首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SUMMARY. 1. The influence of temperature on in vivo photosynthetic and in vitro respiratory electron transport system (ETS) activity was determined over the season for the 3 m (warm-water) and a 20m (cold-water) phytoplankton communities in Castle Lake. The optimum temperature of photosynthesis at 3 m (X?=20.8°C) was significantly higher than the average optimum at 20 m (X?=14.8°C). 2. Seasonally, the photosynthetic temperature optimum increased when the blue-green alga Chroococcus limneticus Lemm. was present. The temperature characteristics of this organism were maintained even after it had settled into the cold water of the hypolimnion. 3. Temperature optima were not significantly different in experiments conducted under limiting or saturating photosynthetic photon flux densities (PPFD). 4. Short-term (1 h) preincubations with dissolved inorganic nitrogen (DIN) (?80 μg NH4NO3-N l?1) had little effect on the temperature characteristics of photosynthesis while the longer (>24 h) incubations provided by a whole-lake epilimnetic DIN addition (?75 μg NH4NO3- N l?1) significantly lowered the photosynthetic temperature optimum to 12.5°C. Once this epilimnetic DIN was depleted the optimum roseto25°C, a value higher than that present before the enrichment, which coincided with the growth of C limneticus. 5. Respiratory ETS activity usually began to inactivate between 19 and 20°C. However, when C. limneticus was abundant the inactivation temperature was often greater ihan 25°C. 6. The average energy of activation (E) and Q10 value for the 3 m community (15.9 kcal mol?1 and 2.6 respectively) were significantly higher than those at 20 m (14.2 kcal mol?1 and 2.4 respectively). Seasonally, the highest E and Q10 values of ETS activity occurred during the late-summer bloom of C. limneticus. 7. These results demonstrate that the epilimnetic and hypolimnetic phytoplankton communities in Castle Lake are physiologically distinct with regards to their temperature characteristics.  相似文献   

2.
The temperature dependence of NADH:NR activity was examined in several marine phytoplankton species and vascular plants. These species inhabit divergent thermal environments, including the chromophytes Skeletonema costatum (12–15° C), Skeletonema tropicum (18–25° C), Thalassiosira antarctica (?2 to 4° C), and Phaeocystis antarctica (?2 to 4° C), the green alga Dunaliella tertiolecta (14–28° C), and the vascular plants Cucurbita maxima (20–35° C) and Zea mays (20–25° C). Despite the difference in growth habitats, similar temperature response curves were observed among the chromophytic phytoplankton, with temperatures optimal for NR activity being between 10–20° C. In contrast, the chlorophyll b‐containing alga and vascular plants exhibited optimal temperatures for NR activity above 30° C. Such dramatic differences in NR thermal characteristics from the two taxonomic groups reflect a divergence in NR structure that may be associated with the evolutionary diversification of chromophytes and chlorophytes. Further, it suggests a potential contribution of the thermal performance of NR to the geographic distributions, seasonal abundance patterns, and species composition of phytoplankton communities. NR partial activities, which assess the individual functions of Mo‐pterin and FAD domains, were evaluated on NR purified from S. costatum to determine the possible causes for high temperature (>20° C) inactivation of NR from chromophytes. It was found that the FAD domain and electron transport among redox centers were sensitive to elevated temperatures. S. costatum cells grown at 5, 15, and 25° C exhibited an identical optimal temperature (15° C) for NADH:NR activity, whereas the maximal NR activity and NR protein levels differed and were positively correlated with growth temperature and growth rate. These findings demonstrate that thermal acclimation of NO3? reduction capacity is largely at the level of NR protein expression. The consequences of these features on NO3? utilization are discussed.  相似文献   

