首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The new United States Drinking Water Regulations state that water systems must analyze for Escherichia coli or fecal coliforms on any routine or repeat sample that is positive for total coliforms. The proposed methods for the detection of E. coli are based on beta-glucuronidase activity, using the fluorogenic substrate 4-methylumbelliferyl beta-D-glucuronide (MUG). This study was conducted to determine whether beta-glucuronidase negative E. coli were present in significant numbers in environmental waters. Two hundred and forty E. coli cultures were isolated from 12 water samples collected from different environmental sources. beta-glucuronidase activity was determined using lauryl tryptose broth with MUG, EC broth with MUG, and the Autoanalysis Colilert (AC) procedure. The isolates were also evaluated by the standard EC broth gas fermentation method for fecal coliforms. The results confirm that assaying for the enzyme beta-glucuronidase utilizing the MUG substrate is an accurate method for the detection of E. coli in environmental waters.  相似文献   

2.
Fluorogenic assay for rapid detection of Escherichia coli in food.   总被引:8,自引:3,他引:5       下载免费PDF全文
An assay procedure to screen for Escherichia coli in foods by using 4-methylumbelliferyl-beta-D-glucuronide (MUG) incorporated into lauryl tryptose (LST) broth was evaluated. The beta-glucuronidase produced by E. coli cleaves the MUG substrate to yield a fluorescent end product. E. coli-negative samples can be identified by lack of fluorescence in LST-MUG within 24 h. MUG was not inhibitory to coliforms and E. coli. Over 1,400 food and dairy samples were tested to compare the standard three-tube most-probable-number procedure with the MUG-containing or non-MUG-containing LST procedure. LST-MUG testing detected a greater number of E. coli, with a lower false-positive rate (1.4%) and in a shorter time, than did the standard procedure. All false-positive results in the LST-MUG testing were attributable to beta-glucuronidase-producing staphylococci. No false-negative result was encountered. Use of MUG in LST broth obviates the EC broth step, allowing a 2.5-day procedure to a completed E. coli test versus the present 4- to 6-day standard most-probable-number method.  相似文献   

3.
Various selective media were assessed for their ability to detect and differentiate Klebsiella oxytoca and Escherichia coli in environmental water samples. Only two, Membrane Lauryl Sulphate agar and Deoxycholate Agar, could differentiate the two coliforms from each other and from the 'background' heterotrophs in water and this was a consequence of E. coli's ability to grow at 44°C and 37°C whereas Kl. oxytoca could only grow at 37°C. Modified M-FC medium effectively differentiated Kl. oxytoca but not E. coli in environmental samples. Other media characterized the different coliforms in pure culture but failed to do likewise in environmental samples. For example, pure cultures of E. coli fluoresced when MUG was added to the medium but single colonies on a mixed species plate failed to do so. MT7 agar distinguished the two coliforms from water heterotrophs but not from each other.  相似文献   

4.
An assay procedure to screen for Escherichia coli in foods by using 4-methylumbelliferyl-beta-D-glucuronide (MUG) incorporated into lauryl tryptose (LST) broth was evaluated. The beta-glucuronidase produced by E. coli cleaves the MUG substrate to yield a fluorescent end product. E. coli-negative samples can be identified by lack of fluorescence in LST-MUG within 24 h. MUG was not inhibitory to coliforms and E. coli. Over 1,400 food and dairy samples were tested to compare the standard three-tube most-probable-number procedure with the MUG-containing or non-MUG-containing LST procedure. LST-MUG testing detected a greater number of E. coli, with a lower false-positive rate (1.4%) and in a shorter time, than did the standard procedure. All false-positive results in the LST-MUG testing were attributable to beta-glucuronidase-producing staphylococci. No false-negative result was encountered. Use of MUG in LST broth obviates the EC broth step, allowing a 2.5-day procedure to a completed E. coli test versus the present 4- to 6-day standard most-probable-number method.  相似文献   

5.
A membrane filter-Endo agar method for enumerating Escherichia coli as distinct from other coliforms in drinking water was developed. Membranes containing coli-form colonies are transferred to nutrient agar containing 4-methyl umbelliferyl-β-d-glucuronide (MUG) and incubated at 35°C for 4 h. The MUG is hydrolyzed by the glucuronidase of E. coli and the fluorogenic product is visualized. The method recovered 98% of E. coli without false positives and is proposed as an additional test in routine water examination for the detection of pollution.  相似文献   

