首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An intracellular clotting factor, factor B, which is closely associated with the hemolymph coagulation system of horseshoe crab (Tachypleus tridentatus), was purified and characterized. The purified preparation gave a single band (Mr = 64,000) on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) in the absence of 2-mercaptoethanol, while three bands (Mr = 64,000, 40,000, and 25,000) were detected on SDS-PAGE after reduction. This preparation was converted by limulus clotting factor C to an activated form, factor B, with Mr = 56,000 consisting of a heavy chain (Mr = 32,000) and a light chain (Mr = 25,000) bridged by disulfide linkage(s). The factor B, which was produced separately by treating the partially purified factor B with factor C, was also purified. It gave a single band on unreduced SDS-PAGE and two bands on reduced SDS-PAGE. The purified factor B had Mr of 56,000 consisting of a heavy chain (Mr = 32,000) and a light chain (Mr = 25,000). These results indicated that the purified factor B zymogen is a mixture of single-chain and two-chain forms, both of which have the same molecular weight of 64,000, and that these two forms are converted to factor B by factor C. The diisopropyl phosphorofluoridate-sensitive site of factor B was found in the heavy chain. The reconstitution studies using purified factor C, factor B, proclotting enzyme and coagulogen in the presence of lipopolysaccharide indicated that factor B is an essential component to complete sequential activation of the limulus clotting system, and that it specifically activates proclotting enzyme to the active clotting enzyme.  相似文献   

2.
A proclotting enzyme associated with the hemolymph coagulation system of limulus (Tachypleus tridentatus) was highly purified from the hemocyte lysate. The first step of purification was performed by chromatography of the lysate on a pyrogen-free dextran sulfate-Sepharose CL-6B column, which was essential for separation of the proclotting enzyme from its activator, named factor B. The following steps consisted of column chromatographies on DEAE-Sepharose CL-6B, Sephadex G-150, benzamidine-CH-Sepharose and Sephacryl S-300. Through these procedures, 1.4 mg of the purified material was obtained from 630 ml of the lysate and approximately 300-fold purification was achieved. The preparation gave a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) in the presence and absence of 2-mercaptoethanol. The single-chain proclotting enzyme was a glycoprotein with an apparent molecular weight of 54,000, and no gamma-carboxyglutamic acid was detected. The proclotting enzyme was converted to its active form by purified factor B or by trypsin. The resulting clotting enzyme had a molecular weight of 54,000, consisting of a heavy chain of Mr = 31,000 and a light chain of Mr = 25,000. The serine active site of the clotting enzyme was found in the heavy chain. The chemical analyses of the isolated heavy and light chains indicated that the activation of the proclotting enzyme to its active form by factor B or trypsin is induced by a limited proteolysis, yielding two chains bridged by a disulfide linkage(s).  相似文献   

3.
Proclotting enzyme is an intracellular serine protease zymogen closely associated with an endotoxin-sensitive hemolymph coagulation system in limulus. Its active form, clotting enzyme, catalyzes conversion of coagulogen to insoluble coagulin gel. We present here the cDNA and amino acid sequences, disulfide locations, and subcellular localization of proclotting enzyme. The isolated cDNA for proclotting enzyme consists of 1,501 base pairs. The open reading frame of 1,125 base pairs encodes a sequence comprising 29 amino acid residues of prepro-sequence and 346 residues of the mature protein with a molecular mass of 38,194 Da. Three potential glycosylation sites for N-linked carbohydrate chains were confirmed to be glycosylated. Moreover, the zymogen contains six O-linked carbohydrate chains in the amino-terminal light chain generated after activation. The cleavage site that accompanies activation catalyzed by trypsin-like active factor B, proved to be an Arg-Ile bond. The resulting carboxyl-terminal heavy chain is composed of a typical serine protease domain, with a sequence similar to that of human coagulation factor XIa (34.5%) or factor Xa (34.1%). The light chain has a unique disulfide-knotted domain which shows no significant homology with any other known proteins. Thus, this proclotting enzyme has a mammalian serine protease domain and a structural domain not heretofore identified in coagulation and complement factors. Immunohistochemical studies showed that the proclotting enzyme is localized in large granules of hemocytes.  相似文献   