3.
Discriminating Approach of Various Microplanktonic-stage Contributions to Whole ETS Measurements in Sea-water Samples. a. Phytoplankton Data obtained from algal cell cultures were applied to various sea water samples in order to estimate the specific contribution of phytoplanktonic organisms to whole ETS (electron transport system) measurements of these samples which have been collected at eleven stations in the northwest Mediterranean Sea. When the phytoplankton ETS contributions were quantified by cell enumerations or by other indirect-biomass-indicator measurements, the results are in good accordance to the recorded ETS measurement values of the sample. More specific of the phytoplankton stage is the index used for such an estimation (as chlorophyll a), and better is the relationship between both estimated and measured ETS values.  相似文献   

4.
Phaeodactylum tricornutum Bohlin (Bacillariophyceae) was maintained in exponential growth under Fe‐replete and stressed conditions over a range of temperatures from 5 to 30° C. The maximum growth rate (GR) was observed at 20° C (optimal temperature) for Fe‐replete and ‐stressed cells. There was a gradual decrease in the GR decreasing temperatures below the optimum temperature; however, the growth rate dropped sharply as temperature increased above the optimum temperature. Fe‐stressed cells grew at half the growth rate of Fe‐replete cells at 20° C, whereas this difference became larger at lower temperatures. The change in metabolic activities showed a similar pattern to the change in growth rate temperature aside from their optimum temperature. Nitrate reductase activity (NRA) and respiratory electron transport system activity (ETS) per cell were maximal between 15 and 20° C, whereas cell‐specific photosynthetic rate (Pcell) was maximal at 20° C for Fe‐replete cells. These metabolic activities were influenced by Fe deficiency, which is consistent with the theoretical prediction that these activities should have an Fe dependency. The degree of influence of Fe deficiency, however, was different for the four metabolic activities studied: NRA > Pcell > ETS = GR. NRA in Fe‐stressed cells was only 10% of that in Fe‐replete cells at the same temperature. These results suggest that cells would have different Fe requirements for each metabolic pathway or that the priority of Fe supply to each metabolic reaction is related to Fe nutrition. In contrast, the order of influence of decreasing the temperature from the optimum temperature was ETS > Pcell > NRA > GR. For NRA, the observed temperature dependency could not be accounted for by the temperature dependency of the enzyme reaction rate itself that was almost constant with temperature, suggesting that production of the enzyme would be temperature dependent. For ETS, both the enzyme reactivity and the amount of enzyme accounted for the dependency. This is the first report to demonstrate the combined effects of Fe and temperature on three important metabolic activities (NRA, Pcell, and ETS) and to determine which activity is affected the most by a shortage of Fe. Cellular composition was also influenced by Fe deficiency, showing lower chl a content in the Fe‐stressed cells. Chl a per cell volume decreased by 30% as temperature decreased from 20 to 10° C under Fe‐replete conditions, but chl a decreased by 50% from Fe‐replete to Fe‐stressed conditions.  相似文献   

5.
Respiratory electron transport system (ETS) measurements weremade on the microplankton in the Peru upwelling system near15°S during March, April, and May of 1977. The close associationbetween chlorophyll- biomass and ETS activity indicate thatthe microplankton were predominantly phytoplankton. Phytoplanktonrespiration average 14% of gross fixed carbon. When zooplanktonrespiration in the euphotic zone is considered, the total planktonrespiration represented an average of 19% of gross primary production. *Contribution Number 79002 from the Bigelow Laboratory for OceanSciences.  相似文献   

6.
Respiratory electron transport system (ETS) activity and actualoxygen consumption rates were measured in batch cultures offour species of marine phytoplankton, in two different growthstages: exponential or log-phase (L) and stationary phase (S).The L cultures showed higher ETS activity and respiration ratesthan the S cultures of the same species. Among the L cultures,the higher respiration and ETS activity corresponded to thosehaving higher growth rates. The carbon-specific ETS activityand the carbon-specific respiration (h–1) showed a cleardependence on growth rates. Samples subjected to short (10 min)exposures to high, oversaturating irradiances (1000 µEm–2 s–1) displayed enhanced ETS activity and respiration.The experiments show that, under the light regime at which thealgal cells grow, the respiratory ETS activity and actual oxygenconsumption in phytoplankton are strongly related to growthrate and that short, high irradiance exposures enhance boththe respiratory enzyme activity and their actual oxygen consumption.  相似文献   

