首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Ca(2+) signal has major roles in cellular processes important in tumorigenesis, including migration, invasion, proliferation, and apoptotic sensitivity. New evidence has revealed that, aside from altered expression and effects on global cytosolic free Ca(2+) levels via direct transport of Ca(2+), some Ca(2+) pumps and channels are able to contribute to tumorigenesis via mechanisms that are independent of their ability to transport Ca(2+) or effect global Ca(2+) homeostasis in the cytoplasm. Here, we review some of the most recent studies that present evidence of altered Ca(2+) channel or pump expression in tumorigenesis and discuss the importance and complexity of localized Ca(2+) signaling in events critical for tumor formation.  相似文献   

2.
Engulfment of IgG-coated particles by neutrophils and macrophages is an essential component of the innate immune response. This process, known as phagocytosis, is triggered by clustering of FcgammaR at sites where leukocytes make contact with the opsonized particles. We found that phagocytosis is accompanied by a burst of fluid phase pinocytosis, which is largely restricted to the immediate vicinity of the phagosomal cup. FcgammaR-induced pinocytosis preceded and appeared to be independent of phagosomal sealing. Accordingly, fluid phase uptake was accentuated by actin depolymerization, which precludes phagocytosis. Stimulation of pinocytosis required phosphatidylinositol 3-kinase activity and was eliminated when changes in the cytosolic free Ca(2+) concentration were prevented. Because stimulation of FcgammaR also induces secretion, which is similarly calcium and phosphatidylinositol 3-kinase dependent, we studied the possible relationship between these events. Neutrophil fragments devoid of secretory granules (cytoplasts) were prepared by sedimentation through Ficoll gradients. Cytoplasts could perform FcgammaR-mediated phagocytosis, which was not accompanied by activation of pinocytosis. This observation suggests that granule exocytosis is required for stimulation of pinocytosis. Analysis of the cytosolic Ca(2+) dependence of secretion and pinocytosis suggests that primary (lysosomal) granule exocytosis is the main determinant of pinocytosis during FcgammaR stimulation. Importantly, primary granules are secreted in a polarized fashion near forming phagosomes. Focal pinocytosis during particle engulfment may contribute to Ag processing and presentation and/or to retrieval of components of the secretory machinery. Alternatively, it may represent an early event in the remodeling of the phagosomal membrane, leading to phagosomal maturation.  相似文献   

3.
4.
Elevations in intracellular Ca(2+) concentration and calpain activity are common early events in cellular injury, including that of hepatocytes. Atrial natriuretic peptide is a circulating hormone that has been shown to be hepatoprotective. The aim of this study was to examine the effects of atrial natriuretic peptide on potentially harmful elevations in cytosolic free Ca(2+) and calpain activity induced by extracellular ATP in rat hepatocytes. We show that atrial natriuretic peptide, through protein kinase G, attenuated both the amplitude and duration of ATP-induced cytosolic Ca(2+) rises in single hepatocytes. Atrial natriuretic peptide also prevented stimulation of calpain activity by ATP, taurolithocholate, or Ca(2+) mobilization by thapsigargin and ionomycin. We therefore investigated the cellular Ca(2+) handling mechanisms through which ANP attenuates this sustained elevation in cytosolic Ca(2+). We show that atrial natriuretic peptide does not modulate the release from or re-uptake of Ca(2+) into intracellular stores but, through protein kinase G, both stimulates plasma membrane Ca(2+) efflux from and inhibits ATP-stimulated Ca(2+) influx into hepatocytes. These findings suggest that stimulation of net plasma membrane Ca(2+) efflux (to which both Ca(2+) efflux stimulation and Ca(2+) influx inhibition contribute) is the key process through which atrial natriuretic peptide attenuates elevations in cytosolic Ca(2+) and calpain activity. Moreover we propose that plasma membrane Ca(2+) efflux is a valuable, previously undiscovered, mechanism through which atrial natriuretic peptide protects rat hepatocytes, and perhaps other cell types, against Ca(2+)-dependent injury.  相似文献   