6.
The 3,N(4)-ethenocytosine (epsilon C) residue might have biological role in vivo since it is recognized and efficiently excised in vitro by the E. coli mismatch-specific uracil-DNA glycosylase (MUG) and the human thymine-DNA glycosylase (hTDG). In the present work we have generated mug defective mutant of E. coli by insertion of a kanamycin cassette to assess the role of MUG in vivo. We show that human TDG complements the enzymatic activity of MUG when expressed in a mug mutant. The epsilon C-DNA glycosylase defective strain did not exhibit spontaneous mutator phenotype and did not show unusual sensitivity to any of the following DNA damaging treatments: methylmethanesulfonate, N-methyl-N'-nitro-N-nitrosoguanidine, ultraviolet light, H(2)O(2), paraquat. However, plasmid DNA damaged by 2-chloroacetaldehyde treatment in vitro was inactivated at a greater rate in a mug mutant than in wild-type host, suggesting that MUG is required for the in vivo processing of the ethenobases. In addition, 2-chloroacetaldehyde treatment induces preferentially G.C --> C.G and A.T --> T.A transversions in mug mutant. Comparison of the mutation frequencies induced by the site-specifically incorporated epsilon C residue in E. coli wild-type versus mug indicates that MUG repairs more than 80% of epsilon C residues in vivo. Furthermore, the results show that nucleotide excision repair and recombination are not involved in the processing of epsilon C in E. coli. Based on the mutagenesis data we suggest that epsilon C may be less toxic and less mutagenic than expected. The increased spontaneous mutation rate for G.C --> A.T transition in the ung mug double mutant as compared to the single ung mutant suggest that MUG may be a back-up repair enzyme to the classic uracil-DNA glycosylase.  相似文献   

7.
Six test media, m-TEC, m-TEC with 4-methylumbelliferyl-beta-D-glucuronide (MUG), lauryl tryptose agar (LTA) with MUG, LTA with 5-bromo-4-chloro-3-indolyl-beta-D-glucuronide (X-Glue), EC medium with MUG, and lauryl tryptose broth with MUG, were evaluated for their usefulness in enumerating Escherichia coli in nonpotable waters on a routine basis. The media were chosen for their case of interpretation of target colonies, ability to allow enumeration at low and high concentrations, and ability to inhibit nontarget microorganisms. The recoveries on the test media were compared with those on three reference media, R2A, m-FC, and m-Endo, by analysis of spiked samples of filter-sterilized waters. The test media were then further tested for their ability to differentiate nontarget but closely related microorganisms. Statistical analysis indicated that the best recoveries were obtained with lauryl tryptose agar with added MUG and X-Gluc. The media were then tested with surface waters that could be expected to have high levels of total and fecal coliforms along with Escherichia coli.  相似文献   

8.
A membrane filter-Endo agar method for enumerating Escherichia coli as distinct from other coliforms in drinking water was developed. Membranes containing coliform colonies are transferred to nutrient agar containing 4-methyl umbelliferyl-beta-D-glucuronide (MUG) and incubated at 35 degrees C for 4 h. The MUG is hydrolyzed by the glucuronidase of E. coli and the fluorogenic product is visualized. The method recovered 98% of E. coli without false positives and is proposed as an additional test in routine water examination for the detection of pollution.  相似文献   

9.
Fluorogenic assays for immediate confirmation of Escherichia coli.   总被引:50,自引:23,他引:27       下载免费PDF全文
Rapid assays for Escherichia coli were developed by using the compound 4-methylumbelliferone glucuronide (MUG), which is hydrolyzed by glucuronidase to yield a fluorogenic product. The production of glucuronidase was limited to strains of E. coli and some Salmonella and Shigella strains in the family Enterobacteriaceae. For immediate confirmation of the presence of E. coli in most-probable-number tubes, MUG was incorporated into lauryl tryptose broth at a final concentration of 100 micrograms/ml. Results of both the presumptive test (gas production) and the confirmed test (fluorescence) for E. coli were obtained from a variety of food, water, and milk samples after incubation for only 24 h at 35 degrees C. Approximately 90% of the tubes showing both gas production and fluorescence contained fecal coliforms (they were positive in EC broth incubated at 45 degrees C). Few false-positive reactions were observed. The lauryl tryptose broth-MUG-most-probable-number assay was superior to violet red bile agar for the detection of heat- and chlorine-injured E. coli cells. Anaerogenic strains produced positive reactions, and small numbers of E. coli could be detected in the presence of large numbers of competing bacteria. The fluorogenic assay was sensitive and rapid; the presence of one viable cell was detected within 20 h. E. coli colonies could be distinguished from other coliforms on membrane filters and plates of violet red bile agar if MUG was incorporated into the culture media. A rapid confirmatory test for E. coli that is amenable to automation was developed by using microtitration plates filled with a nonselective medium containing MUG. Pure or mixed cultures containing E. coli produced fluorescence within 4 h (most strains) to 24 h (a few weakly positive strains).  相似文献   

