首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The large-bodied hominoid from Moroto, Uganda has until recently been known only from proconsulid like craniodental remains and some vertebrae with modern ape like features. The discovery of two partial femora and the glenoid portion of a scapula demonstrates that the functional anatomy of Morotopithecus differed markedly from other early and middle Miocene hominoids. Previous studies have consistently associated the vertebral remains with a short, stiff back and with orthograde postures. Although the proximal femur more closely resembles the femora of monkeys than of apes and suggests a moderate degree of hip abduction, the distal femur resembles those of extant large bodied apes and suggests a varied loading regime and an arboreal repertoire that may have included substantial vertical climbing. The femoral shaft displays uniformly thick cortical bone, beyond the range of thickness seen in extant primates, and signifies higher axial loading than is typical of most extant primates. The glenoid fossa is broad and uniformly curved as in extant suspensory primates. Overall, Morotopithecus is reconstructed as an arboreal species that probably relied on forelimb-dominated, deliberate and vertical climbing, suspension and quadrupedalism. Morotopithecus thus marks the first appearance of certain aspects of the modern hominoid body plan by at least 20 Ma. If the suspensory and orthograde adaptations linking Morotopithecus to extant apes are synapomorphies, Morotopithecus may be the only well-documented African Miocene hominoid with a close relationship to living apes and humans.  相似文献   

2.
A fundamental adaptation to orthograde posture and locomotion amongst living hominoid primates is a numerically reduced lumbar column, which acts to stiffen the lower back and reduce injuries to the intervertebral discs. A related and functionally complementary strategy of spinal stability is a caudal position of the diaphragmatic vertebra relative to the primitive condition found in nonhominoid primates and most other mammals. The diaphragmatic vertebra marks the transition in vertebral articular facet (zygapophysis) orientation, which either resists (prediaphragmatic) or allows (postdiaphragmatic) trunk movement in the sagittal plane (i.e., flexion and extension). Unlike most mammals, which have dorsomobile spines (long lumbar columns and cranially placed diaphragmatic vertebrae) for running and leaping, hominoids possess dorsostable spines (short lumbar columns and caudally placed diaphragmatic vertebrae) adapted to orthogrady and antipronogrady. In contrast to humans and other extant hominoids, all known early hominin partial vertebral columns demonstrate cranial displacement of the diaphragmatic vertebra. To address this difference, variation in diaphragmatic placement is assessed in a large sample of catarrhine primates. I show that while hominoids are characterized by modal common placement of diaphragmatic and last rib-bearing vertebrae in general, interspecific differences in intraspecific patterns of variation exist. In particular, humans and chimpanzees show nearly identical patterns of diaphragmatic placement. A scenario of hominin evolution is proposed in which early hominins evolved cranial displacement from the ancestral hominid condition of common placement to achieve effective lumbar lordosis during the evolution of bipedal locomotion.  相似文献   

3.
In an analysis of hominoid postcranial variation, 'Evol. Anthrop. 6 (1998) 87' argued that many purportedly unique features of the hominoid postcranium are actually much more variable than previously reported and in many instances overlap with both suspensory (Ateles) and non-suspensory primates. Based on these results, it was concluded that parallelism in the living ape postcranium was a plausible and even likely possibility given the Miocene hominoid postcranial record. However, this analysis did not distinguish whether within-hominoid variability or overlap with non-hominoids involved one or all ape taxa, a distinction which has potentially important effects on the interpretation of results. To address this issue, primate postcranial morphometric data from the trunk and forelimb were reanalyzed using three techniques: cladistic analysis, principle components analysis, and cluster analysis. Results reveal that these postcranial characters distinguish not only suspensory and quadrupedal primates but also discriminate hominoids and Ateles from all other taxa, great apes from lesser apes and Ateles, cercopithecines from colobines, and cercopithecoids from platyrrhines. The majority of hominoid variability and overlap with Ateles occurs with Hylobates humeral head and shoulder joint characters related to brachiation. This suggests that Hylobates' specializations may skew analyses of hominoid postcranial uniqueness and variability, and that great apes are relatively similar in their postcranium.  相似文献   