5.
An increase in cytosolic Ca(2+)concentration periphagosomally is critical for phagolysosomal formation and neutrophil elimination of microbes. The Ca(2+)increase could be achieved through release of Ca(2+)from mobilized intracellular stores. Alternatively, Ca(2+)that passively enter the phagosome during phagocytosis could be provided by the phagosome. Intraphagosomal Ca(2+)changes in single human neutrophils was measured during phagocytosis of serum opsonized Fura-2-conjugated zymosan particles, using a digital image processing system for microspectrofluorometry. A decrease in phagosomal Ca(2+)down to nanomolar concentrations was seen within minutes following phagosomal closure. Blockage of plasma membrane Ca(2+)channels by econazole abolished this decrease. The fluorescence properties of Fura-2 zymosan were retained after phagocytosis and stable to pH changes, reactive oxygen species, and proteolytic enzymes. We suggest that Ca(2+)ions present in the phagosome enter the cell cytosol through Ca(2+)channels in the phagosomal membrane, achieving a localized Ca(2+)rise that is important for phagosome processing.  相似文献   

6.
Calcium signaling capacity of the CD11b/CD18 integrin on human neutrophils.   总被引:21,自引:0,他引:21  
The CD11b/CD18 integrin is a major cell adhesion molecule of myelomonocytic cells. Exposure of human neutrophils in suspension to CD11b or CD18 monoclonal antibodies (mAbs)2 does not affect the resting level of cytosolic free Ca2+ in these cells; however, a subsequent cross-linking of either of these antibodies triggers a prompt and significant cytosolic-free Ca2+ transient lasting about 10 min. The rise in cytosolic-free Ca2+ (from 130 +/- 2 to 414 +/- 12 nM or 111 +/- 12 to 331 +/- 22 nM caused by cross-linking of CD11b or CD18 subunits, respectively) is due to both mobilization of Ca2+ from intracellular stores and influx of Ca2+ across the plasma membrane. Cross-linking of the common leukocyte antigen (CD45) did not alter the basal level of cytosolic free Ca2+. In accordance with other adherence-induced phenomena and with CD11/CD18-mediated phagocytosis, these Ca2+ signals were only modestly affected by pertussis toxin. Thus, the present data clearly indicate that the CD11b/CD18 integrin on human neutrophils is capable of inducing a prompt cytosolic-free Ca2+ signal. These findings directly support the recent suggestion that the CD11b/CD18 integrin is responsible for the "spontaneous oscillations" of cytosolic-free Ca2+ observed in adherent neutrophils and, at least partially, also explain how integrin-mediated adherence can modify the functional responsiveness of neutrophils to a subsequent agonist stimulation.  相似文献   

7.
The engagement of integrin alpha7 in E63 skeletal muscle cells by laminin or anti-alpha7 antibodies triggered transient elevations in the intracellular free Ca(2+) concentration that resulted from both inositol triphosphate-evoked Ca(2+) release from intracellular stores and extracellular Ca(2+) influx through voltage-gated, L-type Ca(2+) channels. The extracellular domain of integrin alpha7 was found to associate with both ectocalreticulin and dihydropyridine receptor on the cell surface. Calreticulin appears to also associate with cytoplasmic domain of integrin alpha7 in a manner highly dependent on the cytosolic Ca(2+) concentration. It appeared that intracellular Ca(2+) release was a prerequisite for Ca(2+) influx and that calreticulin associated with the integrin cytoplasmic domain mediated the coupling of between the Ca(2+) release and Ca(2+) influx. These findings suggest that calreticulin serves as a cytosolic activator of integrin and a signal transducer between integrins and Ca(2+) channels on the cell surface.  相似文献   