7.
The influence of temperature on the biochemical composition of eight species of marine phytoplankton was investigated. Thalassiosira pseudonana Hasle and Heim-dal, Phaeodactylum tricornutum Bohlin and, Pavlova lutheri Droop (three of eight species studied) had minimum values of carbon and nitrogen quotas at intermediate temperatures resulting in a broad U-shaped response in quotas over the temperature range of 10 to 25°C. Protein per cell also had minimum values at intermediate temperatures for six species. For T. pseudonana, P. tricornutum, and P. lutheri, patterns of variation in carbon, nitrogen, and protein quotas as a function of temperature were similar. Over all species, lipid and carbohydrate per cell showed no consistent trends with temperature. Only chlorophyll a quotas and the carbon: chlorophyll a ratios (θ) showed consistent trends across all species. Chlorophyll a quotas were always lower at 10°C than at 25°C. Carbon: chlorophyll a ratios (θ) were always higher at 10°C than at 25°C. We suggest that although θ consistently increases at lower temperatures, the relationship between temperature and θ ranges from linear to exponential and is species specific. Accordingly, the interspecific variance in θ that results from species showing a range of possible responses to temperature increases as temperature declines and reaches a maximum at low temperatures. High photon flux densities appear to increase the potential interspecific variance in the carbon: chlorophyll a ratio and therefore exacerbate these trends.  相似文献   

8.
A simple and rapid procedure for preparing thylakoid membranes that are active in photosynthetic electron transport from diverse phytoplankton species is described. The method requires disruption of algal cells with glass beads, exposure to mild hypotonic stress, and subsequent enrichment of the thylakoid membranes by differential centrifugation. Isolated thylakoid membranes were assayed for photosynthetic electron transport activity by measuring rates of oxygen consumption and oxygen production, using a variety of electron donors and acceptors. In the dinoflagellate Gonyaulax polyedra Stein, a relatively broad pH optimum between 7.0 and 8.0 was determined for the whole chain electron transport from water to methyl viologen. The preparation maintained maximum activity for 45 min following the preparation. The assay for photosystem I activity in G. polyedra, determined as electron flow from ascorbate/2,6-dichlorophenolindophenol to methyl viologen, had a somewhat narrower pH optimum around 8.0. Rates of whole chain photosynthetic electron transport on a per cell and on a per chlorophyll a basis were shown to decrease dramatically with cell age in batch cultures of G. polyedra. Using the procedures optimized for G. polyedra, reproducible rates of electron transport on a per cell chlorophyll a basis were also measured in cultures of the dinoflagellate Glenodinium sp., the diatom Nitzschia closterium (Ehrenberg 1839) Wm. Smith 1853 and the chrysophyte Monochrysis lutheri Droop {= Pavlova lutheri (Droop) Green}. Other electron transport assays applied to G. polyedra, and that resulted in comparable rates to those found in other algal groups, include the photosystem II assay from water to diaminodurene/ferricyanide and the photosystem I assay from durohydroquinone to methyl viologen.  相似文献   

9.
Two amphipods, the hypogean Niphargus stygius and epigean Gammarus fossarum, were analyzed for fatty acid (FA) composition, electron transport system (ETS) activity and respiration (R) during a laboratory fasting experiment. In agreement with ETS and R measurements (and the ETS/R ratio), the hypogean N. stygius utilized FA more slowly than the epigean G. fossarum. Inter-specific differences in the utilization of certain FA during fasting were also revealed. While N. stygius tended to preserve all of its FA during the experimental fasting period, G. fossarum showed a tendency to utilize MUFA (monounsaturated FA) and SAFA (saturated FA) and preferentially retain PUFA (polyunsaturated FA). The significant correlations between ETS activity and composition of specific FA during fasting can be linked to R. During the fasting, both ETS activity and respiration rate of G. fossarum decreased, however, ETS/R ratio increased. In contrast, N. stygius did not show significant changes in these parameters. This is the first report, which connects ETS activity with changes in concentrations of specific FA during fasting. Such evolutionary adaptations of hypogean species enables them to better survive chronically low and/or discontinuous food supplies compared to epigean species, which live in environments where food shortages are much less frequent.  相似文献   

