首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
徐哲  马姣  裴树文 《人类学学报》2021,40(3):454-468
早期人类演化、扩散、技术发展与自然环境的关系一直是学术界关注的前沿与热点.本文梳理了环境变化与早期人类演化关系研究中牙釉质碳氧稳定同位素分析的研究历史、原理以及取样方法,与此同时,介绍了不同学者利用哺乳动物牙釉质碳氧稳定同位素分析在早期人类演化与环境关系探索的相关研究进展,并对东非早期人类奥杜威技术向阿舍利技术转变过程...  相似文献   

2.
吕厚远 《人类学学报》2022,41(4):731-748
从古至今,气候变化特别是周期性气候变化,一直深刻影响着人类社会的变革和发展,从旧石器时代人类起源迁移、新石器时代文化文明演变、历史时期王朝兴衰更替,到工业化以来社会经济发展动荡等,无不留下周期性气候变化影响的烙印。本文依据近年来古气候、古人类、环境考古等研究的新证据、新进展,从周期性气候变化的角度审视人类社会各个发展阶段、关键节点的气候特征;通过典型案例,介绍和分析旧石器、新石器、历史时期不同时空尺度周期性气候变化和人类活动之间复杂的相互作用关系,讨论自然科学和人文社会科学对气候变化与人类活动关系认识的异同,阐述在学科交叉背景下研究气候与人类活动关系的新范式。  相似文献   

3.
Multiregional evolution is a model to account for the pattern of human evolution in the Pleistocene. The underlying hypothesis is that a worldwide network of genic exchanges, between evolving human populations that continually divide and reticulate, provides a frame of population interconnections that allows both species-wide evolutionary change and local distinctions and differentiation. "Multiregional" does not mean independent multiple origins, ancient divergence of modern populations, simultaneous appearance of adaptive characters in different regions, or parallel evolution. A valid understanding of multiregional evolution would go a long way toward reducing the modern human origins controversy.  相似文献   

4.
人类对资源环境承载力的认知不断深化,并且受到人类需求和外界胁迫的综合影响.当人类的生存发展主要依靠本地资源供给、受本地环境条件限制时,资源环境承载力主要由主导限制因子决定.随着可持续发展和环境保护理念的引入,资源环境承载力逐渐由供给限制转为以需求支撑为主,并出现了以容量、阈值、强度和能力等来表征资源环境承载力的表达形式...  相似文献   

5.
在精确AMS14C测年的基础上,对采自重庆中梁山岩溶洼地的剖面样品进行了孢粉分析,并结合详细的历史文献资料,获取了该地区近700年以来的植被变迁与石漠化演化记录。结果显示:(1)1274-1553 cal a AD研究区周围主要分布以松属、柏科/杉科占优势的亚热带常绿针叶林,伴人植物花粉少量出现,人类活动相对较弱。(2)1553-1780 cal a AD,针叶树松属、柏科/杉科花粉含量下降,伴人植物花粉增多,指示研究区人类活动开始加强。(3)1780-1840 cal a AD,松属花粉含量急剧下降,灌木和伴人植物花粉急剧增加,指示该地区人类活动加剧,石漠化现象出现。(4)1840-2000 cal a AD,玉米花粉含量大幅度增加,表明人类活动更加强烈,石漠化现象进一步加剧。近700年来不断增加的人类活动是重庆地区植被退化、石漠化现象严重的重要因素。该研究结果对重庆岩溶地区的全面治理,恢复和重建自然生态环境具有重要的指示意义。  相似文献   

