首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
At prophase in Pleurastrum, extranuclear spindle microtubules develop from the region of centrioles, which lie lateral to the nucleus midway between the future sites of the metaphase spindle poles. The microtubules then move laterally to overarch the nucleus and finally become incorporated into the spindle. The centrioles do not migrate and therefore lie in the same plane as the chromosomes at metaphase. At telophase, 2, more different systems of microtubules develop from the vicinity of the centrioles—a phycoplast and extensive arrays of microtubules that ensheath the daughter nuclei. Cell division in the filamentous Pleurastrum is compared to that in the green flagellate, Platymonas. The similarities between cell division in the 2 algae are interpreted as evidence: (i) that rhizoplasts (which in Platymonas resemble myofibrils) are somehow homologous to microtubules; and, (ii) that cell division in Pleurastrum differs from cell division in other examined filamentous chlorophycean genera because Pleurastrum has an independent evolutionary origin from a monad with Platymonas-like characteristics.  相似文献   

2.
Cell division in Scenedesmus is fairly typical of other chlorococcalean genera. The closed spindle has centrioles at polar fenestrae and apparently a series of nuclear divisions precedes cytokinesis. The phycoplast system of cytokinetic microtubules predicts the path of cleavage furrows whose mode of formation is obscure. Before and during cell division, the endoplasmic reticulum invariably accumulates granular material which later, during cytokinesis, appears to he secreted via the golgi bodies. Similar dense granular material then at accumulates outside the forming daughter cells but inside the parental wall, as the latter begins eroding away. By the end of colony formation, the cellulosic parental wall has disappeared, leaving its outer sheath and attached ornamentative features (spines, combs, reticulate or warty layer, etc.) intact as a “ghost.” The spines and combs of new colonies appear to condense out of the extracellular aggregate; their precise mode of formation is obscure. As they form, the daughter cells, having become rearranged within the parental wall, stick to one another apparently at specific sites on their outer surface. A trilaminar (sporopollenin-containing) layer arises first in each cell at these adhesive sites and immediately afterwards, dense material aggregates between the adjacent layers to give rise to the coenobial adhesive. Plaques of the trilaminar layer later appear over the rest of the cell's surface; they grow and fuse so that eventually each cell is enclosed by one continuous Trilaminar Sheath (TLS). While the plaques are forming, another dense layer materializes around the whole coenobium. Depending on the species, this layer turns into either the warty layer, in which instance it is applied directly on to the surface of the TLS except near the coenobial adhesive, or else it becomes the reticulate layer, in which instance it remains entirely separate from the TLS, soon acquiring the complex system of propping spikelets which suspend it from the coenobial surface. When fully farmed, the daughter coenobium is tightly compressed within the parental TLS, with its spines folded lengthwise along the daughter cells. Release of the colony follows a quite explosive rupturing of the parental TLS, and immediately upon release, the daughter colony flattens out and erects its spines.  相似文献   

3.
Methylation and spectroscopical analyses of DMSO-LiCl-solubilized fractions of the fibrillar cell wall of Coelastrum sphaericum Näg. established the presence of cellulose and β-1,4-linked mannan. A small proportion (2–7%) of (1→2) linkages in β-mannan that introduced an interruption in the regular ribbon chain conformation was interpreted as a component that modulated the mechanical strength of the cell wall. The trilaminar layer fractions consisted mostly of algaenan and cellulose. Evidence for ether linkages between glucose C-6 in the β-1,4-glucan and algaenan was obtained.  相似文献   

4.
Mitosis and cell division have been examined ultrastructurally in the vegetative cells of Hydrurus foetidus (Vill) Trev. and found to resemble that of Ochromonas in two important aspects. First, the rhizoplast acts as the spindle organizing body and second, the spindle elongates considerably during anaphase. It differs from Ochromonas in that there is no movement of the basal bodies and flagella towards the poles. Moreover, the nuclear envelope remains relatively intact throughout early stages of mitosis, with gaps developing at the poles during prophase to permit entry of spindle microtubules. Disruption of the nuclear envelope does not occur in the equatorial plane until late anaphase. The spindle persists into telophase and is bent towards the posterior of the cell by the ingrowing edge of the cleavage furrow. Persistence of the spindle and lack of Ochromoms-type cell elongation may be related to the constricting presence of the sheath during cell division—a completely different strategy to that adopted by the green algae under conditions of similar constraint.  相似文献   