10.
Single‐cell alkaline phosphatase (AP) activity is being increasingly used to characterize phosphorus (P) status of individual species of phytoplankton. As phytoplankton growth rates depend more directly on the internal rather than external P concentrations, we determine the AP activity in the two species of freshwater phytoplankton, Scenedesmus quadricauda (Turpin) Bréb. and Asterionella formosa Hassall, as a function of internal P concentration. AP activity strongly correlated with cellular P, increasing almost linearly with decreasing cellular P in both species. The dynamics of initial responses of AP activity to P limitation, as well as the final levels of AP activity, when cellular P approached minimum quotas, differed in two species. After P addition, cellular P concentrations increased rapidly, but AP activity remained high for several days. The lag in AP activity down‐regulation following an increase in cellular P made it difficult to infer current P status of cells under dynamic P conditions.  相似文献   

11.
Spores ofBacillus subtilis A were produced at different temperatures (23°–49°C) and examined for a number of sporal characteristics. Spore heat resistance increased with sporulation temperature to 45°C, with spores grown at 49°C showing a dramatic reduction in resistance. Spore crops showed biphasic thermal death curves whether enumerated on germination medium with or without calcium dipicolinate. This strain produces both rough and smooth variants. Of the spores produced at 23°C, 99% were rough, had a density of 1.305, and an average core/core + cortex volume ratio of 0.1838. At 49°C, 99% were smooth, had a density of 1.275, and an average volume ratio of 0.3098. Between these temperatures both spore types were produced. There appeared to be no direct correlation with sporulation temperature, heat resistance, and dipicolinate content. There was an increase in both the magnesium and calcium contents to 45°C with a dramatic reduction at 49°C. The 1.305 density spores had higher calcium and dipicolinate contents than the 1.275 spores, although both spore types showed biphasic thermal death curves. The mechanisms involved in determining which spore type (rough/smooth) is produced at a specific growth temperature is unknown.Florida Agricultural Experiment Station Journal Series Number R-00312.  相似文献   

12.
The influence of temperature on the activity of the respiratoryelectron transport system (ETS) was measured in one clone ofDaphnia hyalina x galeata and one of Daphnia cucullata x galeata,isolated from Lake Bled (Slovenia). The ETS activity of ovigerousfemales acclimated to 7, 20 and 25°C, was measured at 5,10, 15, 20, 25 and 30°C. Population growth experiments showedthat D. cucullata x galeata grew better at high rather thanlow temperatures. Daphnia hyalina x galeata, however, grew moresuccessfully at low temperatures than did D. cucullata x galeata.The highest Q10 of ETS activity of D. cucullata x galeata atthe lowest temperature range of 5–15°C indicated theabsence of enzymes that could function sufficiently well atlow temperatures. The ETS activity of the warm-acclimated hybridD. hyalina x galeata reached a maximum at an incubation temperatureof 20°C, while D. cucullata x galeata had maximal ETS activityat 25°C. Thus D. cucullata x galeata has a more efficientenzyme system than D. hyalina x galeata at the higher temperature.The higher Arrhenius activation energy (Ea) for D. cucullatax galeata than for D. hyalina x galeata indicates that enzymesfrom D. cucullata x galeata are more temperature sensitive thanthose from D. hyalina x galeata. In conclusion, the ETS of D.cucullata x galeata is adapted to a higher temperature and tonarrower temperature fluctuations than that of D. hyalina xgaleata.  相似文献   