4.
The evolutionary history of the living hominoids has remained elusive despite years of exploration and the discovery of numerous Miocene fossil ape species. Part of the difficulty can be attributed to the changing nature of our views about the course of hominoid evolution. In the 1950s and 1960s, individual Miocene taxa were commonly viewed as the direct ancestors of specific living ape species, suggesting an early divergence of the modern lineages.1–5 However, in most cases, the Miocene forms were essentially “dental apes,” resembling extant species in dental and a few cranial features, but possessing more primitive postcranial features that suggested arboreal quadrupedalism rather than suspensory habits. With the introduction of molecular methods of phylogenetic reconstruction and the increasing use of cladistic analysis, it has become apparent that the radiation leading to the modern hominoids was somewhat more recent than had been believed, and that most of the Miocene hominoid species had little to do with the evolutionary history of the living apes. © 1998 Wiley-Liss, Inc.  相似文献   

5.
Evolution of hominoid locomotion is a traditional topic in primate evolution. Views have changed during the last decade because a number of crucial differences between early and advanced hominoid morphologies have been demonstrated. Increasing evidence on primate behaviour and ecology show that any direct analogies between living and fossil hominoids must be made extremely carefully. The necessity of synthesizing data on primate behaviour, locomotion, morphology and ecology and simultaneously defining the framework in which the data should be interpreted are explained. Results of our studies of ontogeny of locomotor and behavioural patterns (LBP) are presented that could help identify the main features of early hominoid locomotor patterns (LP) and the mechanisms of their changes. The early hominoid LP was different from those of pronograde monkeys and specialized antipronograde living apes. Some similar features could be expected between early hominoid LP and the LP of ceboid monkeys. Analogous mechanisms of change of LBP exist in all groups of living higher primates. Crucial early mechanisms of change are the ontogenetic shifts in LBP connected with ethoecological changes. Analysis of fossil evidence has shown that Miocene hominoids differ morphologically from any group of living primates. Certain features present in Miocene hominoids could be found in Atelinae and living Asian apes but they are limited to some functional regions of the postcrania only. Consequently the early hominoid general LP can not be strictly analogous either to that of any monkey group or to the LP of apes. We suppose that certain pronograde adaptations, such as climbing, bipedality, limited suspensory activity and sitting constituted the main part of their LP.  相似文献   

6.
The extinct dryopithecine Hispanopithecus (Primates: Hominidae), from the Late Miocene of Europe, is the oldest fossil great ape displaying an orthograde body plan coupled with unambiguous suspensory adaptations. On the basis of hand morphology, Hispanopithecus laietanus has been considered to primitively retain adaptations to above-branch quadrupedalism-thus displaying a locomotor repertoire unknown among extant or fossil hominoids, which has been considered unlikely by some researchers. Here we describe a partial skeleton of H. laietanus from the Vallesian (MN9) locality of Can Feu 1 (Vallès-Penedès Basin, NE Iberian Peninsula), with an estimated age of 10.0-9.7 Ma. It includes dentognathic and postcranial remains of a single, female adult individual, with an estimated body mass of 22-25 kg. The postcranial remains of the rib cage, shoulder girdle and forelimb show a mixture of monkey-like and modern-hominoid-like features. In turn, the proximal morphology of the ulna-most completely preserved in the Can Feu skeleton than among previously-available remains-indicates the possession of an elbow complex suitable for preserving stability along the full range of flexion/extension and enabling a broad range of pronation/supination. Such features, suitable for suspensory behaviors, are however combined with an olecranon morphology that is functionally related to quadrupedalism. Overall, when all the available postcranial evidence for H. laietanus is considered, it emerges that this taxon displayed a locomotor repertoire currently unknown among other apes (extant or extinct alike), uniquely combining suspensory-related features with primitively-retained adaptations to above-branch palmigrady. Despite phylogenetic uncertainties, Hispanopithecus is invariably considered an extinct member of the great-ape-and-human clade. Therefore, the combination of quadrupedal and suspensory adaptations in this Miocene crown hominoid clearly evidences the mosaic nature of locomotor evolution in the Hominoidea, as well as the impossibility to reconstruct the ancestral locomotor repertoires for crown hominoid subclades on the basis of extant taxa alone.  相似文献   