5.
Pectodictyon cubicum Taft collected in California develops typical eight-celled, cuboidal colonies only in alkaline media. Vegetative cell ultrastructure is similar to that in other genera of the Chlorococcales, except for an extensive endoplasmic reticulum system paralleling the plasmalemma (termed a paramural ER). Autosporogenesis proceeds inside the parent cell wall by three mitotic divisions producing eight nuclei in two tiers of four. Cleavage furrows following paths delineated by long ER segments and indistinct microtubules bisect and then radically separate the protoplast into eight pyramidal units. Walls comprised of a thick, presumably cellulose layer and a thinner trilaminar layer (not acetolysis resistant) form as cells become rounded, except where touching. A gelatinous matrix is produced around and between cells with concentration at the three sites of prior cell contact 90 degrees apart. Pulsed production of mucilage in three solid strands forces cells to separate, and the expanding colony becomes a hollow cube with a cell at each corner.  相似文献   

6.
Cell division in the marine red algae Polysiphonia harveyi Bailey and P. denudata (Dillwyn) Kutzing was studied with the electron microscope. Cells comprising the compact spermatangial branches of male plants were used exclusively because of their small size, large numbers and the ease with which the division planes can be predetermined. Some features characterizing mitosis in Polysiphonia confirm earlier electron microscope observations in Membranoptera, the only other florideophycean algae in which mitosis has been studied in detail. Common to both genera are a closed, fenestrated spindle, perinuclear endoplasmic reticulum, a typical metaphase plate arrangement of chromosomes, conspicuous, layered kinetochores, chromosomal and non-chromosomal microtubules, and nucleus associated organelles (NAOs) known as polar rings (PRs) located singly in large ribosome-free zones of exclusion at division poles in late prophase. However, other features, unreported in Membranoptera, were observed consistently in Polysiphonia. These include the presence of PR pairs in interphase-early prophase cells, the attachment of PRs to the nuclear envelope during all mitotic stages, the migration of a single PR to establish the division axis, a prominent, nuclear envelope protrusion (NEP) at both division poles at late prophase, the prometaphase splitting of PRs into proximal and distal portions, and the reformation of post-mitotic nuclei by the separation of an elongated interzonal nuclear midpiece at telophase. During cytokinesis, cleavage furrows impinge upon a central vacuolar region located between the two nuclei and eventually pit connections are formed in a manner basically similar to that reported for other red algae. Diagrammatic sequences of proposed PR behavior during mitosis are presented which can account for events known to occur during cell division in Polysiphonia. Mitosis is compared with that reported in several other lower plants and it is suggested that features of cell division are useful criteria to aid in the assessment of phylogenetic relationships of red algae.  相似文献   

7.
The thecate green flagellate Scherffelia dubia (Perty) Pascher divides within the parental cell wall into two progeny cells. It sheds all four flagella before cell division, and the maturing progeny cells regenerate new walls and flagella. By synchronizing cell division, we observed mitosis, cytokinesis, cell maturation, flagella extension, and cell wall formation via differential interference contrast microscopy of live cells and serial thin‐section EM. Synthesis of thecal and flagellar scales is spatially and temporally strictly separated. Flagellar scales are collected in a pool during late interphase. Before prophase, Golgi stacks divide, flagella are shed, the parental theca separates from the plasma membrane, and flagellar scales are deposited on the plasma membrane near the flagellar bases. At prophase, Golgi bodies start to synthesize thecal scales, continuing into interphase after cytokinesis. During cytokinesis, vesicles containing thecal scales coalesce near the cell posterior, forming a cleavage furrow that is initially oriented slightly diagonal to the longitudinal cell axis but later becomes transverse. After the progeny nuclei have moved into opposite directions, resulting in a “head to tail” orientation of the progeny cells, theca biogenesis is completed and flagellar scale synthesis resumes. Progeny cells emerge through a hole near the posterior end of the parental theca with four flagella of about 8 μm long. The precise timing of flagellar and thecal scale synthesis appears to be an evolutionary adaptation in a scaly green flagellate for the thecal condition, necessary for the evolution of the phycoplast and thus multicellularity in the Chlorophyta.  相似文献   