4.
Seventeen murine monoclonal antibodies (mAbs) against horseshoe crab clotting factor, factor C, were prepared and characterized. When the binding sites of these mAbs were analyzed by immunoblotting, ten mAbs recognized nonreduced factor C, five mAbs were directed against the heavy chain, and two mAbs were directed against the B chain. Three mAbs, 1H4, 2C12, and 2A7, one selected from each group, were used for further study. The mAb 1H4, which recognized only nonreduced factor C molecule, inhibited the factor C activity in a dose-dependent manner. It also inhibited lipopolysaccharide (LPS)- and alpha-chymotrypsin-mediated activations of the zymogen factor C, suggesting that 1H4 binds close to the active site and/or the substrate-binding site located in the serine protease domain (B chain) of factor C. On the other hand, 2C12 and 2A7 recognized, respectively, an epitope located in the heavy and the B chains, and inhibited LPS-mediated activation of factor C, but not alpha-chymotrypsin-mediated activation of factor C or factor C activity. Both F(ab')2 and Fab' fragments derived from 2C12 inhibited LPS-mediated activation in the same manner. These three mAbs did not bind with LPS, although a factor C-mAb complex was able to bind LPS, suggesting that the LPS-mediated activation of the zymogen factor C was induced through intermolecular interaction between the LPS-bound factor C molecules. The dissociation constants (Kd) for 1H4, 2C12, and 2A7 binding to factor C were determined as 1.9 x 10(-9), 0.6 x 10(-10), and 1.8 x 10(-10) M, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
A hemocyte lysate from horseshoe crab produced a gel, when exposed to Gram-negative bacterial endotoxins. This gelation reaction of the lysate, so-called Limulus test, has been widely employed as a simple and very sensitive assay method for endotoxins. Recent biochemical studies on the principle of Limulus test indicate that the hemocytes contain several serine protease zymogens, which constitute a coagulation cascade triggered by endotoxins, and that there is a (1 3)--d-glucan-mediated coagulation pathway which also results in the formation of gel. Up to now, six protein components, designated coagulogen, proclotting enzyme, factor B, factor C, factor G and anti-LPS factor, all of which are closely associated with the endotoxin-mediated coagulation pathway, have been purified and biochemically characterized. Among these components, the complete amino acid sequences of coagulogens isolated from one American and three Asian species of horseshoe crabs have been established. Moreover, the reconstitution experiment using the isolated clotting factors, C, B, proclotting enzyme and coagulogen in the presence of endotoxin, leads to the formation of coagulin get. Based on these results, we propose here a mechanism for the Limulus coagulation cascade.  相似文献   

6.
The interaction between lipopolysaccharide (LPS) and an LPS-sensitive serine protease zymogen, factor C, purified from horseshoe crab (Tachypleus tridentatus) hemocytes, was investigated to elucidate the LPS-mediated activation of factor C. The rate of activation of the zymogen factor C was highly dependent on the concentration of LPS and on temperature, and the curve of amount of LPS versus activation showed saturation at 37 degrees C. Moreover, a high-molecular-mass complex formed between factor C and LPS was found in a gel-filtration experiment on a Sepharose 4B column. This complex formation was also confirmed by double diffusion analysis on agarose plates. Triton X-100, which destroys LPS micelles, strongly inhibited the LPS-mediated activation of factor C but not activated factor C. These results indicate that the binding of factor C with LPS is required for its activation and that only LPS-associated factor C generates the active factor C. On the other hand, the LPS-mediated activation of factor C was strongly inhibited by the S-alkylated heavy chain derived from factor C. In contrast, the S-alkylated factor C-light chain did not show any inhibitory effect on the activation of factor C, suggesting that the heavy chain located in the NH2-terminal portion of factor C contains an LPS-binding region.  相似文献   