7.
This study refutes the traditional idea that the glenohumeral joint of hominoids is more mobile than that of other primates, a belief that forms a basis for the two prominent theories of hominoid evolution. According to the brachiation theory, many anatomical features of the hominoid shoulder (including those of the glenohumeral joint) increase shoulder mobility and are interpreted as adaptations for brachiation. The slow climbing theory explains the same set of features as adaptations for slow climbing. The slow-climbing primates should therefore also possess these features, and their glenohumeral mobility should be the same as that of hominoids and be higher than that of other primates. This study presents three-dimensional glenohumeral mobility data, measured using a single video camera method on fresh specimens. The results show that the hominoid glenohumeral joint is actually less mobile than those of non-hominoid primates, including the habitually slow-climbing lorines, but it is characterized by a smooth excursion in the scapulocranial direction.  相似文献   

8.
Miocene primates from southern Africa are extremely rare. For this reason we wish to place on record several interesting new fossil primate specimens recently recovered from the Miocene sites of Berg Aukas and Harasib in the Otavi Mountain region of northern Namibia. The new finds consist of a virtually complete atlas vertebra from Berg Aukas attributable to the hominoid Otavipithecus namibiensis and two teeth and four postcranial fragments from Harasib referrable to Cercopithecoidea. The atlas vertebra exhibits anatomical characteristics intermediate between those of modern cercopithecoids and hominoids which may be indicative of a transition from pronograde to orthograde postures. The cercopithecoid remains show that the earliest Old World monkeys known from southern Africa were small, approximately the size of vervet monkeys. These new specimens are important because they provide the first evidence relating to possible positional behaviors of Otavipithecus and the earliest fossil record of cercopithecoids from southern Africa. © 1996 Wiley-Liss, Inc.  相似文献   

9.
Pedal phalanges of living anthropoids and several Miocene fossil hominoid taxa were studied to reveal functional adaptations of living anthropoid feet and to infer positional behavior of fossil hominoids. Among the examined living anthropoids, Pan has a very developed (long and robust) hallux. Proconsul and Nacholapithecus, a large hominoid from Nachola, northern Kenya, display a moderately long hallux like Alouatta and Cebus, suggesting the well-developed capability of a hallux-assisted power grip. Allometric analyses revealed that the Miocene hominoids examined (mainly from East Africa) as a whole displayed a different scaling pattern about the width of the proximal articular surface of the hallucial terminal phalanx from that of living anthropoids. Larger-sized hominoids display a wider articular surface than comparable-sized living anthropoids while smaller-sized fossil hominoids do the reverse. Such a difference was less marked for the height of the articular surface. These results may suggest that positional adaptations of Miocene hominoids are not merely resultants of a common body size function that is observed in living anthropods. The wide articular surface of fossil hominoid hallucial terminal phalanges suggests an adaptation for vertical climbing and clinging, in which the hallux is kept perpendicularly to the long axis of the vertical support.  相似文献   

