首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The C-terminal 42 kDa fragments of the P. falciparum Merozoite Surface Protein 1, MSP1-42 is a leading malaria vaccine candidate. MSP1-33, the N-terminal processed fragment of MSP1-42, is rich in T cell epitopes and it is hypothesized that they enhance antibody response toward MSP1-19. Here, we gave in vivo evidence that T cell epitope regions of MSP1-33 provide functional help in inducing anti-MSP1-19 antibodies. Eleven truncated MSP1-33 segments were expressed in tandem with MSP1-19, and immunogenicity was evaluated in Swiss Webster mice and New Zealand White rabbits. Analyses of anti-MSP1-19 antibody responses revealed striking differences in these segments' helper function despite that they all possess T cell epitopes. Only a few fragments induced a generalized response (100%) in outbred mice. These were comparable to or surpassed the responses observed with the full length MSP1-42. In rabbits, only a subset of truncated antigens induced potent parasite growth inhibitory antibodies. Notably, two constructs were more efficacious than MSP1-42, with one containing only conserved T cell epitopes. Moreover, another T cell epitope region induced high titers of non-inhibitory antibodies and they interfered with the inhibitory activities of anti-MSP1-42 antibodies. In mice, this region also induced a skewed TH2 cellular response. This is the first demonstration that T cell epitope regions of MSP1-33 positively or negatively influenced antibody responses. Differential recognition of these regions by humans may play critical roles in vaccine induced and/or natural immunity to MSP1-42. This study provides the rational basis to re-engineer more efficacious MSP1-42 vaccines by selective inclusion and exclusion of MSP1-33 specific T cell epitopes.  相似文献   

2.
目的:探讨在海马神经元和小胶质细胞共培养体系中转化生长因子-β1(TGF-β1)对β淀粉样肽1-42(Aβ1-42)诱导的小胶质细胞激活表达和分泌细胞因子的影响。方法:将大鼠海马神经元和小胶质细胞进行共同培养,于共同培养后第5日,加入TGF-β1(5 or 20 ng/ml),1 h后加入Aβ1-42(5 μmol/L),继续培养72 h后用于后续实验,Western blot法检测诱导型一氧化氮合酶(iNOS)的蛋白表达;Real-time PCR和ELISA法检测肿瘤坏死因子-α(TNF-α)、白介素-1β(IL-1β)和胰岛素样生长因子(IGF-1)的mRNA表达和分泌。结果:在共同培养的海马神经元与小胶质细胞体系中,Aβ1-42诱导炎症因子iNOS、TNF-α和IL-1β的表达和/或分泌上调,神经营养因子IGF-1表达下调,TGF-β1预处理削弱上述Aβ1-42的作用。结论:TGF-β1明显抑制Aβ1-42诱导的小胶质细胞激活引起的炎性细胞因子的增加和神经营养因子的减少。  相似文献   

3.
The C-terminal region of the merozoite surface protein 1 (MSP1_(19)) is one of the mostpromising vaccine candidates against the erythrocytic forms of malaria.In the present study,a gene encodingPlasmodium falciparum MSP1_(19) was expressed in yeast Pichia pastoris.A non-glycosylated form of therecombinant protein MSP1_(19) was purified from culture medium.This recombinant protein maintains itsantigenicity.Significant immune responses were seen in C57BL/6 mice after the second immunization.Moreover,the specific antibodies recognized the native antigens of P.falciparum,The prevailing isotypesof immunoglobulin (Ig)G associated with immunization were IgG1,IgG2a and IgG2b.The antibodiesisolated from mouse sera immunized with MSP1_(19) can inhibit parasite growth in vitro.Based on theseimmunological studies,we concluded that MSP1_(19) deserves further evaluation in pre-clinical immunizationsagainst P.falciparum.  相似文献   