6.
Long‐term ecological studies are critical for providing key insights in ecology, environmental change, natural resource management and biodiversity conservation. In this paper, we briefly discuss five key values of such studies. These are: (1) quantifying ecological responses to drivers of ecosystem change; (2) understanding complex ecosystem processes that occur over prolonged periods; (3) providing core ecological data that may be used to develop theoretical ecological models and to parameterize and validate simulation models; (4) acting as platforms for collaborative studies, thus promoting multidisciplinary research; and (5) providing data and understanding at scales relevant to management, and hence critically supporting evidence‐based policy, decision making and the management of ecosystems. We suggest that the ecological research community needs to put higher priority on communicating the benefits of long‐term ecological studies to resource managers, policy makers and the general public. Long‐term research will be especially important for tackling large‐scale emerging problems confronting humanity such as resource management for a rapidly increasing human population, mass species extinction, and climate change detection, mitigation and adaptation. While some ecologically relevant, long‐term data sets are now becoming more generally available, these are exceptions. This deficiency occurs because ecological studies can be difficult to maintain for long periods as they exceed the length of government administrations and funding cycles. We argue that the ecological research community will need to coordinate ongoing efforts in an open and collaborative way, to ensure that discoverable long‐term ecological studies do not become a long‐term deficiency. It is important to maintain publishing outlets for empirical field‐based ecology, while simultaneously developing new systems of recognition that reward ecologists for the use and collaborative sharing of their long‐term data sets. Funding schemes must be re‐crafted to emphasize collaborative partnerships between field‐based ecologists, theoreticians and modellers, and to provide financial support that is committed over commensurate time frames.  相似文献   

7.
The effects of anthropogenic global environmental change on biotic and abiotic processes have been reported in aquatic systems across the world. Complex synergies between concurrent environmental stressors and the resilience of the system to regime shifts, which vary in space and time, determine the capacity for marine systems to maintain structure and function with global environmental change. Consequently, an interdisciplinary approach that facilitates the development of new methods for the exchange of knowledge between scientists across multiple scales is required to effectively understand, quantify and predict climate impacts on marine ecosystem services. We use a literature review to assess the limitations and assumptions of current pathways to exchange interdisciplinary knowledge and the transferability of research findings across spatial and temporal scales and levels of biological organization to advance scientific understanding of global environmental change in marine systems. We found that species‐specific regional scale climate change research is most commonly published, and “supporting” is the ecosystem service most commonly referred to in publications. In addition, our paper outlines a trajectory for the future development of integrated climate change science for sustaining marine ecosystem services such as investment in interdisciplinary education and connectivity between disciplines.  相似文献   

8.
Environmental anthropology is an expanding field in Australia. Extensive research on Aboriginal relationships to land and natural resources has provided the foundation for growing anthropological interest in the interactions of other Australians with the biophysical environments they inhabit. Australian‐based anthropologists also continue to contribute to research on environmental beliefs and practices in other parts of the world. This paper provides a brief overview of previously explored themes in this field as a precursor to introducing new research and proposing additional areas of research. It is suggested that these could be usefully developed to enhance anthropological contributions to debates about environmental change in Australia and surrounding regions. We argue that there are roles for anthropologists as `cultural translators' in cross‐disciplinary engagements with environmental scientists and natural resource managers; as cultural theorists skilled at documenting and interpreting changing environmental attitudes; and as environmental advocates pursuing the knowledge needed to create more ecologically sustainable human communities. We also suggest that Australian anthropologies of the environment can make valuable theoretical and ethnographic contributions to this important international field of study.  相似文献   

9.
Invertebrates,ecosystem services and climate change   总被引:1,自引:0,他引:1  
The sustainability of ecosystem services depends on a firm understanding of both how organisms provide these services to humans and how these organisms will be altered with a changing climate. Unquestionably a dominant feature of most ecosystems, invertebrates affect many ecosystem services and are also highly responsive to climate change. However, there is still a basic lack of understanding of the direct and indirect paths by which invertebrates influence ecosystem services, as well as how climate change will affect those ecosystem services by altering invertebrate populations. This indicates a lack of communication and collaboration among scientists researching ecosystem services and climate change effects on invertebrates, and land managers and researchers from other disciplines, which becomes obvious when systematically reviewing the literature relevant to invertebrates, ecosystem services, and climate change. To address this issue, we review how invertebrates respond to climate change. We then review how invertebrates both positively and negatively influence ecosystem services. Lastly, we provide some critical future directions for research needs, and suggest ways in which managers, scientists and other researchers may collaborate to tackle the complex issue of sustaining invertebrate‐mediated services under a changing climate.  相似文献   