10.
The relationship between form and function in the lumbar vertebral column has been well documented among platyrrhines and especially catarrhines, while functional studies of postcranial morphology among strepsirrhines have concentrated predominantly on the limbs. This morphometric study investigates biomechanically relevant attributes of the lumbar vertebral morphology of 20 species of extant strepsirrhines. With this extensive sample, our goal is to address the influence of positional behavior on lumbar vertebral form while also assessing the effects of body size and phylogenetic history. The results reveal distinctions in lumbar vertebral morphology among strepsirrhines in functional association with their habitual postures and primary locomotor behaviors. In general, strepsirrhines that emphasize pronograde posture and quadrupedal locomotion combined with leaping (from a pronograde position) have the relatively longest lumbar regions and lumbar vertebral bodies, features promoting sagittal spinal flexibility. Indrids and galagonids that rely primarily on vertical clinging and leaping with orthograde posture share a relatively short (i.e., stable and resistant to bending) lumbar region, although the length of individual lumbar vertebral bodies varies phylogenetically and possibly allometrically. The other two vertical clingers and leapers, Hapalemur and Lepilemur, more closely resemble the pronograde, quadrupedal taxa. The specialized, suspensory lorids have relatively short lumbar regions as well, but the lengths of their lumbar regions are influenced by body size, and Arctocebus has dramatically longer vertebral bodies than do the other lorids. Lumbar morphology among galagonids appears to reflect a strong phylogenetic signal superimposed on a functional one. In general, relative length of the spinous processes follows a positively allometric trend, although lorids (especially the larger-bodied forms) have relatively short spinous processes for their body size, in accordance with their positional repertoire. The results of the study broaden our understanding of postcranial adaptation in primates, while providing an extensive comparative database for interpreting vertebral morphology in fossil primates.  相似文献   

11.
Our understanding of locomotor evolution in anthropoid primates has been limited to those taxa for which good postcranial fossil material and appropriate modern analogues are available. We report the results of an analysis of semicircular canal size variation in 16 fossil anthropoid species dating from the Late Eocene to the Late Miocene, and use these data to reconstruct evolutionary changes in locomotor adaptations in anthropoid primates over the last 35 Ma. Phylogenetically informed regression analyses of semicircular canal size reveal three important aspects of anthropoid locomotor evolution: (i) the earliest anthropoid primates engaged in relatively slow locomotor behaviours, suggesting that this was the basal anthropoid pattern; (ii) platyrrhines from the Miocene of South America were relatively agile compared with earlier anthropoids; and (iii) while the last common ancestor of cercopithecoids and hominoids likely was relatively slow like earlier stem catarrhines, the results suggest that the basal crown catarrhine may have been a relatively agile animal. The latter scenario would indicate that hominoids of the later Miocene secondarily derived their relatively slow locomotor repertoires.  相似文献   

12.
Variation in vertebral formulae within and among hominoid species has complicated our understanding of hominoid vertebral evolution. Here, variation is quantified using diversity and similarity indices derived from population genetics. These indices allow for testing models of hominoid vertebral evolution that call for disparate amounts of homoplasy, and by inference, different patterns of evolution. Results are interpreted in light of "short-backed" (J Exp Zool (Mol Dev Evol) 302B:241-267) and "long-backed" (J Exp Zool (Mol Dev Evol) 314B:123-134) ancestries proposed in different models of hominin vertebral evolution. Under the long-back model, we should expect reduced variation in vertebral formulae associated with adaptively driven homoplasy (independently and repeatedly reduced lumbar regions) and the relatively strong directional selection presumably associated with it, especially in closely related taxa that diverged relatively recently (e.g., Pan troglodytes and Pan paniscus). Instead, high amounts of intraspecific variation are observed among all hominoids except humans and eastern gorillas, taxa that have likely experienced strong stabilizing selection on vertebral formulae associated with locomotor and habitat specializations. Furthermore, analyses of interspecific similarity support an evolutionary scenario in which the vertebral formulae observed in western gorillas and chimpanzees represent a reasonable approximation of the ancestral condition for great apes and humans, from which eastern gorillas, humans, and bonobos derived their unique vertebral profiles. Therefore, these results support the short-back model and are compatible with a scenario of homology of reduced lumbar regions in hominoid primates. Fossil hominin vertebral columns are discussed and shown to support, rather than contradict, the short-back model.  相似文献   