7.
The inhibition by dimethyl sulfoxide of the coagulation of the Carcinoscorpius Amoebocyte Lysate was found to be due to the inactivation of Factor C enzyme in the coagulation cascade and not due to the inactivation of proclotting enzyme as earlier reported in studies done on Limulus. Kinetic studies on both purified enzymes revealed that dimethyl sulfoxide completely but reversibly inhibited the activation of Factor C by endotoxins in a non-competitive manner whereas, it did not inhibit, albeit retard the activity of proclotting enzyme. This result also explains why clotting enzyme was shown to be largely unaffected by dimethyl sulfoxide.  相似文献   

8.
The horseshoe crab clotting factor, factor C, present in the hemocytes is a serine-protease zymogen activated with lipopolysaccharide. It is a two-chain glycoprotein (Mr = 123,000) composed of a heavy chain (Mr = 80,000) and a light chain (Mr = 43,000) [T. Nakamura et al. (1986) Eur. J. Biochem. 154, 511-521]. In our continued study of this zymogen, we have now also found a single-chain form of factor C (Mr = 123,000) in the hemocyte lysate. The heavy chain had the NH2-terminal sequence of Ser-Gly-Val-Asp-, consistent with that of the single-chain factor C, indicating that the heavy chain is derived from the NH2-terminal part of the molecule. The light chain had an NH2-terminal sequence of Ser-Ser-Gln-Pro-. Incubation of the two-chain zymogen with lipopolysaccharide resulted in the cleavage of a Phe-Ile bond between residues 72 and 73 of the light chain. Concomitant with this cleavage, the A (72 amino acid residues) and B chains derived from the light chain were formed. The complete amino acid sequence of the A chain was determined by automated Edman degradation. The A chain contained a typical segment which is similar in sequence to a family of repeats in human beta 2-glycoprotein I, complement factors B, protein H, C4b-binding protein, and coagulation factor XIII b subunit. The NH2-terminal sequence of the B chain was Ile-Trp-Asn-Gly-. This chain contained the serine-active site sequence-Asp-Ala-Cys-Ser-Gly-Asp-Ser-Gly-Gly-Pro-. These results indicate that horseshoe crab factor C exists in the hemocytes in a single-chain zymogen form and is converted to an active serine protease by hydrolysis of a specific Phe-Ile peptide bond.  相似文献   

9.
Human blood coagulation Factor XIa was reduced and alkylated under mild conditions. The mixture containing alkylated heavy and light chains was subjected to affinity chromatography on high Mr kininogen-Sepharose. Alkylation experiments using [14C]iodoacetamide showed that a single disulfide bridge between the light and heavy chains was broken to release the light chain. The alkylated light chain (Mr = 35,000) did not bind to high Mr kininogen-Sepharose while the heavy chain (Mr = 48,000), like Factors XI and XIa, bound with high affinity. The isolated light chain retained the specific amidolytic activity of native Factor XIa against the oligopeptide substrate, pyroGlu-Pro-Arg-p-nitroanilide. Km and kcat values for this substrate were 0.56 mM and 350 s-1 for both Factor XIa and its light chain, and the amidolytic assay was not affected by CaCl2. However, in clotting assays using Factor XI-deficient plasma in the presence of kaolin, the light chain was only 1% as active as native Factor XIa. Human coagulation Factor IX was purified and labeled with sodium [3H]borohydride on its carbohydrate moieties. When this radiolabeled Factor IX was mixed with Factor XIa, an excellent correlation was observed between the appearance of Factor IXa clotting activity and tritiated activation peptide that was soluble in cold trichloroacetic acid. Factor XIa in the presence of 5 mM CaCl2 activated 3H-Factor IX 600 times faster than Factor XIa in the presence of EDTA. In the absence of calcium, Factor XIa and its light chain were equally active in activating 3H-Factor IX. In contrast to Factor XIa, the light chain in this reaction was inhibited by calcium ions such that, in the presence of 5 mM CaCl2, Factor XIa was 2000 times more effective than its light chain. Neither phospholipid nor high Mr kininogen and kaolin affected the activity of Factor XIa or its light chain in the activation of 3H-Factor IX. These observations show that the light chain region of Factor XIa contains the entire enzymatic active site. The heavy chain region contains the high affinity binding site for high Mr kininogen. Furthermore the heavy chain region of Factor XIa plays a major role in the calcium-dependent mechanisms that contribute to the activation of Factor IX.  相似文献   

