首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
With the large-scale preparation described, as much as 1 kg of bovine liver can be processed, giving a yield of more than 1 g plasma membrane protein. From analytical and morphological criteria the plasma membrane fraction isolated mainly derives from bile-canalicular and contiguous areas of the hepatocytes. The insulin binding activity is quite similar to insulin receptors in other cell systems and membrane preparations. Insulin-degrading activity is very low in the isolated plasma fraction. Most of degrading activity is located in a microsomal membrane fraction. Nevertheless the Km and the pH dependence of the insulin-degrading activity in both fractions are nearly identical. From these studies we conclude that binding and degradation of insulin are two independent processes located on different cell organelles.  相似文献   

2.
The time-course and insulin concentration dependency of internalization of insulin and its receptor have been examined in isolated rat adipose cells at 37°C. The internalization of insulin was assessed by examining the subcellular distribution of cell-associated [125I]insulin among plasma membrane, and high-density (endoplasmic reticulum-enriched) and low-density (Golgi-enriched) microsomal membrane fractions prepared by differential ultracentrifugation. The distribution of receptors was measured by the steady-state exchange binding of fresh [125I]insulin to these same membrane fractions. At 37°C, insulin binding to intact cells is accompanied initially by the rapid appearance of intact insulin in the plasma membrane fraction, and subsequently, by its rapid appearance in both the high-density and low-density microsomal membrane fractions. An apparent steady-state distribution of insulin per mg of membrane protein among these subcellular fractions is achieved within 30 min in a ratio of 1:1.54:0.80, respectively. Concomitantly, insulin binding to intact cells is associated with the rapid disappearance of approx. 30% of the insulin receptors initially present in the plasma membrane fraction and appearance of 20–30% of those lost in the low-density microsomal membrane fraction. However, the number of receptors in the high-density microsomal membrane fraction does not change. This redistribution of receptors also appears to reach a steady-state within 30 min. Both processes are insulin concentration-dependent, correlating with receptor occupancy in the intact cell, and are partially inhibited at 16°C. While the steady-state subcellular distributions of insulin and its receptor do not correlate with that of acid phosphatase, chloroquine markedly increases the levels of insulin associated with all three membrane fractions in apparent proportion to the distribution of this lysosomal marker enzyme activity, without more than marginally potentiating insulin's effects on the distribution of receptors. These results demonstrate that insulin, initially bound to the plasma membrane of the isolated rat adipose cell, is rapidly translocated by a receptor-mediated process into at least two intracellular compartments associated with the cell's high- and low-density microsomes. Furthermore, insulin simultaneously induces the translocation of its own receptor from the plasma membrane into the latter compartment. These translocations appear to represent the internalization and partial dissociation of the insulin-receptor complex through insulin-induced receptor cycling.  相似文献   

3.
Specific binding of insulin to highly purified preparations of rough endoplasmic reticulum, Golgi apparatus, and plasma membrane of mouse liver was determined. 125I-labeled insulin bound maximally to the plasma membrane in radio-receptor assays. Golgi apparatus fractions exhibited binding 10–20% that of plasma membrane and rough endoplasmic reticulum exhibited only 1–2% of plasma membrane binding. Binding was proportional to membrane concentration and dose vs. response curves were very similar for the different fractions. Scatchard analysis of the insulin binding data for the plasma membrane and Golgi apparatus fractions showed curvilinear plots yielding similar apparent binding affinities (0.9 and 3.0 · 108 M?1, respectively). Purity of the isolated endomembranes was analyzed by morphometry and (Na+ + K+ + Mg2+)-ATPase and these preparations displayed less than 1% contamination by plasma membrane. These findings provide important confirmation of the presence of insulin receptors in Golgi apparatus membranes comparable to those located on the plasma membrane. Finally, the present study did not allow us to verify the existence of insulin receptors in the endoplasmic reticulum.  相似文献   