4.
Saccharomyces cerevisiae MPS1 encodes an essential protein kinase that has roles in spindle pole body (SPB) duplication and the spindle checkpoint. Previously characterized MPS1 mutants fail in both functions, leading to aberrant DNA segregation with lethal consequences. Here, we report the identification of a unique conditional allele, mps1-8, that is defective in SPB duplication but not the spindle checkpoint. The mutations in mps1-8 are in the noncatalytic region of MPS1, and analysis of the mutant protein indicates that Mps1-8p has wild-type kinase activity in vitro. A screen for dosage suppressors of the mps1-8 conditional growth phenotype identified the gene encoding the integral SPB component SPC42. Additional analysis revealed that mps1-8 exhibits synthetic growth defects when combined with certain mutant alleles of SPC42. An epitope-tagged version of Mps1p (Mps1p-myc) localizes to SPBs and kinetochores by immunofluorescence microscopy and immuno-EM analysis. This is consistent with the physical interaction we detect between Mps1p and Spc42p by coimmunoprecipitation. Spc42p is a substrate for Mps1p phosphorylation in vitro, and Spc42p phosphorylation is dependent on Mps1p in vivo. Finally, Spc42p assembly is abnormal in a mps1-1 mutant strain. We conclude that Mps1p regulates assembly of the integral SPB component Spc42p during SPB duplication.  相似文献   

5.
Tricyclodecan-9-yl-xanthogenate (D609) is an inhibitor of phosphatidylcholine-specific phospholipase C, and this agent also has been reported to protect rodents against oxidative damage induced by ionizing radiation. Previously, we showed that D609 mimics glutathione (GSH) functions and that a disulfide is formed upon oxidation of D609 and the resulting dixanthate is a substrate for GSH reductase, regenerating D609. Considerable attention has been focused on increasing the intracellular GSH levels in many diseases, including Alzheimer's disease (AD). Amyloid β-peptide [Aβ(1-42)], elevated in AD brain, is associated with oxidative stress and toxicity. The present study aimed to investigate the protective effects of D609 on Aβ(1-42)-induced oxidative cell toxicity in cultured neurons. Decreased cell survival in neuronal cultures treated with Aβ(1-42) correlated with increased free radical production measured by dichlorofluorescein fluorescence and an increase in protein oxidation (protein carbonyl, 3-nitrotyrosine) and lipid peroxidation (4-hydroxy-2-nonenal) formation. Pretreatment of primary hippocampal cultures with D609 significantly attenuated Aβ(1-42)-induced cytotoxicity, intracellular ROS accumulation, protein oxidation, lipid peroxidation and apoptosis. Methylated D609, with the thiol functionality no longer able to form the disulfide upon oxidation, did not protect neuronal cells against Aβ(1-42)-induced oxidative stress. Our results suggest that D609 exerts protective effects against Aβ(1-42) toxicity by modulating oxidative stress. These results may be of importance for the treatment of AD and other oxidative stress-related diseases.  相似文献   

6.
1-42, which is highly toxic to neural cells, is commonly present in the brains of people with Alzheimer’s disease. In this study, dynamic changes in cell mechanics were monitored under Aβ-induced toxicity. To investigate the changes in cellular mechanical properties, we used Aβ1-42 oligomer at different concentrations to treat human neuroblastoma SH-SY5H cells. Results demonstrated a two-stage dynamic change in cell mechanics during neurodegeneration. Additionally, Young’s modulus (YM) of the treated cells increased in a short period. The reasons include alteration in surface tension, osmotic pressure, and actin polymerization. Rough cellular membranes were observed from atomic force microscope (AFM) measurement. However, the cellular YM gradually decreased when the cells were continuously exposed to Aβ1-42 or to a high concentration of Aβ1-42. The major reason for the decreased YM was microtubule disassembly. Dynamic change in YM reflects different activities in cytoplasm in response to Aβ1-42. The characteristic changes in cell mechanics provided insights into the dynamic neurodegeneration process of cells induced by Aβ1-42 oligomer.  相似文献   

7.
Abstract An enzyme-linked immunosorbent assay (ELISA) has been developed to measure antibody levels in human sera to a candidate vaccine antigen, merozoite surface protein-1 (MSP1), of the malaria parasite Plasmodium falciparum . To ensure the detection of antibodies reactive with important conformational epitopes, antigens used in the ELISA were obtained from either in vitro parasite cultures, or from a baculovirus expression system in which correct folding of recombinant MSP1-derived polypeptides has been previously demonstrated. The specificity of the ELISA was confirmed using a novel antibody affinity select method. The assay was used to investigate the pattern of acquisition of anti-MSP1 antibodies in a cross-sectional survey of 387 3–8 year old residents of a malaria endemic area of the Gambia. A significant positive correlation between anti-MSP1 antibody levels and age was evident, though individual responses to two antigens corresponding to two distinct domains of the MSP1 varied widely.  相似文献   