8.
Mitosis and cell division were studied in the green alga Cylindrocapsa geminella Wolle with transmission electron microscopy. Vegetative cells possess a parietal, lobed chloroplast, and a central pyrenoid. Prophase and metaphase nuclei are surrounded by 1–3 layers of perinuclear endoplasmic reticulum. At early prophase a small number of perinuclear microtubules (MTs) are present while at late prophase MTs are concentrated at the presumptive spindle poles. At the same time, MTs begin to appear in the nucleoplasm. Metaphase spindles are diamond-shaped and centric. During telophase, centrioles migrate towards the center of the equatorial zone, presumably guided by a small group of perinuclear MTs. A second system of MTs develops in the equatorial plane, initially consisting of randomly orientated microtubular elements. Later they tend to run in a predominantly radial direction although a common MT focal point or organizing center is not apparent. The two centriole complexes remain at the center of the equatorial plane until well into interphase, facing each other across the newly formed transverse septum. Centrioles are associated with root templates and connecting fibers. The present observations corroborate the view that C. geminella does not form a true filament in the ulotrichalean or chaetophoralean sense, but rather consists of a row of autospores. Its affinity with other “pseudo-filamentous” green algae and the Chlorococcales is discussed. The interpretation of the cytokinetic MTs in C. geminella as a phycoplast appears to be problematic.  相似文献   

9.
The cell wall of Staurastrum luetkemuelleri Donnat & Ruttner was examined with scanning electron microscope (SEM) using whole cells, in thin sections with transmission electron microscope (TEM), and in air dried whole cells and unstained thin sections with X-ray microanalysis in the scanning-transmission electron microscope (STEM). The cell wall was ornamented with spines and wartlike structures. Spines were solid structures, consisting of deposits of cell wall material between two main cell wall layers. The wart-like structures were pore organs extending through the cell wall and the mucilaginous layer outside the cell wall. The pore cylinder was surrounded by deposits of cell wall material similar to the ones in the spines. X-ray microanalysis of selected areas on whole cells from a natural population showed iron accumulation in discrete locations on the cell extensions of S. luetkemuelleri. In the unstained thin sections iron was found only in the cell wall deposits in the spines. Cells grown in laboratory cultures failed to show iron accumulation regardless of readdition of iron-EDTA (Fe-EDTA) to the culture medium.  相似文献   

10.
Synchronous mitotic divisions produce multi-nucleate cells of Sorastrum. Perinuclear envelopes of endoplasmic reticulum and a virtually intact nuclear envelope enclose mitotic nuclei. Cytoplasmic cleavage, which shirts before the last round of Synchronous mitoses, gives rise to uninucleate fragments which differentiate to form zoospores. These zoospores are released into a spherical vesicle, presumably derived from the inner layer of the parental cell wall, in which they swarm actively before aggregating as a spherical colony. The roughly conical shaped zoospores apparently adhere laterally before withdrawing their flagella and extending horns and a stipe, which, following wall deposition, interconnects the cells at the center of the colony. The probable role of the microtubules, which underlie the plasmalemma of aggregating cells, in determining the shape of both the cells and the colony itself is discussed.  相似文献   

11.
高新起  马文祥 《植物研究》2003,23(4):419-423
综述了被子植物核型胚乳发育的不同阶段(合胞体时期、初始垂周壁形成期、初始平周壁形成期和胚乳细胞分裂增生期)胚乳细胞壁建成的各种观点,以及在各个阶段中微管与胚乳细胞壁建成之间关系的最新研究进展。并分别比较了胚乳细胞化过程不同阶段胚乳游离核或胚乳细胞有丝分裂与分生组织细胞有丝分裂微管周期的差异。  相似文献   

12.
13.
Cell division and semicell expansion in the filamentous desmid Bambusina brebissonii Kütz. were investigated using transmission and scanning electron microscopy. Interphase cells are typical of desmids, containing a full complement of organelles and a cell wall penetrated by complex pores, but the cells lack a well-defined median constriction. Cell division involves an open spindle and the centripetal growth of a primary septum formed by the fusion of small, dark-staining vesicles probably derived from dictyosomes. Telophase nuclei are separated by a system of interzonal microtubules and numerous large, lighter-staining vesicles also derived from the dictyosomes. Following cell division, an elaborate replicate cross wall is formed which consists of both primary and secondary wall layers. During semicell expansion, a portion of the primary wall splits apart as the new semicells evaginate and expand to their full size. The primary wall stops splitting at a thick ring of secondary wall material leaving the cells united by the remaining common layer of primary wall. When semicell expansion is completed, the primary wall is not shed from the lateral walls of the new semicells, and pores through both primary and secondary wall layers begin to produce sheath material. However, pores in the end walls of cells do not function unless the filament is broken. The intact primary wall between cells and the absence of sheath production between cells comprise the mechanism serving to hold the cells of Bambusina brebissonii together in long filaments.  相似文献   