10.
Exposure of limulus hemocytes to bacterial endotoxins (lipopolysaccharide, LPS) results in the activation of the intracellular clotting system, consisting of several protein components. During the separation of these components, a potent anticoagulant, named anti-LPS factor, which inhibits the endotoxin-mediated activation of the coagulation cascade, was found in hemocytes from both Tachypleus tridentatus and Limulus polyphemus (Tanaka, S., et al. (1982) Biochem. Biophys. Res. Commun. 105, 717-723). The principle isolated from the Tachypleus hemocyte lysate by column chromatographies on dextran sulfate-Sepharose CL-6B and Sephadex G-50 under sterile conditions was a simple basic protein with an apparent molecular weight of 15,000. It consisted of a single chain polypeptide containing a total of 128 amino acids. The COOH-terminal end was presumed to be histidine, but no NH2-terminal end reactive to phenylisothiocyanate was detected. The isolated anti-LPS factor specifically inhibited the endotoxin-mediated activation of factor C, which has recently been identified as an LPS-sensitive serine protease zymogen in the hemocytes. This inhibition appeared to be due to the binding of anti-LPS factor with LPS. Moreover, anti-LPS factor had an antibacterial effect on the growth of Gram-negative bacteria (Salmonella minnesota R595 and 1114W) but not on that of Gram-positive bacteria (Staphylococcus aureus 209P). These biological activities of the isolated anti-LPS factor suggest an important role in cellular defence of limulus against microbial invasion.  相似文献   

11.
We developed a novel immunohistochemical method for in vivo detection of endotoxin (LPS) localization in relation to the biologically active region, by use of factor C, an initiation factor in the Limulus clotting system which is mediated by LPS, as a specific affinoligand to LPS, and using rabbit anti-factor C IgG. The competitive inhibition of various LPS, lipid A, anti-LPS factor, or polymyxin B to factor C binding indicates that the immunohistochemical reaction is specific to LPS. Investigating the time course of LPS distribution during 6 hr after IV injection of 5 mg/kg to rats, the greatest uptake of LPS was evident in the reticuloendothelial system (RES), particularly in Kupffer cells, 5 min after injection, and in adrenocortical cells 3 hr after the injection. Shortly after the injection, LPS also appeared in platelet thrombi, intravascular monocytes, and a few neutrophils, and on the surface of endothelial cells in liver, kidney, spleen, lung, and aorta. Both smooth and rough forms of LPS were detectable and there was no apparent difference in their localization. This approach facilitates immunohistochemical analyses of the mechanisms involved in development of endotoxemia.  相似文献   