8.
42kD恶性疟原虫裂殖子表面蛋白质 1C末端片段 (MSP1 42 )是当今重要的疟疾疫苗候选抗原。为获得大量构象正确的MSP1 42重组蛋白进行疫苗有效性试验 ,在毕氏酵母系统中分泌表达了MSP1 42重组蛋白。通过与一组特异性识别构象表位的单抗反应 ,该重组蛋白在重要构象表位上与天然蛋白质一致。由该蛋白质诱生的抗体能有效地抑制恶性疟原虫的体外生长 ,这些结果为进一步开展MSP1 42重组蛋白疫苗有效性试验提供了基础  相似文献   

9.
The activity of the superoxide-sensitive enzyme aconitase was monitored to evaluate the generation of superoxide in neuronal cell lines treated with beta-amyloid (Abeta) peptide 1-42. Treatment of differentiated and undifferentiated rat PC12 and human neuroblastoma SK-N-SH cells with soluble Abeta1-42 (Abeta-derived diffusible ligands) or fibrillar Abeta1-42 caused a 35% reversible inactivation of aconitase, which preceded loss of viability and was correlated with altered cellular function. Aconitase was reactivated upon incubation of cellular extracts with iron and sulfur, suggesting that Abeta causes the release of iron from 4Fe-4S clusters. Abeta neurotoxicity was partially blocked by the iron chelator deferoxamine. These data suggest that increased superoxide generation and the release of iron from 4Fe-4S clusters are early events in Abeta1-42 neurotoxicity.  相似文献   

10.
11.
A series of novel ethyl 5-(4-aminophenyl)-1H-pyrazole-3-carboxylate derivatives were designed and synthesized and their in vitro acrosin inhibitory activities were evaluated. Most of the compounds exhibited acrosin inhibitory activities. Among them, three compounds (5l, 5n, and 5v) were more potent than that of the control TLCK. These provide a new structural type for the development of novel contraceptive acrosin inhibitory agents.  相似文献   

12.
A high-throughput screen found compounds that eliminate the dramatic membrane depolarization caused by the aggregated Alzheimer Abeta1-42 peptide, which activates mGluR1 receptors. The library was composed of known biologically active compounds; the cell-based assay measured the changes of membrane potential with a slow-acting voltage-sensitive dye. We found 10 potentially useful compounds, some of which reduce the Abeta-induced membrane depolarization up to 96%. Interestingly, the active compounds include specific tyrosine kinase inhibitors and inhibitors of certain chloride channels. We deduce that mGluR1 receptors, activated by Abeta1-42 or otherwise, can control the membrane potential via downstream activation of certain tyrosine kinases and certain ion channels. Dopaminergic and serotonergic agonists that emerged from the screen presumably compensate for the Abeta-induced membrane depolarization by themselves causing a hyperpolarization. The hit compounds, whose pharmacokinetics are known, show promise for the restoration of cognitive function in the treatment of early and mid-stage Alzheimer's disease.  相似文献   

13.
Human enterocytes are primary targets of infection by invasive bacterium Salmonella Typhimurium, and studies using nonintestinal epithelial cells established that S. Typhimurium activates Rho family GTPases, primarily CDC42, to modulate the actin cytoskeletal network for invasion. The host intracellular protein network that engages CDC42 and influences the pathogen's invasive capacity are relatively unclear. Here, proteomic analyses of canonical and variant CDC42 interactomes identified a poorly characterized CDC42 interacting protein, CDC42EP1, whose intracellular localization is rapidly redistributed and aggregated around the invading bacteria. CDC42EP1 associates with SEPTIN-7 and Villin, and its relocalization and bacterial engagement depend on host CDC42 and S. Typhimurium's capability of activating CDC42. Unlike CDC42, CDC42EP1 is not required for S. Typhimurium's initial cellular entry but is found to associate with Salmonella-containing vacuoles after long-term infections, indicating a contribution to the pathogen's intracellular growth and replication. These results uncover a new host regulator of enteric Salmonella infections, which may be targeted to restrict bacterial load at the primary site of infection to prevent systemic spread.  相似文献   