10.
Climate change is driving a pervasive global redistribution of the planet's species. Species redistribution poses new questions for the study of ecosystems, conservation science and human societies that require a coordinated and integrated approach. Here we review recent progress, key gaps and strategic directions in this nascent research area, emphasising emerging themes in species redistribution biology, the importance of understanding underlying drivers and the need to anticipate novel outcomes of changes in species ranges. We highlight that species redistribution has manifest implications across multiple temporal and spatial scales and from genes to ecosystems. Understanding range shifts from ecological, physiological, genetic and biogeographical perspectives is essential for informing changing paradigms in conservation science and for designing conservation strategies that incorporate changing population connectivity and advance adaptation to climate change. Species redistributions present challenges for human well‐being, environmental management and sustainable development. By synthesising recent approaches, theories and tools, our review establishes an interdisciplinary foundation for the development of future research on species redistribution. Specifically, we demonstrate how ecological, conservation and social research on species redistribution can best be achieved by working across disciplinary boundaries to develop and implement solutions to climate change challenges. Future studies should therefore integrate existing and complementary scientific frameworks while incorporating social science and human‐centred approaches. Finally, we emphasise that the best science will not be useful unless more scientists engage with managers, policy makers and the public to develop responsible and socially acceptable options for the global challenges arising from species redistributions.  相似文献   

11.
This paper addresses some of the conceptual issues involved in the analysis of the age and origin of mediterranean‐climate plant taxa, paying particular attention to three topics: (1) the importance of an explicit time frame in the definition of biogeographical origins, (2) the distinction between the age of traits and the age of taxa, and (3) the idea of mediterranean‐type ecosystems as environmental islands. (1) In California, recent analyses demonstrate that the diversity of species derived from different biogeographical origins is significantly correlated with temperature and precipitation gradients. These patterns support the hypothesis that niche conservatism is an important factor structuring modern diversity gradients. However, depending on how far back in time one looks, a species may be assigned to different origins; future discussions of biogeographical origins need to address the appropriate time frame for analysis. (2) Past research has demonstrated distinctive trait syndromes among woody plants of the Mediterranean, Chile, California and Mexico, and proposed that the syndromes are associated with lineages of different age in these floras. Reanalysis of individual traits demonstrates greater variability among regions than previously reported. The classification of plants into ‘old’ and ‘new’ genera is re‐evaluated, and it is suggested that greater attention be paid to the age of traits, rather than to the age of taxa, especially at an arbitrary rank such as genus. (3) The idea of mediterranean‐climate regions as ‘climatic islands’ is examined. Space–time diagrams of climate enable one to view the emergence of distinctive climatic regions in a continental context. The terms ‘synclimatic’ and ‘anticlimatic’ are proposed, referring to migration routes that parallel climate contours in space and time versus those that cross contours (including the case of geographic stasis in the face of climate change), respectively. Mediterranean‐climate regions have served as important case studies in plant ecology and evolution, and merit continued close examination in the light of continued advances in phylogenetics and palaeoecology.  相似文献   

12.
Geoscientists and ecologists alike must confront the impact of climate change on ecosystems and the services they provide. In the marine realm, major changes are projected in net primary and export production, with significant repercussions on food security, carbon storage, and climate system feedbacks. However, these projections do not include the potential for rapid linear evolution to facilitate adaptation to environmental change. Climate genomics confronts this challenge by assessing the vulnerability of ecosystem services to climate change. Because DNA is the primary biological repository of detectable environmentally selected mutations (showing evidence of change before impacts arise in morphological or metabolic patterns), genomics provides a window into selection in response to climate change, while also recording neutral processes deriving from stochastic mechanisms (Lowe et al., Trends in Ecology & Evolution, 2017; 32:141–152). Due to the revolution afforded by sequencing technology developments, genomics can now meet ecologists and climate scientists in a cross-disciplinary space fertile for collaborations. Collaboration between geoscientists, ecologists, and geneticists must be reinforced in order to combine modeling and genomics approaches at every scale to improve our understanding and the management of ecosystems under climate change. To this end, we present advances in climate genomics from plankton to larger vertebrates, stressing the interactions between modeling and genomics, and identifying future work needed to develop and expand the field of climate genomics.  相似文献   