8.
Apoptotic cells redistribute phosphatidylserine (PS) to the cell surface by both Ca(2+)-dependent and -independent mechanisms. Binding of dimeric galectin-1 (dGal-1) to glycoconjugates on N-formyl-Met-Leu-Phe (fMLP)-activated neutrophils exposes PS and facilitates neutrophil phagocytosis by macrophages, yet it does not initiate apoptosis. We asked whether dGal-1 initiated Ca(2+) fluxes that are required to redistribute PS to the surface of activated neutrophils. Prolonged occupancy by dGal-1 was required to maximally mobilize PS to the surfaces of fMLP-activated neutrophils. Like fMLP, dGal-1 rapidly elevated cytosolic Ca(2+) levels in Fluo-4-loaded neutrophils. An initial Ca(2+) mobilization from intracellular stores was followed by movement of extracellular Ca(2+) to the cytosolic compartment, with return to basal Ca(2+) levels within 10 min. Chelation of extracellular Ca(2+) did not prevent PS mobilization. Chelation of intracellular Ca(2+) revealed that fMLP and dGal-1 independently release Ca(2+) from intracellular stores that cooperate to induce optimal redistribution of PS. Ca(2+) mobilization by ionomycin did not permit dGal-1 to mobilize PS, indicating that fMLP initiated both Ca(2+)-dependent and -independent signals that facilitated dGal-1-induced exposure of PS. dGal-1 elevated cytosolic Ca(2+) and mobilized PS through a pathway that required action of Src kinases and phospholipase Cgamma. These results demonstrate that transient Ca(2+) fluxes contribute to a sustained redistribution of PS on neutrophils activated with fMLP and dGal-1.  相似文献   

9.
We have investigated the nature of immediate cell signals produced by occupancy of the chicken osteoclast alpha v beta 3 integrin. Synthetic osteopontin and peptides from the osteopontin and bone sialoprotein sequences containing Arg-Gly-Asp stimulated immediate reductions in osteoclast cytosolic Ca2+. The changes in cytosolic Ca2+ required the Arg-Gly-Asp sequence and were blocked by a monoclonal antibody to the alpha v beta 3 integrin, LM609. Osteoclast stimulation by the proteins through the integrin did not require immobilization since soluble peptides produced changes in cytosolic Ca2+ and inhibited osteoclast binding to bone particles and bone resorption. The decrease in cytosolic Ca2+ stimulated by osteopontin and related peptides appeared to be due to activation of a plasma membrane Ca(2+)-ATPase by calmodulin. Thus, the data suggest that ligand binding to the osteoclast alpha v beta 3 integrin results in calmodulin-dependent reduction in cytosolic Ca2+ which participates in regulation of osteoclast function.  相似文献   

10.
Macrophages, dendritic cells, and neutrophils use phagocytosis to capture and clear off invading pathogens. The process is triggered by the interaction of ligands on the pathogens' surface with specific phagocytic receptors, including immunoglobulin (FcR) and complement C3bi (CR3) receptors (integrin alpha(M)beta2, Mac1) . Localized actin-filament assembly that acts as the driving force for particle engulfment is controlled by Rho-family small GTPases . RhoA regulates CR3-mediated phagocytosis through a mechanism that is still unclear . Mammalian Diaphanous-related (mDia) formins participate in the generation of a diverse set of actin-remodeling events downstream of RhoA , and mDia1 is recruited around fibronectin-coated beads in a RhoA-dependent manner in fibroblasts . Here, we set out to examine whether mDia proteins are involved in CR3-mediated phagocytosis in macrophages. We show that the RhoA effector mDia1 is recruited early during CR3-mediated phagocytosis and colocalizes with polymerized actin in the phagocytic cup. Interfering with mDia activity inhibits CR3-mediated phagocytosis while having no effect on FcR-mediated phagocytosis. These results indicate a new function for mDia proteins in the regulation of actin polymerization during CR3-mediated phagocytosis.  相似文献   