14.
The ultrastructure of the flagellar apparatus in pre-inversion and inversion stages of Platydorina resembles that of Chlamydomonas in having 180° rotational symmetry and clockwise absolute orientation. Basal bodies are in a “V” configuration and connected by one distal and two proximal fibers. Alternating two- and four-membered microtubular rootlets are cruciately arranged. During maturation, the basal bodies rotate and separate, and 180° rotational symmetry is lost. Simultaneously, each proximal fiber detaches from one of the functional basal bodies, and the distal fiber detaches from both. The mature apparatus has widely separated and nearly parallel basal bodies. Flagellar orientation in Platydorina is completed just after inversion and a flattening of the colony called intercalation, resulting in the pairs of flagella of neighboring cells extending from the colony in opposite directions in an alternating fashion. Flagellar orientation and separated basal bodies minimize the interference between the flagella of neighboring cells. Basal bodies and rootlets of the two intercalated halves of a colony rotate, resulting in the effective strokes of the flagella of every cell being towards the colonial posterior. The flagella of each cell beat with an effective stroke in the direction of the two inner rootlets. The flagella have an asymmetrical ciliary type beat. The rotated, separated, and parallel basal bodies, together with the nearly parallel rootlets probably are adaptations for movement of this colonial volvocalean alga. The flagellar apparatus in immature stages of Platydorina lends support to the suggestion that the alga has evolved from a Chlamydomonas-like ancestor.  相似文献   

15.
Vegetative cells of Gonium pectorale have a fine structure similar to that of Chlamydomonas. In addition, three zones comprise an extracellular matrix; a fibrillar sheath and tripartite boundary surround individual cells, and a fragile capsule zone surrounds the entire colony. Cytokinesis is accomplished by a phycoplast and cleavage furrow. The flagellar apparatus of the immature vegetative cell of this colonial alga is similar to that of Chlamydomonas, but the basal bodies are slightly separated at their proximal ends. The four microtubular rootlets alternate between two and four members. During development, the basal bodies become further separated and nearly parallel. The distal fiber is stretched, but it remains attached to both basal bodies. At maturity, the basal bodies of peripheral cells of the colony have rotated in opposite directions on their longitudinal axes resulting in a displacement of the distal fiber to one side, an asymmetrical orientation of the rootlets and loss of 180° rotational symmetry. Central cells remain similar to Chlamydomonas in that basal bodies do not rotate, rootlets are cruciate, the distal fiber remains medially inserted and 180° rotational symmetry is conserved. A “pin-wheel” configuration of flagellar pairs and the orientation of parallel rootlets toward the colony perimeter probably accounts for the rotation of the colonies during forward swimming. In addition, these ultrastructural features support the traditional placement of G. pectorale as an intermediate between the unicellular Chlamydomonas and the more complex colonial volvocalean genera.  相似文献   

16.
Mitosis and cytokinesis in vegetative cells of the sarcinoid green alga Chlorokybus atmophyticus Geitler were examined with rapid freeze fixation, freeze substitution, and transmission electron microscopy. The taxonomic placement of C. atmophyticus in the class Charophyceae sensu Stewart and Mattox is corroborated by some mitotic and cytokinetic features including development of a microtubular sheath around the prophase nucleus, the almost constant chromosome to pole distance during anaphase, telophase nuclei widely separated by a persistent interzonal spindle, and centripetal plasma membrane invagination. Features, previously unknown in the Charophyceae, include the specific position of the peroxisome lying between the nucleus and adjacent cell wall during interphase and mitosis, the extensive array of microtubules radiating from the centrioles located at the presumptive poles at prophase, involvement of coated vesicles in the furrowing process, and occurrence of transversely aligned cleavage microtubules. Placement of Chlorokybus in the order Klebsormidiales is proposed.  相似文献   

17.
Methods were developed for the isolation of large numbers of healthy protoplasts from two species of the agarophyte Gracilaria; G. tikvahiae McLachlan and G. lemaneiformis (Bory) Weber-van Bosse. This is the first report of protoplast isolation and cell division in a commercially important, phycocolloid-producing red seaweed, as well as for a member of the Florideophycidae. The optimal enzyme composition for cell wall digestion and protoplast viability consisted of 3% Onozuka R-10, 3% Macerozyme R-10, 1% agarase and 0.5% Pectolyase Y- 23 dissolved in a 60% seawater osmoticum containing 1.0 M mannitol. The complete removal of the cell wall was confirmed by several different methods, including electron microscopic examination, and the absence of Calcofluor White (for cellulose) and TBO (for sulfated polysaccharide) staining. Spontaneous protoplast fusion was observed on several occasions. Protoplast viability was dependent upon the strain and age of the parent material, as well as the mannitol concentration of the enzyme osmoticum. Cell wall regeneration generally occurred in 2-6 days; cell division in 5-10 days. Protoplast-produced cell masses up to the 16-32 cell stage have been grown in culture. However, efforts to regenerate whole plants have been unsuccessful to date.  相似文献   