13.
Global climate change will undoubtedly be a pressure on coastal marine ecosystems, affecting not only species distributions and physiology but also ecosystem functioning. In the coastal zone, the environmental variables that may drive ecological responses to climate change include temperature, wave energy, upwelling events and freshwater inputs, and all act and interact at a variety of spatial and temporal scales. To date, we have a poor understanding of how climate‐related environmental changes may affect coastal marine ecosystems or which environmental variables are likely to produce priority effects. Here we use time series data (17 years) of coastal benthic macrofauna to investigate responses to a range of climate‐influenced variables including sea‐surface temperature, southern oscillation indices (SOI, Z4), wind‐wave exposure, freshwater inputs and rainfall. We investigate responses from the abundances of individual species to abundances of functional traits and test whether species that are near the edge of their tolerance to another stressor (in this case sedimentation) may exhibit stronger responses. The responses we observed were all nonlinear and some exhibited thresholds. While temperature was most frequently an important predictor, wave exposure and ENSO‐related variables were also frequently important and most ecological variables responded to interactions between environmental variables. There were also indications that species sensitive to another stressor responded more strongly to weaker climate‐related environmental change at the stressed site than the unstressed site. The observed interactions between climate variables, effects on key species or functional traits, and synergistic effects of additional anthropogenic stressors have important implications for understanding and predicting the ecological consequences of climate change to coastal ecosystems.  相似文献   

14.
Avian seasonal timing is a life‐history trait with important fitness consequences and which is currently under directional selection due to climate change. To predict micro‐evolution in this trait, it is crucial to properly estimate its heritability. Heritabilities are often estimated from pedigreed wild populations. As these are observational data, it leaves the possibility that the resemblance between related individuals is not due to shared genes but to ontogenetic effects; when the environment for the offspring provided by early laying pairs differs from that by late pairs and the laying dates of these offspring when they reproduce themselves is affected by this environment, this may lead to inflated heritability estimates. Using simulation studies, we first tested whether and how much such an early environmental effect can inflate heritability estimates from animal models, and we showed that pedigree structure determines by how much early environmental effects inflate heritability estimates. We then used data from a wild population of great tits (Parus major) to compare laying dates of females born early in the season in first broods and from sisters born much later, in second broods. These birds are raised under very different environmental conditions but have the same genetic background. The laying dates of first and second brood offspring do not differ when they reproduce themselves, clearly showing that ontogenetic effects are very small and hence, family resemblance in timing is due to genes. This finding is essential for the interpretation of the heritabilities reported from wild populations and for predicting micro‐evolution in response to climate change.  相似文献   

15.
产甲烷古菌研究进展   总被引:20,自引:2,他引:20  
承磊  郑珍珍  王聪  张辉 《微生物学通报》2016,43(5):1143-1164
产甲烷古菌是一类严格厌氧的古菌,只能利用简单的化合物进行产甲烷生长。产甲烷古菌在地球生命起源和进化、全球气候变化、碳生物地球化学循环和农业废弃物资源化利用等领域,都起着至关重要的作用。系统了解产甲烷古菌的生物学特征,将有助于在这些基础和应用领域的研究工作。本文主要从生理生化特征、代谢途径、能量储存和系统分类等方面介绍产甲烷古菌的研究进展。  相似文献   

16.
Changes in the seasonal timing of life history events are documented effects of climate change. We used a general model to study how dispersal and competitive interactions affect eco-evolutionary responses to changes in the temporal distribution of resources over the season. Specifically, we modeled adaptation of the timing of reproduction and population dynamic responses in two competing populations that disperse between two habitats characterized by an early and late resource peak. We investigated three scenarios of environmental change: (1) food peaks advance in both habitats, (2) in the late habitat only and (3) in the early habitat only. At low dispersal rates the evolutionarily stable timing of reproduction closely matched the local resource peak and the environmental change typically caused population decline. Larger dispersal rates rendered less intuitive eco-evolutionary population responses. First, dispersal caused mismatch between evolutionarily stable timing of reproduction and local resource peaks and as a result, reproductive output for subpopulations could increase as well as decrease when resource availability underwent temporal shifts. Second, population responses were contingent on competition between populations. This could accelerate population declines and cause extinctions or even reverse population trends from negative to positive compared to the low dispersal case. When dispersal rate was large and the early resource peak was advanced available niche space was reduced. Hence, even when a population survived the environmental change and obtained positive equilibrium population density, subsequent adaptation of competing populations could drive it to extinction due to convergent evolution and competitive exclusion. These results shed new light on the role of competition and dispersal for the evolution of timing of life history events and provide guidelines for understanding short and long-term population response to climate change.  相似文献   