10.
Cellulolytic strains of Bacillus stearothermophilus were isolated from nature and screened for the presence of activities associated with the degradation of plant cell walls. One isolate (strain XL-65-6) which exhibited strong activities with 4-methylumbelliferyl-beta-D-glucopyranoside (MUG) and 4-methylumbelliferyl-beta-D-cellobiopyranoside (MUC) was used to construct a gene library in Escherichia coli. Clones degrading these model substrates were found to encode the cellobiose-specific genes of the phosphoenolpyruvate-dependent phosphotransferase system (PTS). Both MUG and MUC activities were present together, and both activities were lost concurrently during subcloning experiments. A functional E. coli ptsI gene was required for MUC and MUG activities (presumably a ptsH gene also). The DNA fragment from B. stearothermophilus contained four open reading frames which appear to form a cel operon. Intergenic stop codons for celA, celB, and celC overlapped the ribosomal binding sites of the respective downstream genes. Frameshift mutations or deletions in celA, celB, and celD were individually shown to result in a loss of MUC and MUG activities. On the basis of amino acid sequence homology and hydropathy plots of translated sequences, celA and celB were identified as encoding PTS enzyme II and celD was identified as encoding PTS enzyme III. These translated sequences were remarkably similar to their respective E. coli homologs for cellobiose transport. No reported sequences exhibited a high level of homology with the celC gene product. The predicted carboxy-terminal region for celC was similar to the corresponding region of E. coli celF, a phospho-beta-glucosidase. An incomplete regulatory gene (celR) and proposed promoter sequence were located 5' to the proposed cel operon. A stem-loop resembling a rho-independent terminator was present immediately downstream from celD. These results indicate that B. stearothermophilus XL-65-6 contains a cellobiose-specific PTS for cellobiose uptake. Similar systems may be present in other gram-positive bacteria.  相似文献   

11.
The promutagenic and genotoxic exocyclic DNA adduct 1,N(2)-ethenoguanine (1,N(2)-epsilonG) is a major product formed in DNA exposed to lipid peroxidation-derived aldehydes in vitro. Here, we report that two structurally unrelated proteins, the Escherichia coli mismatch-specific uracil-DNA glycosylase (MUG) and the human alkylpurine-DNA-N-glycosylase (ANPG), can release 1,N(2)-epsilonG from defined oligonucleotides containing a single modified base. A comparison of the kinetic constants of the reaction indicates that the MUG protein removes the 1,N(2)-epsilonG lesion more efficiently (k(cat)/K(m) = 0.95 x 10(-3) min(-1) nm(-1)) than the ANPG protein (k(cat)/K(m) = 0.1 x 10(-3) min(-1) nm(-1)). Additionally, while the nonconserved, N-terminal 73 amino acids of the ANPG protein are not required for activity on 1,N(6)-ethenoadenine, hypoxanthine, or N-methylpurines, we show that they are essential for 1,N(2)-epsilonG-DNA glycosylase activity. Both the MUG and ANPG proteins preferentially excise 1,N(2)-epsilonG when it is opposite dC; however, unlike MUG, ANPG is unable to excise 1,N(2)-epsilonG when it is opposite dG. Using cell-free extracts from genetically modified E. coli and murine embryonic fibroblasts lacking MUG and mANPG activity, respectively, we show that the incision of the 1,N(2)-epsilonG-containing duplex oligonucleotide has an absolute requirement for MUG or ANPG. Taken together these observations suggest a possible role for these proteins in counteracting the genotoxic effects of 1,N(2)-epsilonG residues in vivo.  相似文献   

12.
The bacterial mismatch-specific uracil-DNA glycosylase (MUG) and eukaryotic thymine-DNA glycosylase (TDG) enzymes form a homologous family of DNA glycosylases that initiate base-excision repair of G:U/T mismatches. Despite low sequence homology, the MUG/TDG enzymes are structurally related to the uracil-DNA glycosylase enzymes, but have a very different mechanism for substrate recognition. We have now determined the crystal structure of the Escherichia coli MUG enzyme complexed with an oligonucleotide containing a non-hydrolysable deoxyuridine analogue mismatched with guanine, providing the first structure of an intact substrate-nucleotide productively bound to a hydrolytic DNA glycosylase. The structure of this complex explains the preference for G:U over G:T mispairs, and reveals an essentially non-specific pyrimidine-binding pocket that allows MUG/TDG enzymes to excise the alkylated base, 3, N(4)-ethenocytosine. Together with structures for the free enzyme and for an abasic-DNA product complex, the MUG-substrate analogue complex reveals the conformational changes accompanying the catalytic cycle of substrate binding, base excision and product release.  相似文献   