13.
Stop-flow techniques were used to determine how temperature affected the axonal transport of dopamine-β-hydroxylase (DBH) activity in rabbit sciatic nerves in vitro. These nerves were cooled locally to 2°C for 1.5 hr, which caused a sharp peak of DBH activity to accumulate above the cooled region. Accumulated DBH was then allowed to resume migration at various temperatures. From direct measurements of the rate of migration, we found that the axonal transport velocity of DBH was a simple exponential function of temperature between 13°C and 42°C. Over this range of temperatures, the results were well described by the equation: V = 0.546(1.09)T, where V is velocity in mm/hr, and T is temperature in degrees centigrade. The Q10 between 13°C and 42°C was 2.33, and an Arrhenius plot of the natural logarithm of velocity versus the reciprocal of absolute temperature yielded an apparent activation energy of 14.8 kcal. Transport virtually halted when temperature was raised to 47°C, although only about half of the DBH activity disappeared during incubation at this temperature. Another transition occurred at 13°C; below this temperature, velocity fell precipitously. This was not an artifact peculiar to the stop-flow system since the rate of accumulation of DBH activity proximal to a cold-block also decreased abruptly when the temperature above the block was reduced below 13°C.  相似文献   

14.
The distribution of 14C among photosynthetic end-products was examined in eastern Canadian arctic phytoplankton, with particular emphasis on the synthesis of lipids. The pattern of 14C distribution for phytoplankton at each of three depths was generally similar among populations from 12 stations. About 18% of the total 14C fixed was incorporated into lipids. At one station, phytoplankton were experimentally subjected to temperature and light conditions different from those in situ: lipid-14C did not exceed 30% of total 14C fixed within the temperature range -1.0 to 6.0° C and irradiance range 1 to 700 W · m?2. It is suggested that low temperatures and low light intensities, even when, maintained for prolonged periods, are not fully sufficient conditions for eliciting high relative rates of 14C incorporation into lipids. It is possible that differences in species composition may be a factor accounting for different patterns of 14C distribution between north and south polar phytoplankton under apparently similar environmental conditions.  相似文献   

15.
Discriminating approach of various microplanktonic-stage contributions to whole electron transport system (ETS) measurements in sea-water sampless. b. Bacateria Data obtained from cultures of natural bacterial populations were applied to various water samples in order to determine both the phytoplanktonic and bacterial contributions to whole ETS water-sample measurements. The bacterial part was estimated both by cell enumerations and HPLC muramic-acid measurements and the phytoplankton contribution by enumeration and chlorophyll levels. An appropriate first-order equation is adequate to low carbon content samples but must be corrested for highly organic loaded samples in order to obtain a better adjustment between the sum of the “estimated” phytoplanktonic and bacterial ETS and the really-measured ETS concentrations in the water samples.  相似文献   

16.
南亚热带贫营养水库春季浮游植物群落结构与动态   总被引:8,自引:1,他引:8       下载免费PDF全文
2005年1~6月,通过每两周一次的高频率采样,对南亚热带贫营养水库——梅溪水库的水文、营养盐和浮游植物进行了调查,并计算水体浮游植物生物量。主要结果如下:梅溪水库浮游植物具有物种少,生物量低,以飞燕角甲藻(Ceratium hirundinella)和多甲藻(Peridinium sp.)为优势藻的特征。12次采样24个样品共检测到浮游植物42种。浮游植物在早春(1~3月)和晚春(4~6月)有显著的差别,其中每次采样浮游植物早春平均13种,晚春平均21种。浮游植物总的细胞丰度为31~273 cells·ml-1,总生物量为0.176~2.024 mg·L-1之间。晚春浮游植物平均生物量明显高于早春。低营养盐和弱酸性水体有利于能够垂直迁移获得营养的鞭毛藻类和其它藻类之间竞争,而使其成为整个春季优势类群。在晚春,随着水温显著增加,浮游植物丰度和生物量也明显增加,但是降雨的增加降低了水体的透明度,大大减缓了由水温上升导致生物量增长的趋势。水温是梅溪水库浮游植物变化的主要限制因子,但是降雨有明显的干扰作用。  相似文献   