4.
Insulin stimulates glucose transport in rat adipose cells through the translocation of glucose transporters from an intracellular pool to the plasma membrane. A detailed characterization of the morphology, protein composition and marker enzyme content of subcellular fractions of these cells, prepared by differential ultracentrifugation, and of the distribution of glucose transporters among these fractions is now described. Glucose transporters were measured using specific d-glucose-inhibitable [3H]cytochalasin B binding. In the basal state, roughly 90% of the cells' glucose transporters are associated with a low-density microsomal, Golgi marker enzyme-enriched membrane fraction. However, the distributions of glucose transporters and Golgi marker enzyme activities over all fractions are clearly distinct. Incubation of intact cells with insulin increases the number of glucose transporters in the plasma membrane fraction 4–5-fold and correspondingly decreases the intracellular pool, without influencing any other characteristics of the subcellular fractions examined or the estimated total number of glucose transporters (3.7·106/cell). Insulin does not influence the Kd of the glucose transporters in the plasma membrane fraction for cytochalasin B binding (98 nM), but lowers that in the intracellular pool (from 141 to 93 nM). The calculated turnover numbers of the glucose transporters in the plasma membrane vesicles from basal and insulin-stimulated cells are similar (15·103 mol of glucose/min per mol of transporters at 37°C), whereas insulin appears to increase the turnover number in the plasma membrane of intact cells roughly 4-fold. These results suggest that (1) the intracellular pool of glucose transporters may comprise a specialized membrane species, (2) intracellular glucose transporters may undergo conformational changes during their cycling to the plasma membrane in response to insulin, and (3) the translocation of glucose transporters may represent only one component in the mechanism through which insulin regulates glucose transport in the intact cell.  相似文献   

5.
To study the binding of (Tyr3125I)-labelled neurotensin to intestinal muscle, plasma membranes have been purified from dog intestinal circular smooth muscle. Purification was done by differential centrifugation followed by separation on a sucrose gradient. Electron microscopic study revealed that the dissected circular muscles used as the source of membranes were free of myenteric plexus and that the plasma membrane fraction obtained was free of any mitochondria or synaptosomes. The fraction used was obtained at the interface of 14%–33% sucrose density on the gradient and was 25-times enriched in the plasma membrane marker enzyme 5′-nucleotidase activity as compared to post-nuclear supernatant. This fraction contained negligible activity of mitochondrial membrane marker enzyme cytochrome c oxidase and low activity of a putative endoplasmic reticulum marker enzyme NADPH-cytochrome-c reductase. This membrane fraction contained a high density of neurotensin binding sites. This binding was studied by kinetic and by saturation approaches. Analysis of data from saturation binding studies by the computer programs (EBDA and LIGAND) suggested the presence of a two-site model (Kd1 = 0.118 nM, Kd2 = 3.18 nM, Bmax1 = 9.73 fmol/mg and Bmax2 = 129.8 fmol/mg). A part of specifically bound neurotensin was rapidly dissociated. No cooperativity between the two receptor types could be detected. A kinetic analysis of binding gave the Kd value equal to 0.107 nM. Carboxy terminal amino acid residues 8–13 were found to be essential for the binding activity and replacement of Tyr11 by tryptophan reduced the affinity of the peptide by 10 times in displacement studies. Binding was modulated by sodium ions and a guanine nucleotide Gpp[NH]p. MgCl2, CaCl2 and KCl were also found to reduce the specific binding. Evidence was found of a high specific binding to another membrane fraction poor in plasma membranes and rich in synaptosomes. We concluded that plasma membrane of canine intestinal circular muscle contains neurotensin receptors with recognition properties distinct from those obtained in previous studies of neurotensin binding sites in murine tissues. Another neurotensin binding site may be present on neuronal membranes.  相似文献   