13.
Three commercially available kits that were supplemented with substrates for enzyme reactions were evaluated to determine their abilities to detect coliforms and fecal coliforms in foods. Japanese and U.S. Food and Drug Administration standard methods, as well as two agar plate methods, were compared with the three commercial kits. A total of 50 food samples from various retailers were examined. The levels of detection of coliforms were high with the commercial kits (78 to 98%) compared with the levels of detection with the standard methods (80 to 83%) and the agar plate methods (56 to 83%). Among the kits tested, the Colilert kit had highest level of recovery of coliforms (98%), and the level of recovery of Escherichia coli as determined by beta-glucuronidase activity with the Colilert kit (83%) was comparable to the level of recovery obtained by the U.S. Food and Drug Administration method (87%). Isolation of E. coli on the basis of the beta-glucuronidase enzyme reaction was found to be good. Levine's eosine methylene blue agar, which has been widely used in various laboratories to isolate E. coli was compared with 4-methylumbelliferyl-beta-D-glucuronide (MUG)-supplemented agar for isolation of E. coli. Only 47% of the E. coli was detected when eosine methylene blue agar was used; however, when violet red bile (VRB)-MUG agar was used, the E. coli detection rate was twice as high. Of the 200 E. coli strains isolated, only 2 were found to be MUG negative, and the gene responsible for beta-glucuronidase activity (uidA gene) was detected by the PCR method in these 2 strains. Of the 90 false-positive strains isolated that exhibited various E. coli characteristic features, only 2 non-E.coli strains hydrolyzed MUG and produced fluorescent substrate in VRB-MUG agar. However, the PCR did not amplify uidA gene products in these VRB-MUG fluorescence-positive strains.  相似文献   

14.
Ability of the Colilert method to recover oxidant-stressed Escherichia coli   总被引:2,自引:1,他引:1  
Methods for the microbiological analysis of drinking water must be able to detect Escherichia coli that may be injured by treatment. The Colilert method, which simulaneously detects total coliforms and E. coli in water samples by the observation of direct colour changes produced by defined substrates in the media, was found to be equivalent to the reference EC MUG method in its ability to recover low numbers (< 4/100 ml) of oxidant-stressed E. coli.  相似文献   

15.
Deinococcus radiodurans is extremely resistant to the effects of ionizing radiation. The source of the radiation resistance is not known, but an expansion of specific protein families related to stress response and damage control has been observed. DNA repair enzymes are among the expanded protein families in D. radiodurans, and genes encoding five different uracil-DNA glycosylases are identified in the genome. Here we report the three-dimensional structure of the mismatch-specific uracil-DNA glycosylase (MUG) from D. radiodurans (drMUG) to a resolution of 1.75 angstroms. Structural analyses suggest that drMUG possesses a novel catalytic residue, Asp-93. Activity measurements show that drMUG has a modified and broadened substrate specificity compared with Escherichia coli MUG. The importance of Asp-93 for activity was confirmed by structural analysis and abolished activity for the mutant drMUGD93A. Two other microorganisms, Bradyrhizobium japonicum and Rhodopseudomonas palustris, possess genes that encode MUGs with the highest sequence identity to drMUG among all of the bacterial MUGs examined. A phylogenetic analysis indicates that these three MUGs form a new MUG/thymidine-DNA glycosylase subfamily, here called the MUG2 family. We suggest that the novel catalytic residue (Asp-93) has evolved to provide drMUG with broad substrate specificity to increase the DNA repair repertoire of D. radiodurans.  相似文献   