13.
Observations on the behavior of living hominoids show generic differences in the use and posture of the wrist joint. Both orang-utans and hylobatids usually use the wrist in suspensory behaviors. However, orang-utans emphasize markedly adducted and flexed wrist postures, while hylobatids emphasize violent forearm and wrist rotation. African apes, especially the gorilla, use the wrist more frequently than other hominoids for terrestrial quadrupedal weight-bearing. Humans use the wrist less frequently for supportive purposes than do other hominoids. These behavioral differences correspond to structural specializations in the proximal carpal joint of each of the hominoid genera. Although each of the hominoid genera has apparently modified its proximal carpal joint best to serve its characteristic behaviors, all hominoids share a unique proximal carpal joint that permits approximately 160ℴ of forearm rotation. The hylobatid proximal carpal joint is specialized in exhibiting a marked development of those structures limiting forearm rotation, but it is in most respects the least derived— that is, closest to the nonhominoid anthropoids. Chimpanzees show a proximal carpal joint that is more generalized than those of the other great apes but more derived than that of hylobatids. The human and gorilla proximal wrist joints, on the other hand, show marked modifications for weight-bearing in terrestrial behaviors. Orang-utans have the most derived proximal carpal joint, which in many respects parallels that of the slow-climbing nonhominoid primates. The comparative anatomy and structural specializations of the wrist joint support (a) an early divergence of hylobatids from the common hominoid stock, (b) a common ancestry for gorillas and humans separate from the other hominoids, and (c) a long independent evolutionary period for orang-utans since their divergence from the common hominoid stock, or one that was marked by strong selection pressures for wrist specializations. Unfortunately, the generalized condition of the chimpanzee’s wrist joint and the very derived condition of the orang-utan wrist provide uncertain evidence as to which of the two was first to diverge from the common hominoid stock. Identification of hominoid wrist specializations as reflecting real phylogenetic relationships or parallelisms depends on how well the phytogeny inferred from wrist morphology accords with those arrived at from the study of other systems.  相似文献   

14.
The aim of this study was to ascertain the distribution in primates of the three possible bony ponticles over the groove for the vertebral artery (ventral, lateral, and dorsal ponticles), in order to attempt to understand the variants observed in humans and to ascertain possible evolutionary trends in primates. The material consisted of 393 atlases of extant nonhuman primates representative of 41 genera, and of 500 human atlases (dried bones of adults). For each atlas, we studied the existence and morphology of the ponticles, and the type of association of these three ponticles on a given side, which are theoretically of eight in number (types A-H). The occurrence of these ponticles varied from complete absence to constant presence, according to the genera and taxa of primates. The presence of each of these ponticles in primates can be interpreted as a primitive or plesiomorphic character, and their absence as a derived or apomorphic character. The strepsirhines-platyrrhines-cercopithecines group, presenting a predominant primitive pattern (type A), appeared to be separated from the colobines-hominoids group, presenting predominant derived patterns (type C in colobines, Pongo pygmaeus, and Pan troglodytes, and the more derived type D in Hylobates, Gorilla gorilla, and Homo sapiens). The last derived stage, corresponding to the disappearance of the three atlantal ponticles (type H), was only observed in some individuals in hominoids. A marked intraspecific polymorphism characterized the hominoids. The presence of lateral and dorsal ponticles in humans appeared to correspond to their persistence within the progressive disappearance of the atlantal ponticles, constituting an evolutionary tendency characteristic of primates and particularly of hominoid evolution.  相似文献   