6.
An oxidase activity utilizing reduced nicotinamide adenine dinucleotide phosphate (NADPH) and producing H2O2 was observed in intact adipocytes of rat, as well as in the isolated plasma membranes of these cells. A stoichiometry of 1 mol of H2O2 production per mole of NADPH disappearance was found with isolated plasma membranes. Activation of this enzyme (R) was produced by pretreatment of cells with insulin, dithiothreitol, or sulfhydryl inhibitors, e.g., p-chloromercuribenzoate or tosyl-l-lysine chloromethyl ketone. All of these agents also stimulated glucose oxidation via the hexose monophosphate shunt. Activation of R was also observed with biologically active derivatives of insulin, e.g., proinsulin or desalanine insulin, but not with an inactive derivative, desoctapeptide insulin. The enzyme could not be activated by exposing the cells to membrane perturbants, e.g., hypotonic conditions or Triton X-100 (0.01–0.1%). The enzyme activity in the plasma membrane had a pH optimum at 6.0 and, from the Lineweaver-Burke plot, V was determined at 230 nmol and Km for NADPH was at 5.8 × 10?5, m. The activity remained unaltered in the presence of sodium azide or cyanide. Preincubation of adipocytes with insulin or SH reagents or direct addition of oxidants, e.g., H2O2, potassium ferricyanide, or phenazine methosulfate, to the membranes also caused inhibition of adenylate cyclase (AC). This enzyme activity could be restored in these preparations by adding thiols. It is suggested that inhibition of AC in whole cells in response to insulin may be caused by oxidation of its SH groups by the H2O2 generated from the activated NADPH oxidase. Reversal of this inhibition may involve cellular reducing equivalents. The evidence suggests that the plasma membrane enzymes, i.e., NADPH oxidase and adenylate cyclase, are controlled, in part, by the intracellular redox potential.  相似文献   

7.
Binding sites for prostaglandin E1 were present in the 1000g supernatant of nonpregnant human myometrium. When the 1000g supernatant was fractionated the distribution of prostaglandin E1 binding sites followed that of the plasma membrane markers, phosphodiesterase-I and 5′-nucleotidase, but was different from that of the endoplasmic reticulum marker NADPH-cytochrome c reductase or the mitochondrial marker succinatecytochrome c reductase. It is concluded that a major portion of the prostaglandin E1 receptors in the human myometrium is located at the plasma membrane. Scatchard analysis of prostaglandin E1 binding to the plasma membrane-enriched fraction indicated the presence of both high and low affinity sites.  相似文献   

8.
Summary A simple and rapid method of isolating plasma membranes from human peripheral lung tissue is described. The method involves homogenization of tissue in 0.25m sucrose-buffered medium followed by differential and sucrose density gradient centrifugation. Enzymatic and morphological characterization of the plasma membrane fraction revealed minimal contamination by nonplasma membrane fragments. The isolated plasma membranes showed an 18-fold purification of 5-nucleotidase activity compared to the original homogenate. Electronmicroscopic studies of the plasma membrane fraction revealed the presence of small membrane vesicles having a trilaminar membrane structure. To further examine the purity of the plasma membrane preparation, the binding of the H1 receptor antagonist,3H pyrilamine, to the plasma membrane-enriched fraction was compared to the binding to crude membrane preparations. Both the plasma membrane-enriched fraction and the crude membrane preparation had similar Kd's for the histamine antagonist, but the plasma membrane-enriched fraction had a threefold greater binding capacity, reflecting the relative enrichment of plasma membranes of the preparation. Thus, a method has been developed for the isolation of plasma membranes from human peripheral lung which should provide material for a variety of biochemical and pharmacological studies.  相似文献   

9.
The rate of hydrolysis of the 1-0-alkenyl group of sn-1-alk-1′-enyl-2-acyl-glycerylphosphorylethanolamine (alkenyl, acyl-GPE; ethanolamine plasmalogen) by plasmalogenase is higher in oligodendroglial cell-enriched fractions from bovine brain compared with fractions enriched in neuronal perikarya and astroglia. The distribution of plasmalogenase activity in membrane fractions isolated from bovine oligodendroglia has been compared with that of ‘marker’ enzymes. The highest specific activity was in a fraction enriched in plasma membranes, whilst most activity was recovered in an endoplasmic reticulum membrane fraction. In bovine oligodendroglial cell homogenates, the enzyme had a neutral pH optimum, had no requirement for divalent cations and its activity towards 1-alkenyl-GPE (lysoplasmalogen) was half that with alkenyl, acyl-GPE. C16 alkenyl groups were hydrolysed more rapidly than C18 alkenyl groups. With 3H-labelled alkenyl, acyl-GPE as substrate, radioactivity in released aldehydes appeared in fatty acids esterified in phospholipid while the oxidation of fatty aldehydes was blocked by the addition of NADH. An NAD-dependent aldehyde dehydrogenase was found to be present in oligodendroglia which exhibited highest activity towards C14C18 aldehydes (Km, 2 μM).  相似文献   