16.
AIMS: Enzyme substrates based on 4-methylumbelliferone are widely used for the detection of Escherichia coli and enterococci in water, by detection of beta-glucuronidase and beta-glucosidase activity respectively. This study aimed to synthesize and evaluate novel umbelliferone-based substrates with improved sensitivity for these two enzymes. METHODS AND RESULTS: A novel beta-glucuronide derivative based on 6-chloro-4-methylumbelliferone (CMUG) was synthesized and compared with 4-methylumbelliferyl-beta-D-glucuronide (MUG) using 42 strains of E. coli in a modified membrane lauryl sulfate broth. Over 7 h of incubation, the fluorescence generated from the hydrolysis of CMUG by E. coli was over twice that from MUG, and all of the 38 glucuronidase-positive strains generated a higher fluorescence with CMUG compared with MUG. Neither substrate caused inhibition of bacterial growth in any of the tested strains. Four beta-glucosidase substrates were also synthesized and evaluated in comparison with 4-methylumbelliferyl-beta-D-glucoside (MU-GLU) using 42 strains of enterococci in glucose azide broth. The four substrates comprised beta-glucoside derivatives of umbelliferone-3-carboxylic acid and its methyl, ethyl and benzyl esters. Glucosides of the methyl, ethyl and benzyl esters of umbelliferone-3-carboxylic acid, were found to be superior to MU-GLU for the detection of enterococci, especially after 18 h of incubation, while umbelliferone-3-carboxylic acid-beta-D-glucoside was inferior. However, the variability in detectable beta-glucosidase activity among the different strains of enterococci in short-term assays using the three carboxylate esters (7 h incubation) may compromise their use for rapid detection and enumeration of these faecal indicator bacteria. CONCLUSIONS: The beta-glucuronidase substrate CMUG appears to be a more promising detection system than the various beta-glucosidase substrates tested. SIGNIFICANCE AND IMPACT OF THE STUDY: The novel substrate CMUG showed enhanced sensitivity for the detection of beta-glucuronidase-producing bacteria such as E. coli, with a clear potential for application in rapid assays for the detection of this indicator organism in natural water and other environmental samples.  相似文献   

17.
The use of 4-methylumbelliferyl-β- D -glucuronide (MUG) in different solid media for the detection and enumeration of Escherichia coli in foods was evaluated by testing the effects of different substrate concentrations (50 or 100 μg ml−1), incubation temperatures (37 or 41·5°C) and incubation times (8, 12, 24 and 48 h). Different kinds of foods, both naturally and artificially contaminated, were analysed. The use of selective media without differential substances and an incubation time of 24 h seem to be worthy of recommendation. In this case an incubation temperature of 37°C would be preferred and the MUG concentration could be reduced to 50 μg ml−1. Incubation times shorter than 24 h, which may cause a loss of sensitivity, require higher incubation temperatures (41·5°C) and MUG concentration (100 μg ml−1).  相似文献   

18.
8-hydroxyquinoline-beta-D-glucuronide (HQG) was used to improve the presumptive identification of Shiga toxin-producing Escherichia coli O157 (STEC O157) on sorbitol MacConkey agars (SMAC). Advantages of HQG are (i) that it is less expensive than 5-bromo-4-chloro-3-indoxyl-glucuronide; (ii) that it is visible in normal daylight and (iii) that it does not diffuse into the agar like 4-methylumbelliferryl-beta-D-glucuronide (MUG). Sixteen STEC O157 isolates, 91 bovine mastitis-associated E. coli isolates and 222 faecal E. coli isolates from apparently healthy cattle were used in this study. 4-methylumbelliferryl-beta-D-glucuronide detected beta-glucuronidase activity in more isolates than HQG (P < 0.05). On SMAC with HQG, cefixime and tellurite all STEC O157 isolates grew as cream-coloured colonies (100% sensitivity), whereas all non-STEC O157 E. coli except one grew either not at all or as purple or black colonies (99.7% specificity). No difference was found between faecal and mastitis isolates for the proportion of isolates that hydrolysed HQG or MUG or fermented sorbitol. However, significantly more mastitis isolates were able to grow in the presence of the cefixime-tellurite supplement. 8-Hydroxyquinoline-beta-D-glucuronide is a useful substrate for the identification of STEC O157 on SMAC.  相似文献   

19.
Most-Probable-Number tests for Escherichia coli were performed on 45 sediment samples using Lauryl Tryptose broth (LTB) containing 4-methylumbelliferyl-β-D-glucuronide (MUG). Eighty-three percent of 493 LTB-MUG reactions agreed with results obtained by conventional faecal coliform analysis. Although false-negative reactions are suspected in about 9% of the LTB-MUG tubes, anaerogenic E. coli , that would not be enumerated by conventional faecal coliform tests were recovered using LTB-MUG. The high percentage of agreement between the two methods suggests that the MPN method employing LTB-MUG is adequate to enumerate E. coli from some freshwater sediments.  相似文献   

20.
A Mates  M Schaffer 《Microbios》1992,71(286):27-32
Escherichia coli concentration in sea water was determined by the MUG test after primary growth on membrane filters used to determine total coliforms or faecal coliforms. A good correlation (r = 0.86) was found between E. coli obtained from coliforms versus those from faecal coliforms. Verification procedures showed that all the MUG-positive colonies obtained on both media were E. coli. Evaluation of this data and the literature indicated that this technique for estimation of E. coli in sea water is a useful addition to laboratory procedures without generally increasing the time and the expense of the analysis of recreational water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号