15.
The supraspinatus muscle is a key component of the soft tissues of the shoulder. In pronograde primates, its main function, in combination with the other rotator cuff muscles (subscapularis, infraspinatus, and teres minor), is to stabilize the glenohumeral joint, whereas in orthograde primates it functions together with the deltoid, to elevate the upper extremity in the scapular plane. To determine whether these functional differences are also reflected in the molecular biochemistry of the supraspinatus muscles involved in these different locomotor modes, we used real-time polymerase chain reaction (RT-PCR) to analyze the expression of the myosin heavy chain (MHC) isoforms in supraspinatus muscles from modern humans and 12 species of pronograde and orthograde primates. The MHC expression pattern in the supraspinatus muscle of pronograde primates was consistent with its function as a tonic and postural muscle, whereas the MHC expression pattern observed in the supraspinatus muscle of nonhuman orthograde primates was that of a muscle that emphasizes speed, strength, and less resistance to fatigue. These findings are consistent with the role of the supraspinatus in the posture and locomotor modes of these groups of nonhuman primates. The humans included in the study had an expression pattern similar to that of the nonhuman orthograde primates. In conclusion, molecular analysis of skeletal muscles via RT-PCR can contribute to a better understanding of the morphological and functional characteristics of the primate musculoskeletal system.  相似文献   

16.
Scapular position affects shoulder mobility, which plays an important role in the upper limb adaptations in primates. However, currently available data on scapular position are unsatisfactory because of the failure to simultaneously consider the relative dimensions of all the three skeletal elements of the shoulder girdle, i.e. the clavicle, the scapula and the thorax. In the present study, the clavicular length and the scapular spine length were measured on preserved cadavers, and the dorsoventral thoracic diameter was measured on scaled radiographs of a wide range of primates, permitting a quantitative comparison of scapular position among primates. It was found that arboreal monkeys have a more dorsally situated scapula than terrestrial ones, but the same difference was not found between terrestrial and arboreal prosimians. Hominoids were found to have the most dorsally situated scapula. Contrary to the slow climbing theory of hominoid evolution, which tries to explain most postcranial specializations of hominoids as adaptations for slow climbing, the scapulae of slow-climbing lorines and Alouatta are much less dorsal than those of the hominoids.  相似文献   

17.
Considerable differences in spinal morphology have been noted between humans and other hominoids. Although comparative analyses of the external morphology of vertebrae have been performed, much less is known regarding variations in internal morphology (density) and biomechanical performance among humans and closely related non-human primates. In the current study we utilize density calibrated computed tomography images of thoracic vertebral bodies from hominoids (n = 8-15 per species, human specimens 20-40 years of age) to obtain estimates of vertebral bone strength in axial compression and anteroposterior bending and to determine how estimates of strength scale with animal body mass. Our biomechanical analysis suggests that the strength of thoracic vertebral bodies is related to body mass (M) through power law relationships (y ∝ Mb) in which the exponent b is 0.89 (reduced major axis) for prediction of axial compressive strength and is equal to 1.89 (reduced major axis) for prediction of bending strength. No differences in the relationship between body mass and strength were observed among hominoids. However, thoracic vertebrae from humans were found to be disproportionately larger in terms of vertebral length (distance between cranial and caudal endplates) and overall vertebral body volume (p < 0.05). Additionally, vertebral bodies from humans were significantly less dense than in other hominoids (p < 0.05). We suggest that reduced density in human vertebral bodies is a result of a systemic increase in porosity of cancellous bone in humans, while increased vertebral body volume and length are a result of functional adaptation during growth resulting in a vertebral bone structure that is just as strong, relative to body mass, as in other hominoids.  相似文献   

18.
Although the relationships of the living hominoid primates (humans and apes) are well known, the relationships of the fossil species, times of divergence of both living and fossil species, and the biogeographic history of hominoids are not well established. Divergence times of living species, estimated from molecular clocks, have the potential to constrain hypotheses of the relationships of fossil species. In this study, new DNA sequences from nine protein-coding nuclear genes in great apes are added to existing datasets to increase the precision of molecular time estimates bearing on the evolutionary history of apes and humans. The divergence of Old World monkeys and hominoids at the Oligocene-Miocene boundary (approximately 23 million years ago) provides the best primate calibration point and yields a time and 95% confidence interval of 5.4 +/- 1.1 million years ago (36 nuclear genes) for the human-chimpanzee divergence. Older splitting events are estimated as 6.4 +/- 1.5 million years ago (gorilla, 31 genes), 11.3 +/- 1.3 million years ago (orangutan, 33 genes), and 14.9 +/- 2.0 million years ago (gibbon, 27 genes). Based on these molecular constraints, we find that several proposed phylogenies of fossil hominoid taxa are unlikely to be correct.  相似文献   