10.
Insulin increased the lipid order of rat and mouse liver plasma membrane domains sampled by the hydrophobic fluorescent probe 1,6-diphenyl-1,3,5-hexatriene in a concentration-dependent saturable manner. The ordering is half maximal at 5.1 · 10?11M and fully saturated at 1.7 · 10?10M insulin. Membranes prepared from obese hyperglycemic (ob / ob) mice demonstrated a right-shift in the dose-dependent ordering induced by insulin, such that ordering was half maximal at 1.2 · 10?10M and fully saturated at 2.0 · 10?10M. Insulin also increased the order of rat liver plasma membranes labeled with the cis- and trans-parinaric acid methyl esters. The ordering caused by insulin as detected with cis methyl parinarate was complete within approx. 15 min. after hormone addition at 37°C, and the ordering was approximately double that observed with the trans isomer. Additional ESR experiments demonstrated that the addition of insulin increased the outer hyperfine splittings of spectra recorded from membranes labeled with the steroid-like spin labels, nitroxide cholestane and nitroxide androstane, but not the fatty acid spin probe, 5-nitroxide stearate. Studies utilizing model membrane systems strongly suggest that the 5-nitroxide stearate samples a cholesterol-poor domain of the membrane, while the steroid-like probes preferentially sample cholesterol-rich regions of the membrane. Finally, insulin-induced membrane ordering was dose-dependently inhibited by cytochalasin B in the range 1–50 μM. From these results, we conclude that (1) the ordering effect of insulin addition to isolated liver plasma membrane fractions occurs within the physiological range of hormone concentration, and the dose-response is right-shifted in membranes from ‘insulin resistant’ animals; (2) the relative responses of the fluorescent and spin probes suggest that the effects of insulin are confined to specific domains within the membrane matrix; and (3) the direct effects of insulin on the membranes may involve protein components having cytochalasin B binding sites.  相似文献   

11.
12.
The total mitochondrial fraction of bovine corpus luteum specifically bound [3H]prostaglandin (PG) E1, [3H] PGF, and 125I-labeled human lutropin (hLH) despite very little 5′-nucleotidase activity, a marker for plasma membranes. Since the total mitochondrial fraction isolated by conventional centrifugation techniques contains both mitochondria and lysosomes, it was subfractionated into mitochondria and lysosomes to ascertain the relative contribution of these fractions to the binding. Subfractionation resulted in an enrichment of cytochrome c oxidase (a marker for mitochondria) in mitochondria and of acid phosphatase (a marker for lysosomes) in lysosomes. The lysosomes exhibited little or no contamination with Golgi vesicles, rough endoplasmic reticulum, or peroxisomes as assessed by their appropriate marker enzymes. Subfractionation also re ulted in [3H] PGE1, [3H] PGF, and 125I-labeled hLH binding enrichment with respect to homogenate in lysosomes but not in mitochondria. The lysosomal binding enrichment and recovery were, however, lower than in plasma membranes. The ratios of marker enzyme to binding, an index of organelle contamination, revealed that plasma membrane and lysosomal receptors were intrinsic to these organelles. Freezing and thawing had markedly increased lysosomal binding but had no effect on plasma membrane binding. Exposure to 0.05% Triton X-100 resulted in a greater loss of plasma membrane compared to lysosomal binding. In summary, the above results suggest that lysosomes, but not mitochondria, in addition to plasma membranes, intrinsically contain receptors for PGs and gonadotropins. Furthermore, lysosomes overall contain a greater number of PGs and gonadotropin receptors compared to plasma membranes and these receptors are associated with the membrane but not the contents of lysosomes.  相似文献   