17.
Simčič  Tatjana  Brancelj  Anton 《Hydrobiologia》2000,437(1-3):157-163
Electron transport system (ETS) activity was measured in Chirocephalus croaticus from the intermittent lake, Petelinjsko Jezero. The ETS activities were measured at 5, 10, 15, 20, and 25 °C, and were studied separately in juveniles, females and males. Juveniles had significantly higher activity than adults at a standard temperature of 20 °C. The mass-specific ETS activity decreased with increasing size of the animals; the value b was 0.787. Respiration rates (R) were determined at 20 °C and the ratio ETS/R (±standard deviation) for C. croaticus was 1.43±0.46 (n=38). ETS activity increased with temperature. Females had higher Q10 than males in higher temperature range (t-test; t=2.50; d.f.=8; p<0.05). Activation energy Ea was higher for females than males (t-test; t=2.35; d.f.=8; p<0.05). Females exhibited lower ETS activity than males over the lower temperature range, but their ETS could function more efficient at higher temperature.  相似文献   

18.
19.
The relationship between whole chain photosynthetic electron transport and PSII activity was investigated in Porphyra columbina (Montagne) (Rhodophyta), Ulva australis (Areschoug) (Chlorophyta), and Zonaria crenata ( J. Agardh) (Phaeophyta). Mass spectrometric measurements of gross O2 evolution and gross O2 uptake were combined with simultaneous measurement of pulse-modulated chl fluorescence under a range of irradiances and inorganic carbon (Ci) concentrations. At light-limiting irradiance, a good correlation between gross O2 evolution and the electron transport rate (ETR) calculated from chl fluorescence ((Fm′− Fs)/Fm′) was found in the optically thin species (Ulva and Porphyra). The calculated ETR was equivalent to the theoretical electron requirement in these species but overestimated gross O2 evolution in the thicker species Zonaria. In saturating light, especially when Ci availability was low, ETR overestimated gross O2 evolution in all species. Excess electron flow could not be accounted for by an increase in gross O2 uptake; thus neither Mehler-ascorbate-peroxidase reaction nor the photosynthetic carbon oxidation cycle were enhanced at high irradiance or low C i. Alternative explanations for the loss of correlation include cyclic electron flow around PSII that may be engaged under these conditions or nonphotochemical energy quenching within PSII centers. The loss of correlation between ETR and linear photosynthetic electron flow as irradiance increased from limiting to saturating or at low Ci availability and in the case of optically thick thalli limits the application of this technique for measuring photosynthesis in macroalgae.  相似文献   

20.
The feasibility of estimating phytoplankton carbon and RNA concentrations from measurements of ATP and chlorophyll a (chl a) concentrations was studied using chemostat populations of the marine diatom Thalassiosira weissflogii (Grunow) Fryxell & Hasle (= T. fluviatilis Hustedt). C:ATP and RNA:ATP ratios were studied for six additional marine species in batch culture representing five classes of phytoplankton. Statistical analyses revealed that both the growth rate and the factor limiting growth (NO3-, NH4+, PO43- or light) could alter C:ATP, RNA: ATP, C:chl a and RNA:chl a ratios by amounts which were large compared to measurement error. An analysis of variance of the batch culture results indicated that both species and the source of inorganic nitrogen (NO3-, or NH4+) had a significant effect on C:ATP and RNA:ATP ratios. Light had less of an influence on C:ATP and RNA:ATP ratios than on C:chl a and RNA:chl a ratios, and for this reason we feel that phytoplankton C and RNA concentrations can be estimated with greater reliability from ATP than from chl a measurements. The range of C:ATP and RNA:ATP values found for T. weissflogii under a variety of growth conditions was similar to that for the six additional species grown in batch culture, suggesting that this range of values is indicative of the extremes likely to occur in living cells. Our results and additional data in the literature indicate that phytoplankton C and RNA concentrations can be estimated to within a factor of two by multiplying ATP concentrations by 311 and 35, respectively, in N limited systems, and by 341 and 36, respectively in PO43- limited systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号