12.
To investigate the function of the gamma-carboxyglutamic acid (Gla) residues of factor IXa in the activation of factor X, a new species of bovine factor IXa, designated "factor IXa beta'," and its corresponding Gla-domainless form, designated "Gla-domainless factor IXa beta'," were prepared under controlled conditions and characterized. First, bovine factor IXa alpha was converted by alpha-chymotrypsin in the presence of calcium ions to factor IXa beta' (Mr 47,000). Compared with factor IXa beta, factor IXa beta' had essentially identical activities towards a synthetic substrate, benzoyl-L-arginine ethylester (BAEE), towards an active site titrant, p-nitrophenyl-p'-guanidinobenzoate, and towards protein substrate, namely, factor X. Next, the Gla-rich region (residues 1-41) of the light chain was removed from factor IXa beta' by additional selective cleavage by alpha-chymotrypsin in the absence of calcium ions. Gla-domainless factor IXa beta' was purified to homogeneity on a column of DEAE-Sepharose CL-6B. The heavy chain was not altered by either chymotryptic digestion. Functional comparisons of the three activated forms, namely, factor IXa alpha, factor IXa beta', and Gla-domainless factor IXa beta', with factor IXa beta revealed that all four activated forms of factor IX had one active-site residue per molecule and essentially identical specific esterase activity towards BAEE. However, the clotting activity of Gla-domainless factor IXa beta' was less than 0.5% of that of factor IXa beta'.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Human plasma kallikrein participates in the contact activation system of plasma. The light chain of kallikrein contains the enzymatic active site; the heavy chain is required for binding to high molecular weight kininogen and for surface-dependent activation of coagulation. This study has examined the functional contributions of the heavy chain of kallikrein and of high molecular weight kininogen in the inactivation of kallikrein and of its isolated light chain by alpha 2-macroglobulin (alpha 2M). Irreversible inhibition was observed for both kallikrein and its light chain, with the initial formation of a reversible enzyme-inhibitor complex. The second-order rate constants for these reactions were 3.5 X 10(5) and 4.8 X 10(5) M-1 min-1 for kallikrein and its light chain, respectively. When present in excess, high molecular weight kininogen decreased the rate of kallikrein inactivation by alpha 2M, whereas the rate of inactivation of the light chain was unaffected by high molecular weight kininogen. Although at a drastically reduced rate, high molecular weight kininogen was cleaved by alpha 2M-bound kallikrein. Sodium dodecyl sulfate gradient polyacrylamide gel electrophoresis was used to study complex formation between alpha 2M and kallikrein or its light chain. Under reducing conditions, four kallikrein-alpha 2M complexes were observed. Three of these complexes consisted of alpha 2M and the light chain of kallikrein (Mr 123 000, 235 000, and 330 000). Two alpha 2M-kallikrein light chain complexes incorporated [3H]diisopropyl fluorophosphate ( [3H]DFP) whereas the Mr 330 000 complex did not react with [3H]DFP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Lipopolysaccharide (LPS) was isolated and purified from Wolinella recta ATCC 33238 by the phenol-water procedure and RNAase treatment. The sugar components of the LPS were rhamnose, mannose, glucose, heptose, 2-keto-3-deoxyoctonate (KDO) (3-deoxy-D-manno-octulosonate) and glucosamine. The degraded polysaccharide prepared from LPS by mild acid hydrolysis was fractionated by Sephadex G-50 gel chromatography into three fractions: (1) a high-molecular-mass fraction, eluting just behind the void volume, consisting of a long chain of rhamnose (22 mols per 3 mols of heptose residue) with attached core oligosaccharide; (2) a core oligosaccharide containing heptose, glucose and KDO, substituted with a short side chain of rhamnose; (3) a low-molecular-mass fraction containing KDO and phosphate. The main fatty acids of the lipid A were C12:0, C14:0, 3-OH-C14:0 and 3-OH-C16:0. The biological activities of the LPS were similar to those of Salmonella typhimurium LPS in activation of the clotting enzyme of Limulus amoebocytes, the Schwartzman reaction and mitogenicity for murine lymphocytes, although all the biological activities of lipid A were lower than those of intact LPS.  相似文献   

15.
During the initiation of intrinsic coagulation factors XI and XIa interact intimately with several other coagulation proteins (factor XIIa, high Mr kininogen, and factor IX) as well as with the platelet surface. To help elucidate these complex intramolecular interactions, we have prepared a collection of monoclonal antibodies directed against various epitopes in factor XI. We have utilized these reagents to isolate factor XI and the light chain of factor XIa on affinity columns, and to probe structure-function relationships involved in the interactions of factor XIa with factor IX. The isolated light chain of factor XIa retained greater than 90% of its amidolytic activity against the oligopeptide substrate pyro-Glu-Pro-Arg-pNA (S-2366), but only 3.8% of its clotting activity in a factor XIa assay and 1% of its factor IX activating activity in an activation peptide release assay. This suggests that regions of the heavy chain are required for development of coagulant activity and specifically for the interaction of factor XIa with factor IX. To test this hypothesis, the effects of three of the monoclonal antibodies (5F4, 1F1, and 3C1) on the function of factor XIa were examined. The results show that in a clotting assay the light chain-specific antibody (5F4) inhibits 100% of the factor XIa activity, whereas of the heavy chain-specific antibodies, one (3C1) inhibits 75% and another (1F1) only 17%. Similarly in the factor IX activation peptide release assay, antibody 5F4 inhibits 100% of the factor XIa activity, whereas 3C1 inhibits 75% and 1F1 inhibits 33%. We conclude that regions located in the heavy chain, in addition to those in the light chain, are involved in the interaction of factor XIa with factor IX and in the expression of the coagulant activity of factor XI.  相似文献   