18.
Cytokinesis in the coenocytic green alga Protosiphon botryoides (Kütz.) Klebs was studied with transmission electron microscopy. In vegetative cells, nuclei with associated basal bodies and dictyosomes are scattered throughout the cytoplasm. Mature cells may develop either multinucleate resting spores (coenocysts) or uninucleate zoospores. Cytokinesis may be preceded by contraction of the protoplast due to the disintegration of vacuoles that are present in larger, siphonous cells. The formation of coenocysts in ageing, siphonous cells, is signalled by cleavage of the chloroplast and the development of arrays of phycoplast microtubules in one or more transversely oriented planes through the cell. Nuclei with associated basal apparatuses stay dispersed throughout the cytoplasm; the basal bodies apparently are not involved in organization of the phycoplast. The plasma membrane invaginates, resulting in a centripetal cleavage of the protoplast into two or more multinucleate daughter protoplasts. Simultaneously, wall material is deposited along the outside of the daughter protoplasts by dictyosome-derived vesicles, and finally two or more thick-walled coenocysts are formed. The formation of zoospores, on the other hand, is signalled by clustering of the nuclei in one or more groups depending on the shape of the mother cell. The nuclei become arranged with the associated basal apparatuses facing toward the center of the cluster. Bundles of phycoplast microtubules develop between the nuclei, radiating from the center of a cluster toward the plasma membrane; basal apparatuses or associated structures apparently are involved in organization of the phycoplast. Cleavage furrows grow out centrifugally along these bundles of micro-tubules, fed by dictyosome-derived vesicles. No wall material is deposited. An additional mitotic division occurs during cleavage, and finally numerous uninucleate, wall-less, biflagellate zoospores are formed. The ultrastructural features of the two different types of cytoplasmic cleavage associated with two different types of daughter cells have not previously been reported for chlorophycean algae.  相似文献   

19.
There is a general lack of genomic information available for chlorophyte seaweed genera such as Ulva, and in particular there is no information concerning the genes that contribute to adhesion and cell wall biosynthesis for this organism. Partial sequencing of cDNA libraries to generate expressed sequence tags (ESTs) is an effective means of gene discovery and characterization of expression patterns. In this study, a cDNA library was created from sporulating tissue of Ulva linza L. Initially, 650 ESTs were randomly selected from a cDNA library and sequenced from their 5′ ends to obtain an indication of the level of redundancy of the library (21%). The library was normalized to enrich for rarer sequences, and a further 1920 ESTs were sequenced. These sequences were subjected to contig assembly that resulted in a unigene set of approximately 1104 ESTs. Forty‐eight percent of these sequences exhibited significant similarity to sequences in the databases. Phylogenetic comparisons are made between selected sequences with similarity in the databases to proteins involved in aspects of extracellular matrix/cell wall assembly and adhesion.  相似文献   

20.
Cell wall changes in vegetative and suffultory cells (SCs) and in oogonial structures from Oedogonium bharuchae N. D. Kamat f. minor Vélez were characterized using monoclonal antibodies against several carbohydrate epitopes. Vegetative cells and SCs develop only a primary cell wall (PCW), whereas mature oogonial cells secrete a second wall, the oogonium cell wall (OCW). Based on histochemical and immunolabeling results, (1→4)‐β‐glucans in the form of crystalline cellulose together with a variable degree of Me‐esterified homogalacturonans (HGs) and hydroxyproline‐rich glycoprotein (HRGP) epitopes were detected in the PCW. The OCW showed arabinosides of the extensin type and low levels of arabinogalactan‐protein (AGP) glycans but lacked cellulose, at least in its crystalline form. Surprisingly, strong colabeling in the cytoplasm of mature oogonia cells with three different antibodies (LM‐5, LM‐6, and CCRC‐M2) was found, suggesting the presence of rhamnogalacturonan I (RG‐I)–like structures. Our results are discussed relating the possible functions of these cell wall epitopes with polysaccharides and O‐glycoproteins during oogonium differentiation. This study represents the first attempt to characterize these two types of cell walls in O. bharuchae, comparing their similarities and differences with those from other green algae and land plants. This work represents a contribution to the understanding of how cell walls have evolved from simple few‐celled to complex multicelled organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号