14.
Insoluble deposits of tau and amyloid precursor protein (APP) peptides Abeta characterize Alzheimer's disease. We studied the role of tau in the metabolism of APP in cells stably expressing APP Swedish mutation (CHOsw). Transient expression of tau in CHOsw cells caused morphological changes, bundling of microtubules and perinuclear aggregation of Golgi-derived vesicles. It also reduced the secretion of Abeta(1-40) and Abeta(1-42) without altering the APP steady state levels. This was accompanied by a reduction in the gamma-secretase and an increase in the insulin degrading enzyme activities. Our results suggest that tau may play an inhibitory role in the amyloidogenic activity of APP.  相似文献   

15.
Fibroblast growth factor (FGF) signaling is required for numerous aspects of neural development, including neural induction, CNS patterning and neurogenesis. The ability of FGFs to activate Ras/MAPK signaling is thought to be critical for these functions. However, it is unlikely that MAPK signaling can fully explain the diversity of responses to FGFs. We have characterized a Cdc42-dependent signaling pathway operating downstream of the Fgf8a splice isoform. We show that a Cdc42 effector 4-like protein (Cdc42ep4-l or Cep4l) has robust neuronal-inducing activity in Xenopus embryos. Furthermore, we find that Cep4l and Cdc42 itself are necessary and sufficient for sensory neurogenesis in vivo. Furthermore, both proteins are involved in Fgf8a-induced neuronal induction, and Cdc42/Cep4l association is promoted specifically by the Fgf8a isoform of Fgf8, but not by Fgf8b, which lacks neuronal inducing activity. Overall, these data suggest a novel role for Cdc42 in an Fgf8a-specific signaling pathway essential for vertebrate neuronal development.  相似文献   

16.
Yeow-Fong L  Lim L  Manser E 《FEBS letters》2005,579(22):5040-5048
Sorting nexin 9 (SNX9, also referred to as SH3PX1) is a binding partner for the non-receptor and Cdc42-associated kinase (ACK) in Drosophila and mammals. ACK1 is known to bind clathrin and influence EGF receptor endocytosis. SNX9 comprises an N-terminal Src homology domain 3 (SH3), a central PHOX homology (PX) domain, and a carboxyl-terminal coiled-coil region. In order to investigate SNX9 further we have made use of a novel in vivo biotinylation system to label various GST-SH3 domains and perform blot overlays, thereby identifying synaptojanin-1 as a partner for SNX9. Biotinylated SH3 domains were also used for specific identification of target proline-rich sequences in synaptojanin and ACK1 on synthetic peptides arrays. Direct assessment of SH3 binding efficiencies at different positions within the extensive proline-rich regions of these proteins were thus determined. While SNX9 targets a number of sequences within the proline-rich regions of synaptojanin, a single site was identified in human ACK1. By testing the association of various truncations of ACK1 with SNX9 we confirmed the dominant SNX9 binding domain in human ACK1 (residues 920-955). In the presence of SNX9 we find that synaptojanin is able to colocalize with distinct ACK1 containing vesicles, indicating that this tyrosine kinase is linked to many components involved in vesicle dynamics including clathrin, AP2 and synaptojanin-1.  相似文献   

17.
Toca-1 (transducer of Cdc42-dependent actin assembly) interacts with the Cdc42·N-WASP and Abi1·Rac·WAVE F-actin branching pathways that function in lamellipodia formation and cell motility. However, the potential role of Toca-1 in these processes has not been reported. Here, we show that epidermal growth factor (EGF) induces Toca-1 localization to lamellipodia, where it co-localizes with F-actin and Arp2/3 complex in A431 epidermoid carcinoma cells. EGF also induces tyrosine phosphorylation of Toca-1 and interactions with N-WASP and Abi1. Stable knockdown of Toca-1 expression by RNA interference has no effect on cell growth, EGF receptor expression, or internalization. However, Toca-1 knockdown cells display defects in EGF-induced filopodia and lamellipodial protrusions compared with control cells. Further analyses reveal a role for Toca-1 in localization of Arp2/3 and Abi1 to lamellipodia. Toca-1 knockdown cells also display a significant defect in EGF-induced motility and invasiveness. Taken together, these results implicate Toca-1 in coordinating actin assembly within filopodia and lamellipodia to promote EGF-induced cell migration and invasion.  相似文献   