16.
Lipopolysaccharides (LPS) were extracted from whole cells of seven strains of Bacteroides gingivalis--381, ATCC 33277, BH18/10, OMZ314, OMZ406, 6/26 and HW24D-1--by the phenol/water procedure, and purified by treatment with nuclease and by repeated ultracentrifugation. These LPS were composed of hexoses, hexosamines, fatty acids, phosphorus and phosphorylated 2-keto-3-deoxyoctonate (KDO). The major components of the lipid portion of these LPS were hexadecanoic, 3-hydroxyhexadecanoic, branched 3-hydroxypentadecanoic and branched 3-hydroxyheptadecanoic acids. All the LPS preparations induced marked mitogenic and in vitro polyclonal B cell activation responses in spleen cells from both C3H/HeN and C3H/HeJ mice, exhibited no definitive preparatory activity in the local Shwartzman reaction in rabbits, but were active in the chromogenic Limulus amoebocyte lysate test. A monoclonal antibody (mAb) raised against the LPS from B. gingivalis strain 6/26 reacted with LPS from all other B. gingivalis strains tested. Other mAbs raised against LPS from B. gingivalis strains 381 and 6/26 reacted with the LPS from strains 381, ATCC 33277, BH18/10 and 6/26 (these strains were termed LPS serogroup I), as revealed by ELISA and immunodiffusion. The LPS from these strains except for 6/26 showed almost identical patterns in SDS-PAGE stained with ammoniacal silver. A mAb raised against the LPS from B. gingivalis HW24D-1 reacted with the LPS from strains OMZ314, HW24D-1 and OMZ409 (LPS serogroup II). These LPS, except OMZ409, exhibited very similar profiles in SDS-PAGE. These results indicate that there are at least two different antigenic groups present among LPS from B. gingivalis strains, as well as a common, species-specific antigen.  相似文献   

17.
An intracellular clotting factor, factor C, found in the horseshoe crab hemocytes is a lipopolysaccharide-sensitive serine-protease zymogen, which participates in the initiation of the hemolymph clotting system [T. Nakamura et al. (1986) Eur. J. Biochem. 154, 511-521]. The subsequent study of this zymogen, using various synthetic lipid A analogues, revealed that the zymogen factor C is rapidly activated by acylated (beta 1-6)-D-glucosamine disaccharide bisphosphate (synthetic Escherichia coli-type lipid A), and the corresponding 4'-monophosphate analogues. However, the corresponding non-phosphorylated lipid A did not activate factor C, indicating that a phosphate ester group linked with the (beta 1-6)-D-glucosamine disaccharide backbone is required for the zymogen activation. During these studies we also found that the zymogen factor C is significantly activated by acidic phospholipids, such as phosphatidylinositol, phosphatidylglycerol and cardiolipin, but not at all by neutral phospholipids. The rate of this activation, however, was affected markedly by ionic strength in the reaction mixture, although such an effect was not observed in the lipid-A-mediated activation of factor C. A variety of negatively charged surfaces, such as sulfatide, dextran sulfate and ellagic acid, which are known as typical initiators for activation of the mammalian intrinsic clotting system, did not show any effect on the zymogen factor C activation. These results suggest that lipid A is the most effective trigger to initiate the activation of the horseshoe crab hemolymph clotting system.  相似文献   