13.
Skeletal muscle disorder, inclusion-body myositis (IBM) has been known for accumulation of amyloid characteristic proteins in muscle. To understand the biophysical basis of IBM, the interaction of amyloid fibrils with skeletal myoblast cells (SMC) has been studied in vitro. Synthetic insulin fibrils and Aβ25-35 fibrils were used for this investigation. From the saturation binding analysis, the calculated dissociation constant (Kd) for insulin fibril and Aβ25-35 fibrils were 69.37 ± 11.17 nM and 115.60 ± 12.17 nM, respectively. The fibrillar insulin comparatively has higher affinity binding to SMC than Aβ fibrils. The competitive binding studies with native insulin showed that the amount of bound insulin fibril was significantly decreased due to displacement of native insulin. However, the presence of native insulin is not altered the binding of β-amyloid fibril. The cytotoxicity of insulin amyloid intermediates was measured. The pre-fibrillar intermediates of insulin showed significant toxicity (35%) as compared to matured fibrils. Myoblast treated with β-amyloid fibrils showed more oxidative damage than the insulin fibril. Cell differentiating action of amyloidic insulin was assayed by creatine kinase activity. The insulin fibril treated cells differentiated more slowly compared to native insulin. However, β-amyloid fibrils do not show cell differentiation property. These findings reinforce the hypothesis that accumulation of amyloid related proteins is significant for the pathological events that could lead to muscle degeneration and weakness in IBM.  相似文献   

14.
The distribution of α1-adrenergic receptors in rat liver subcellular fractions was studied using the α1-adrenergic receptor ligand [3H]prazosin. The highest number of [3H]prazosin binding sites was found in a plasma membrane fraction followed by 2 Golgi and a residual microsomal fraction, the numbers of binding sites were 1145, 845, 629 and 223 fmol/mg protein, respectively. When the binding in these fractions was compared with the activity of plasma membrane ‘marker’ enzymes in the same fractions a relative enrichment of [3H]prazosin binding sites was found in the residual microsomes and one of the Golgi fractions. Photoaffinity labelling with 125I-arylazidoprazosin in combination with SDS-polyacrylamide gel electrophoresis revealed the specific binding to 40 and 23 kDa entities in a Golgi fraction, while in plasma membranes the binders had an apparent molecular mass of 36 and 23 kDa. When [3H]prazosin was injected in vivo into rat portal blood followed by subcellular fractionation of liver, a pattern of an initial rapid decline and thereafter a slow decline of radioactivity was noted in all fractions. Additionally, in the two Golgi fractions a transient accumulation of radioactivity occurred between 5 and 10 min after the injection. The ED50 values for displacement of [3H]prazosin with adrenaline was lowest in the plasma membrane fraction, followed by the residual microsomes and Golgi fractions, the values were 10−6, 10−5 and 10−4 mol/l, respectively. On the basis of lack of correlation between distribution of α1-adrenergic antagonist binding and adenylate cyclase activity, differences in the molecular mass of α1-adrenergic antagonist binders, differences in the kinetics of in vivo binding and accumulation of [3H]prazosin and also differences in agonist affinity between plasma membrane and Golgi fractions, it is concluded that α1-adrenergic receptors are localized to low-density intracellular membranes involved in receptor biosynthesis and endocytosis.  相似文献   