18.
The conversion of soluble, non-toxic amyloid beta-protein (Abeta) to aggregated, toxic Abeta could be the key step in the development of Alzheimer's disease. Liposomal studies have proposed that Abeta-(1-40) preferentially recognizes a cholesterol-dependent cluster of gangliosides and a conformationally altered form of Abeta promotes the aggregation of the protein. Cell experiments using fluorescein-labeled Abeta-(1-40) supported this model. Here, the interaction of native Abeta-(1-42) with unfixed rat pheochromocytoma PC12 cells was visualized using the amyloid-specific dye Congo red. Abeta-(1-42) preferentially bound to ganglioside and cholesterol-rich domains of cell membranes and formed amyloids in a time-dependent manner. These observations corroborate the model involving ganglioside-mediated accumulation of Abeta. The NGF-induced differentiation of PC12 cells into neuron-like cells caused a marked increase in both gangliosides and cholesterol, and thereby greatly potentiated the accumulation and cytotoxicity of Abeta-(1-42). NGF-differentiated cells exposed to Abeta-(1-42) had degenerated neurites, in which ganglioside and cholesterol-rich domains were localized, preceding cell death. A reduction in the amount of cholesterol by the cholesterol synthesis inhibitor compactin almost nullified the formation of amyloids by Abeta-(1-42). Our system using NGF-differentiated PC12 cells and Congo red is useful for screening inhibitors of the formation of amyloids by and cytotoxicity of Abeta.  相似文献   

19.
Similar to blood type, human plasma haptoglobin (Hp) is classified as 3 phenotypes: Hp 1-1, 2-1, or 2-2. The structural and functional relationship between the phenotypes, however, has not been studied in detail due to the complicated and difficult isolation procedures. This report provides a simple protocol that can be used to purify each Hp phenotype. Plasma was first passed through an affinity column coupled with a high affinity Hp monoclonal antibody. The bound material was washed with a buffer containing 0.2M NaCl and 0.02 M phosphate, pH 7.4, eluted at pH 11, and collected in tubes containing 1M Tris-HCl, pH 6.8. The crude Hp fraction was then chromatographed on a HPLC Superose 12 column in 0.05 M ammonium bicarbonate at a flow rate of 0.5 ml/min. The homogeneity of purified Hp 1-1, 2-1, or 2-2 was greater than 95% as judged by SDS-polyacrylamide gel electrophoresis. Essentially, each Hp isolated was not contaminated with hemoglobin and apolipoprotein A-I as that reported from the other methods, and was able to bind hemoglobin. Neuraminidase treatment demonstrated that the purified Hp possessed a carbohydrate moiety, while Western blot analysis confirmed alpha and beta chains corresponding to each Hp 1-1, 2-1, and 2-2 phenotype. The procedures described here represent a significant improvement in current purification methods for the isolation of Hp phenotypes. Circular dichroic spectra showed that the alpha-helical content of Hp 1-1 (29%) was higher than that of Hp 2-1 (22%), and 2-2 (21%). The structural difference with respect to its clinical relevance is discussed.  相似文献   

20.
We report a novel observation that the neurotoxic Alzheimer peptide Abeta1-42, when pre-incubated, causes a dramatic and lasting membrane depolarization in differentiated human hNT neuronal cells and in rodent PC12 cells in a concentration-dependent manner. This phenomenon involves activation of the metabotropic glutamate receptor, mGluR(1). Abeta-induced membrane depolarization in PC12 cells is sensitive to mGluR(1) antagonists and to pertussis and cholera toxins, indicating the involvement of particular G-proteins. The effect is different from the known ability of aggregated Abeta1-42 to cause a calcium influx. Since mGluR(1) agonists mimic the Abeta effect, we deduce that in this cell system glutamate can control the membrane potential and thereby the excitability of its target neurons. We propose that Abeta-induced membrane depolarization described here leads in Alzheimer's disease to hyperexcitability of affected neurons and is a crucially important molecular mechanism for beta-amyloid toxicity and cognitive dysfunction in the disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号