19.
The partial skeleton of Pierolapithecus, which provides the oldest unequivocal evidence of orthogrady, together with the recently described phalanges from Pa?alar most likely attributable to Griphopithecus, provide a unique opportunity for understanding the changes in hand anatomy during the pronogrady/orthogrady transition in hominoid evolution. In this paper, we describe the Pierolapithecus hand phalanges and compare their morphology and proportions with those of other Miocene apes in order to make paleobiological inferences about locomotor evolution. In particular, we investigate the orthograde/pronograde evolutionary transition in order to test whether the acquisition of vertical climbing and suspension were decoupled during evolution. Our results indicate that the manual phalanges of Miocene apes are much more similar to one another than to living apes. In particular, Miocene apes retain primitive features related to powerful-grasping palmigrady on the basal portion, the shaft, and the trochlea of the proximal phalanges. These features suggest that above-branch quadrupedalism, inherited from stem hominoids, constituted a significant component of the locomotor repertories of different hominoid lineages at least until the late Miocene. Nonetheless, despite their striking morphological similarities, several Miocene apes do significantly differ in phalangeal curvature and/or elongation. Hispanopithecus most clearly departs by displaying markedly-curved and elongated phalanges, similar to those in the most suspensory of the extant apes (hylobatids and orangutans). This feature agrees with several others that indicate orang-like suspensory capabilities. The remaining Miocene apes, on the contrary, display low to moderate phalangeal curvature, and short to moderately-elongated phalanges, which are indicative of the lack of suspensory adaptations. As such, the transition from a pronograde towards an orthograde body plan, as far as this particular anatomical region is concerned, is reflected only in somewhat more elongated phalanges, which may be functionally related to enhanced vertical-climbing capabilities. Our results therefore agree with the view that hominoid locomotor evolution largely took place in a mosaic fashion: just as taillessness antedated the acquisition of an orthograde body plan, the emergence of the latter—being apparently related only to vertical climbing—also preceded the acquisition of suspensory adaptations, as well as the loss of primitively-retained, palmigrady-related features.  相似文献   

20.
The observed social systems of extant apes and humans suggest that the common ancestral state for Miocene hominoids was living in multimale–multifemale groups that exhibited a tendency to fission and fusion in response to ecological and/or social variables. The Hominoidea share a set of social commonalities, notably a social niche that extends beyond kin and beyond the immediate social group, as well as extensive intraspecific flexibility in social organization. We propose that an essential feature of hominoid evolution is the shift from limited plasticity in a generalized social ape to expanded behavioral plasticity as an adaptive niche. Whereas in most nonhominoid primates variability and flexibility take the shape of specific patterns of demographic flux and interindividual relationships, we can consider behavioral flexibility and plasticity as a means to an end in hominoid socioecological landscapes. In addition, the potential for innovation, spread, and inheritance of behavioral patterns and social traditions is much higher in the hominoids, especially the great apes, than in other anthropoid primates. We further suggest that this pattern forms a basis for the substantial expansion of social complexity and adaptive behavioral plasticity in the hominins, especially the genus Homo. Our objectives in this article are threefold: 1) summarize the variation in the social systems of extant hominoid taxa; 2) consider the evolutionary processes underlying these variations; and 3) expand upon the traditional socioecological model, especially with respect to reconstructions of early hominin social behavior. We emphasize a central role for both ecological and social niche construction, as well as behavioral plasticity, as basal hominoid characteristics. Over evolutionary time these characteristics influence the patterns of selection pressures and the resulting social structures. We propose that a mosaic of ecological and social inheritance patterns should be considered in the reconstruction of early hominin social systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号