11.
Polarity in intracellular calcium signaling.   总被引:8,自引:0,他引:8  
The concentration of free calcium ions (Ca(2+)) in the cytosol is precisely regulated and can be rapidly increased in response to various types of stimuli. Since Ca(2+) can be used to control different processes in the same cell, the spatial organization of cytosolic Ca(2+) signals is of considerable importance. Polarized cells have advantages for Ca(2+) studies since localized signals can be related to particular organelles. The pancreatic acinar cell is well-characterized with a clearly polarized structure and function. Since the discovery of the intracellular Ca(2+)-releasing function of inositol 1,4,5-trisphosphate (IP(3)) in the pancreas in the early 1980s, this cell has become a popular study object and is now one of the best-characterized with regard to Ca(2+) signaling properties. Stimulation of pancreatic acinar cells with the neurotransmitter acetylcholine or the hormone cholecystokinin evokes Ca(2+) signals that are either local or global, depending on the agonist concentration and the length of the stimulation period. The nature of the Ca(2+) transport events across the basal and apical plasma membranes as well as the involvement of the endoplasmic reticulum (ER), the nucleus, the mitochondria, and the secretory granules in Ca(2+) signal generation and termination have become much clearer in recent years.  相似文献   

12.
Hata S  Sorimachi H  Nakagawa K  Maeda T  Abe K  Suzuki K 《FEBS letters》2001,501(2-3):111-114
Calpain, a Ca(2+)-dependent cytosolic cysteine protease, proteolytically modulates specific substrates involved in Ca(2+)-mediated intracellular events, such as signal transduction, cell cycle, differentiation, and apoptosis. The 3D structure of m-calpain, in the absence of Ca(2+), revealed that the two subdomains (domains IIa and IIb) of the protease domain (II) have an 'open' conformation, probably due to interactions with other domains. Although the presence of an EF-hand structure was once predicted in the protease domain, no explicit Ca(2+)-binding structure was identified in the 3D structure. Therefore, it is predicted that if the protease domain is excised from the calpain molecule, it will have a Ca(2+)-independent protease activity. In this study, we have characterized a truncated human m-calpain that consists of only the protease domain. Unexpectedly, the proteolytic activity was Ca(2+)-dependent, very weak, and not effectively inhibited by calpastatin, a calpain inhibitor. Ca(2+)-dependent modification of the protease domain by the cysteine protease inhibitor, E-64c, was clearly observed as a SDS-PAGE migration change, indicating that the conformational changes of this domain are a result of Ca(2+) binding. These results suggest that the Ca(2+) binding to domain II, as well as to domains III, IV, and VI, is critical in the process of complete activation of calpain.  相似文献   

13.
Cytosolic free Ca(2+) concentration in neutrophils was measured by ratiometric fluorometry of intracellular fura2. Increasing the extracellular osmolarity, by either NaCl (300-600 mM) or sucrose (600-1200 mM), caused a rise in cytosolic free Ca(2+) (Delta(max) approximately equal to 600 nM). This was not due to cell lysis as the cytosolic free Ca(2+) concentration was reversed by restoration of isotonicity and a second rise in cytosolic free Ca(2+) could be provoked by repeating the change in extracellular osmolarity. Furthermore, the rise in cytosolic free Ca(2+) concentration occurred in the absence of extracellular Ca(2+), demonstrating that release of intracellular fura2 into the external medium did not occur. The osmotically-induced rise in cytosolic free Ca(2+) was not inhibited by either the phospholipase C-inhibitor U73122, or the microfilament inhibitor cytochalasin B, suggesting that neither signalling via inositol tris-phosphate or the cytoskeletal system were involved. However, the rise in cytosolic free Ca(2+) may have resulted from a reduction in neutrophil water volume in hyperosmotic conditions. As these rises in cytosolic Ca(2+) (Delta(max) approximately equal to 600 nM) were large enough to provoke changes in neutrophil activity, we propose that conditions which removes cell water may similarly elevate cytosolic free Ca(2+) to physiologically important levels.  相似文献   