15.
Summary The effects of pH, oxidation reduction compounds and trypsin on insulin binding, hexose transport, and activation of glycogen synthase were studied utilizing rat adipocytes. In this paper the effect of pH is examined; while in the subsequent two papers the effects of glutathione and trypsin are examined. Increase in pH from 6 to 8.5 increased labelled glucose oxidation, 2-deoxyglucose transport as well as labelled insulin binding to the receptor. Enhanced insulin binding was due to an increased rate of association k+1 with no effect the rate of dissociation k−1 resulting in a decreased equilibrium dissociation constant KD. Glycogen synthase activity was unaffected by increase in pH when adipocytes were incubated with or without glucose. Insulin in contrast to pH was effective in increasing the activity of glycogen synthase. With 2-deoxyglucose, % glycogen synthaseI activity was increased by an increase in pH. Glycogen synthase activity was thus stimulated by insulin by the direct mechanism, previously termed mechanism 1, involving the formation of a chemical mediator, and clearly distinguishable from the activation of hexose transport, previously termed mechanism 2(1). Increase in labelled glucose oxidation and in 2-deoxyglucose transport with increased pH, as well as insulin stimulation, was abolished by preincubation with trypsin, or cytochalasin B; suggesting that trypsin-sensitive and cytochalasin B-binding protein(s) presumably in the plasma membrane are involved in these effects of pH. Since increase in pH alone activates cell membrane-mediated hexose transport and insulin receptor binding under conditions where glycogen synthase is not activated, increase in pH acts presumably by a non-mediator mechanism. Insulin acts at the membrane to enhance further the effects of increased pH, via a mediator mechanism.  相似文献   

16.
Antialgal allelochemicals were isolated from Phragmites communis Tris. The isolated allelopathic fraction showed strong inhibition activity on the growth of Chlorella pyrenoidosa and Microcystis aeruginosa but had no inhibition on Chlorella vulgaris. The 50% effective concentrations (EC50) of the allelopathic fractions on C. pyrenoidosa and M. aeruginosa were 0.49 and 0.79 mg/liter, respectively. The allelopathic activity of the fraction was species-specific. The isolated allelopathic fraction caused metal ion leakage from algal cells. The fraction decreased the activities of antioxidant enzymes, such as superoxide dismutase and peroxidase. The addition of the isolated fraction increased the concentration of unsaturated lipid fatty acids in cell membrane of C. pyrenoidosa and M. aeruginosa. This caused a change in plasma membrane integrity and the leakage of ions in the protoplast. The allelopathic compound was identified by nuclear magnetic resonance and gas chromatography-mass spectrometry as ethyl 2-methylacetoacetate. Synthesized ethyl 2-methylacetoacetate also showed allelopathic activity on C. pyrenoidosa and M. aeruginosa. The EC50 of synthesized ethyl 2-methylacetoacetate on C. pyrenoidosa and M. aeruginosa were 0.49 and 0.65 mg/liter, respectively.  相似文献   

17.
We have altered the phospholipid composition of the plasma membranes of Ehrlich ascites cells grown in mice and studied the effects on the properties of the insulin receptor of this cell. The insulin receptor of the Ehrlich cell demonstrated all of the binding characteristics of mammalian insulin receptors: specificity for insulin and insulin analogs, saturability, inverse relationship of steady-state binding levels to temperature, and negative cooperativity. Cellular phospholipids enriched in monounsaturated fatty acyl groups were produced by growth in animals that were maintained on a diet rich in coconut oil; cellular phospholipids enriched in polyunsaturated fatty acyl groups were produced in animals fed sunflower oil. Insulin receptors were present in the normal cells at 180 000 sites/cell but this fell to 125 000 (p <0.001) in cells enriched in monounsaturated fatty acids and rose to 386 000 (p <0.001) in cells enriched in polyunsaturated fatty acids. The normal cells had affinity constants ( and ) of 0.03 and 0.01 nM−1. The cells enriched in monounsaturated fatty acids had an increase in these affinity constants to 0.06 and 0.03 nM−1 whereas values of 0.01 and 0.005 nM−1 were obtained in the cells enriched in polyunsaturated fatty acids (all comparison p <0.001). Thus, increased unsaturation of plasma membrane phospholipids, produced by dietary manipulations, was associated with an increase in insulin receptor number but a decrease in binding affinity. In contrast, increased saturation of the phospholipids of the plasma membrane was associated with a decrease in receptor number and an increase in affinity. The results can be explained by a model in which the insulin receptor is assumed to be multimeric.  相似文献   