18.
Crotalus atrox venom contains agents that render human fibrinogen and plasma incoagulable by thrombin. To elucidate the mechanism of alteration of fibrinogen clotting function by the venom, four immunochemically different proteases, I, II, III, and IV, were purified from the venom by anion-exchange chromatography and column gel filtration. All four proteases had anticoagulant activity rendering purified fibrinogen incoagulable. Proteases I and IV do not affect fibrinogen in plasma but in purified fibrinogen cleave the A alpha chain first and then the B beta and gamma chains. Both enzymes are metalloproteases containing a single polypeptide chain with 1 mol of zinc, are inhibited by (ethylenedinitrilo)tetraacetate and human alpha 2-macroglobulin, and have an optimal temperature of 37 degrees C and an optimal pH of 7. Protease I has a molecular weight (Mr) of 20 000 and is the most cationic. Protease IV has an Mr of 46 000 and is the most anionic glycoprotein with one free sulfhydryl group. Proteases II and III degrade both purified fibrinogen and fibrinogen in plasma, cleaving only the B beta chain and leaving the A alpha and gamma chains intact. Both enzymes are alkaline serine proteases, cleave chromogenic substrates at the COOH terminal of arginine or lysine, are inhibited by diisopropyl fluorophosphate and phenylmethanesulfonyl fluoride, and have an optimal temperature of 50-65 degrees C. Protease II is a single polypeptide chain glycoprotein with an Mr of 31 000. Protease III is a two polypeptide chain protein with an Mr of 24 000, each of the two chains having an Mr of 13 000; its activity is not affected by major protease inhibitors of human plasma. Proteases II and III are enzymes with unique and limited substrate specificity by cleaving only the B beta chain, releasing a peptide of Mr 5000 and generating a fibrinogen derivative of Mr 325 000, with intact A alpha and gamma chains and poor coagulability. Since the two enzymes are active in human plasma and serum, it is postulated that proteases II and III can mediate anticoagulant effects in vivo after envenomation.  相似文献   

19.
A fibrinolytic enzyme was isolated from a marine green alga, Codium divaricatum, and designated C. divaricatum protease (CDP). This protease effectively hydrolyzed fibrinogen A alpha chain, while it had very low hydrolyzing efficiency for B beta and gamma chains. This property was similar to that of alpha-fibrinogenase isolated from snake venom. Protease activity peaked at pH 9, and was completely inhibited by diisopropyl fluorophosphate (DFP) and phenylmethylsulfonyl fluoride (PMSF), identifying it as a serine protease. Its molecular form was single polypeptide structure and molecular weight was estimated as 31,000 by SDS-PAGE. Fibrinogen clotting enzyme was also identified in a fraction by ion-exchange chromatography. Analysis of clots formed by the enzyme and by thrombin by SDS-PAGE showed that the fibrinogen clotting enzyme would act like thrombin and have high substrate specificity.  相似文献   

20.
J R Sellers  E V Harvey 《Biochemistry》1984,23(24):5821-5826
It has previously been shown that the regulatory light chains of myosin from Limulus, the horseshoe crab, can be phosphorylated either by purified turkey gizzard smooth muscle myosin light chain (MLC) kinase or by a crude kinase fraction prepared from Limulus muscle [Sellers, J. R. (1981) J. Biol. Chem. 256, 9274-9278]. This phosphorylation was shown to be associated with a 20-fold increase in the actin-activated MgATPase activity of the myosin. We have now purified the Ca2+-calmodulin-dependent MLC kinase from Limulus muscle to near homogeneity by using a combination of low ionic strength extraction, ammonium sulfate fractionation, and chromatography on Sephacryl S-300 and DEAE-Sephacel. The final purification was achieved by affinity chromatography on a calmodulin-Sepharose 4B column. Sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis showed 95% of the protein to be comprised of a doublet with Mr = 39000 and 37000. Electrophoresis of the kinase fraction under nondenaturing conditions resulted in a partial separation of the two major bands and demonstrated that each had catalytic activity. An SDS-polyacrylamide gel overlayed with 125I-calmodulin demonstrated that both the Mr 39K and the Mr 37K proteins bind calmodulin. Neither of the bands could be phosphorylated by the catalytic subunit of cAMP-dependent protein kinase. With Limulus myosin light chains as a substrate, the Vmax was 15.4 mumol min-1 mg-1, and the Km was 15.6 microM. The KD for calmodulin was determined to be 6 nM. The enzyme did not phosphorylate histones, casein, actin, or tropomyosin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号