14.
In order to establish whether non-mitochondrial oxidase activity in human neutrophils is tightly related to cytosolic Ca(2+) concentration, we simultaneously measured Ca(2+) oscillations induced by ATP and oxidant production in single adherent neutrophils using confocal microscopy. ATP induced fast damped Ca(2+) spikes with a period of 15s and slower irregular spikes with a period greater than 50s. Spikes in Ca(2+) occurred in the absence of Ca(2+) influx, but the amplitude was damped by inhibition of Ca(2+) influx. Using the oxidation of hydroethidine as a cytosolic marker of oxidant production, we show that the generation of reactive oxygen species by neutrophils adherent to glass was accelerated by ATP. The step-up in NADPH oxidase activity followed the first elevation of cytosolic Ca(2+) but, despite subsequent spikes in Ca(2+) concentration, no oscillations in oxidase activity could be detected. ATP induced spikes in Ca(2+) in a very reproducible way and we propose that the Ca(2+) signal is an on-switch for oxidase activity, but the activity is apparently not directly correlated with spiking activity in cytosolic Ca(2+).  相似文献   

15.
P W Marks  F R Maxfield 《Cell calcium》1990,11(2-3):181-190
Neutrophils are capable of undergoing rapid directed movement up a concentration gradient of chemoattractant culminating in the phagocytosis of a target. We have developed a system to make rapid photometric measurements and ratio images of cytosolic free calcium [( Ca2+]i) in human neutrophils loaded with the fluorescent Ca2(+)-sensitive indicator Fura-2 during these processes. In our system neutrophils undergo chemotaxis toward and phagocytosis of IgG and IgM-coated sheep erythrocytes attached to a surface. During chemotaxis and phagocytosis, repetitive transients in [Ca2+]i take place. Accompanying the transients during phagocytosis is a localized [Ca2+]i increase in the periphagosomal region. This localized increase is more apparent in cells phagocytosing particles coated with both IgG and IgM than with IgM alone. No consistent localization of increased [Ca2+]i is seen in cells solely undergoing chemotaxis. The imaging techniques described here allow the observation of [Ca2+]i changes over regions of several microns 2 in a cell with a time resolution of approximately 0.5 s. [Ca2+]i gradients extending over regions greater than approximately 4 microns 2 and lasting at least 1 s can be reliably detected.  相似文献   

16.
Phagocytosis of IgG-coated particles by macrophages is presumed to involve the actin-based cytoskeleton since F-actin accumulates beneath forming phagosomes, and particle engulfment is blocked by cytochalasins, drugs that inhibit actin filament assembly. However, it is unknown whether Fc receptor ligation affects the rate or extent of F-actin assembly during phagocytosis of IgG-coated particles. To examine this question we have used a quantitative spectrofluorometric method to examine F-actin dynamics during a synchronous wave of phagocytosis of IgG-coated red blood cells by inflammatory mouse macrophages. We observed a biphasic rise in macrophage F-actin content during particle engulfment, with maxima at 1 and 5 min after the initiation of phagocytosis. F-actin declined to resting levels by 30 min, by which time particle engulfment was completed. These quantitative increases in macrophage F-actin were reflected in localized changes in F-actin distribution. Previous work showed that the number of IgG-coated particles engulfed by macrophages is unaffected by buffering extracellular calcium or by clamping cytosolic free calcium concentration ([Ca2+]i) to very low levels (Di Virgilio, F., B. C. Meyer, S. Greenberg, and S. C. Silverstein. 1988. J. Cell Biol. 106: 657-666). To determine whether clamping [Ca2+]i in macrophages affects the rate of particle engulfment, or the assembly or disassembly of F-actin during phagocytosis, we examined these parameters in macrophages whose [Ca2+]i had been clamped to approximately less than 3 nM with fura 2/AM and acetoxymethyl ester of EGTA. We found that the initial rate of phagocytosis, and the quantities of F-actin assembled and disassembled were similar in Ca(2+)-replete and Ca(2+)-depleted macrophages. We conclude that Fc receptor-mediated phagocytosis in mouse macrophages is accompanied by an ordered sequence of assembly and disassembly of F-actin that is insensitive to [Ca2+]i.  相似文献   