18.
Prior studies have shown that vitamin D regulation of protein kinase C activity (PKC) in the cell layer of chondrocyte cultures is cell maturation-dependent. In the present study, we examined the membrane distribution of PKC and whether 1α,25-(OH)2D3 and 24R,25-(OH)2D3 can directly regulate enzyme activity in isolated plasma membranes and extracellular matrix vesicles. Matrix vesicle PKC was activated by bryostatin-1 and inhibited by a PKC-specific pseudosubstrate inhibitor peptide. Depletion of membrane PKC activity using isoform-specific anti-PKC antibodies suggested that PKCα is the major isoform in cell layer lysates as well as in plasma membranes isolated from both cell types; PKCζ is the predominant form in matrix vesicles. This was confirmed in Western blots of immunoprecipitates as well as in studies using control peptides to block binding of the isoform specific antibody to the enzyme and using a PKCζ-specific pseudosubstrate inhibitor peptide. The presence of PKCζ in matrix vesicles was further verified by immunoelectron microscopy. Enzyme activity in the matrix vesicle was insensitive to exogenous lipid, whereas that in the plasma membrane required lipid for full activity. 1,25-(OH)2D3 and 24,25-(OH)2D3 inhibited matrix vesicle PKC, but stimulated plasma membrane PKC when added directly to the isolated membrane fractions. PKC activity in the matrix vesicle was calcium-independent, whereas that in the plasma membrane required calcium. Moreover, the vitamin D-sensitive PKC in matrix vesicles was not dependent on calcium, whereas the vitamin D-sensitive enzyme in plasma membranes was calcium-dependent. It is concluded that PKC isoforms are differentially distributed between matrix vesicles and plasma membranes and that enzyme activity is regulated in a membrane-specific manner. This suggests the existence of a nongenomic mechanism whereby the effects of 1,25-(OH)2D3 and 24,25-(OH)2D3 may be mediated via PKC. Further, PKCζ may be important in nongenomic, autocrine signal transduction at sites distal from the cell. © 1996 Wiley-Liss, Inc.  相似文献   

19.
ISOLATION AND PROPERTIES OF THE PLASMA MEMBRANE OF KB CELLS   总被引:3,自引:2,他引:1       下载免费PDF全文
Plasma membranes from KB cells were isolated by the method of latex bead ingestion and were compared with those obtained by the ZnCl2 method. Optimal conditions for bead uptake and the isolation procedure employing discontinuous sucrose gradient centrifugation are described. All steps of preparative procedure were monitored by electron microscopy and specific enzyme activities. The plasma membrane fraction obtained by both methods is characterized by the presence of the Na+ + K+-activated ATPase and 5'-nucleotidase, and contains NADPH-cytochrome c reductase and cytochrome b5. The latter two enzymes are also present in lower concentrations in the microsomal fraction. Unlike microsomes which are devoid of the Na+ + K+-activated ATPase and which contain only traces of 5'-nucleotidase activity, the plasma membrane fraction contains only trace amounts of the rotenone-insensitive NADH-cytochrome c reductase but no cytochrome P-450, both of which are mainly microsomal components. Morphologically the plasma membrane fraction isolated by the latex bead method is composed of vesicles of 0.1–0.3 µm in diameter. On the basis of the biochemical and morphological criteria presented, it is concluded that the plasma membrane fraction isolated by the above methods are of high degree of purity.  相似文献   

20.
Adenosine 3′-,5′-cyclic monophosphate phosphodiesterase (EC 3.1.4.17) has been investigated in rat liver as to its insulin sensitivity. Hormone action has been assayed in vitro on a liver hemogenate purified by DEAE-cellulose column chromatography, on isolated hepatocytes, on isolaetd plasma membranes. The DEAE-cellulose chromatography purified homogenate showed no sensitivity to insulin, whereas isolated hepatocytes incubated in presence of insulin showed increased phosphodiesterase activity in a plasma membrane-containing fraction. The plasma membrane-bound enzyme, which shows both high and low affinity components, was significantly stimulated after hormonal treatment; this effect being dependent on a V increase of the low Km form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号