17.
环境变化和人类活动的双重驱动正在快速地改变地球生态系统状态,呈现出了众多级联的资源环境问题,生态系统的状态变化和时空演变驱动因素以及相应的资源环境效应是大尺度陆地生态系统科学研究的永恒主题.观测和评估生态系统状态变化,发现和理解生态系统响应机制,认知和描述生态系统演变规律,预测和预警生态系统演变趋势,都依赖于大陆及全球...  相似文献   

18.
Phytoplankton are the unicellular photosynthetic microbes that form the base of aquatic ecosystems, and their responses to global change will impact everything from food web dynamics to global nutrient cycles. Some taxa respond to environmental change by increasing population growth rates in the short‐term and are projected to increase in frequency over decades. To gain insight into how these projected ‘climate change winners’ evolve, we grew populations of microalgae in ameliorated environments for several hundred generations. Most populations evolved to allocate a smaller proportion of carbon to growth while increasing their ability to tolerate and metabolise reactive oxygen species (ROS). This trade‐off drives the evolution of traits that underlie the ecological and biogeochemical roles of phytoplankton. This offers evolutionary and a metabolic frameworks for understanding trait evolution in projected ‘climate change winners’ and suggests that short‐term population booms have the potential to be dampened or reversed when environmental amelioration persists.  相似文献   

19.
The evolution of viviparity is a key life‐history transition in vertebrates, but the selective forces favoring its evolution are not fully understood. With >100 origins of viviparity, squamate reptiles (lizards and snakes) are ideal for addressing this issue. Some evidence from field and laboratory studies supports the “cold‐climate” hypothesis, wherein viviparity provides an advantage in cold environments by allowing mothers to maintain higher temperatures for developing embryos. Surprisingly, the cold‐climate hypothesis has not been tested using both climatic data and phylogenetic comparative methods. Here, we investigate the evolution of viviparity in the lizard family Phrynosomatidae using GIS‐based environmental data, an extensive phylogeny (117 species), and recently developed comparative methods. We find significant relationships between viviparity and lower temperatures during the warmest (egg‐laying) season, strongly supporting the cold‐climate hypothesis. Remarkably, we also find that viviparity tends to evolve more frequently at tropical latitudes, despite its association with cooler climates. Our results help explain this and two related patterns that seemingly contradict the cold‐climate hypothesis: the presence of viviparous species restricted to low‐elevation tropical regions and the paucity of viviparous species at high latitudes. Finally, we examine whether viviparous taxa may be at higher risk of extinction from anthropogenic climate change.  相似文献   

20.
Cicadas are large hemipteran insects characterized by unique life‐history traits, such as extraordinarily long life cycles, a subterranean/terrestrial habitat transition, xylem sap‐feeding and melodious sound production. These fascinating features of cicadas have attracted much attention in the research fields of physiology and ecology, resulting in an accumulation of knowledge about the underlying mechanisms and their adaptive significance. Although community‐level responses to recent climate change have already been documented for cicada fauna, an understanding of their causal relationships is still at the initial stages. In this review, we summarize current knowledge about environmental adaptations of cicadas to facilitate a deeper understanding of the ecophysiological consequences of climate change. We first outline the diverse responses of cicadas to environmental factors, mainly temperature, and their strategies to cope with naturally fluctuating environments. Then, we discuss the consequence of upcoming climate change by consolidating the current findings. This review highlights the fact that fitness‐relevant activities are fine‐tuned to a species‐specific temperature optimum to achieve habitat segregation among coexisting species, implying that cicada diversity is highly susceptible to climate warming. As a result of their conspicuous large bodies and species‐specific calling songs, cicadas are promising candidates for use as bioindicator species to monitor ecological impacts of climate change. We encourage future works that continuously quantify population‐ and community‐level responses to upcoming climate change, as well as unveil mechanistic links between physiological traits and ecological consequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号