17.
The role of the activation of phosphoinositide turnover and of the increase in cytosolic free calcium, [Ca2+]i, in the phagocytosis and associated activation of the respiratory burst was investigated. We report the results obtained on the phagocytosis of yeast cells mediated by Con A in normal and in Ca2+-depleted human neutrophils. In normal neutrophils the phagocytosis was associated with a respiratory burst, a stimulation in the formation of [3H] inositol phosphates and [32P]phosphatidic acid, the release of [3H]arachidonic acid, and a rise in [Ca2+]i. Ca2+-depleted neutrophils are able to perform the phagocytosis of yeast cells mediated by Con A and to activate the respiratory burst without stimulation of [3H]inositol phosphates and [32P]phosphatidic acid formation, [3H]arachidonic acid release, and rise in [Ca2+]i. In both normal and Ca2+-depleted neutrophils the phagocytosis and the associated respiratory burst, 1) were inhibited by cytochalasin B; 2) were insensitive to H-7, an inhibitor of protein kinase C; and 3) did not involve GTP-binding protein sensitive to pertussis toxin. These findings indicate that the activation of phosphoinositide turnover, the liberation of arachidonic acid, the rise in [Ca2+]i, and the activity of protein kinase C are not necessarily required for ingestion of Con A-opsonized particles and for associated activation of the NADPH oxidase, the enzyme responsible for the respiratory burst. The molecular mechanisms of these phosphoinositide and Ca2+-independent responses are discussed.  相似文献   

18.
Calcium (Ca2+) signals were monitored in individual neutrophils using ratio imaging of fura-2. In contrast to N-formyl-L-leucyl-L-phenylalanine (f-met-leu-phe), which produced grossly asynchronous Ca2+ signals with delays in response (up to 60 s), leukotriene B4 (LTB4) provoked synchronous and immediate elevations in cytosolic free Ca2+. Some individual neutrophils which responded immediately to LTB4, subsequently displayed delayed Ca2+ signals in response to f-met-leu-phe. A sub-population of neutrophils failed to respond to both LTB4 and f-met-leu-phe. The asynchrony of the Ca2+ signalling to f-met-leu-phe is not, therefore, an obligatory property of signal transduction in neutrophils.  相似文献   

19.
Cytosolic free Ca(2+)and intranuclear Ca(2+)behave similarly in human neutrophils. However, conventional laser scanning at 350 ms/frame resolution at lower than physiological temperatures demonstrates that (i) the nuclear fluo3-Ca(2+)signal persists longer than the cytosolic signal in some (but not all) nuclear lobes, (ii) the neutrophil nuclear membrane and fine inter-lobe filaments present barriers to diffusion of fluo3-Ca(2+)and lucifer yellow, and (iii) the diffusion barrier correlates with condensed chromosomal material on the nuclear envelope and blockage of the movement of fluo3-Ca(2+)into individual nuclear lobes.  相似文献   

20.
We examined whether localized increases in cytosolic cGMP have distinct regulatory effects on the concentration of cytosolic free Ca(2+) in ECV304 cells. Stimulation of the particulate guanylate cyclase by brain-type natriuretic peptide in fura-2-loaded cells caused a profound potentiation of the ATP-stimulated and thapsigargin-stimulated rise in cytosolic free Ca(2+). This effect is mediated by the inhibition of Ca(2+) extrusion via the plasma membrane Ca(2+)-ATPase pump. Furthermore, the addition of brain-type natriuretic peptide caused the partial inhibition of cation influx in ATP-stimulated cells. In contrast, elevation of cytosolic cGMP by activation of the soluble guanylate cyclase induced by the addition of sodium nitroprusside causes an increased reuptake of Ca(2+) into the intracellular stores without affecting cation influx or Ca(2+) efflux. Thus, localized pools of cGMP play distinct regulatory roles in the regulation of Ca(2+) homeostasis within individual cells. We define a new role for natriuretic peptides in the inhibition of Ca(2+) efflux that leads to the potentiation of agonist-evoked increases in cytosolic free Ca(2+).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号