. In addition, the LPS was found to carry phosphorylcholine and O-acetyl groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号