首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
HS 378 is a recently developed indolomorphinan with high selectivity and antagonist potency at the delta-opioid receptor. The present study was performed to characterize the opioid binding properties and pharmacological and immunological activity of HS 378 and to compare them with those of two well-known delta-opioid receptor antagonists, naltrindole (NTI) and naltriben (NTB). In vitro opioid receptor binding profiles were determined in rat brain homogenates. HS 378 showed 4.7- and 2.4-fold higher mu/delta selectivity compared to NTI and NTB, respectively. In the [35S]GTPgammaS functional assay carried out in cell lines expressing cloned human opioid receptors, HS 378 was found to be a pure delta-opioid receptor antagonist. In vitro, exposure of HS 378 resulted in an apparent dose-related suppression of concanavalin A induced rat T-lymphocyte proliferation with an IC50 value of 0.54 microM. NTI showed also immunosuppression with an IC50 value of 6.93 microM, whereas NTB had no effect. The IC50 of HS 378 was 13 times lower than that of NTI and 8 times higher than that of cyclosporin A. Taken together, our findings indicate that the small molecule HS 378 has properties that may be of therapeutic value in the setting of human inflammatory diseases.  相似文献   

2.
Opioids introduced at reperfusion (R) following ischemia (I) reduce infarct size much like postconditioning, suggesting the hypothesis that postconditioning increases cardiac opioids and activates local opioid receptors. Anesthetized male rats subjected to 30 min regional I and 3 h R were postconditioned with three cycles of 10 s R and 10 s reocclusion at onset of R. Naloxone (NL), its peripherally restricted analog naloxone methiodide, delta-opioid receptor (DOR) antagonist naltrindole (NTI), kappa-opioid receptor antagonist norbinaltorphimine (NorBNI), and mu-opioid receptor (MOR) antagonist H-D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP) were administered intravenously 5 min before R. The area at risk (AAR) was comparable among groups, and postconditioning reduced infarct size from 57 +/- 2 to 42 +/- 2% (P < 0.05). None of the antagonists alone altered infarct size. All antagonists abrogated postconditioning protection at higher doses. However, blockade of infarct sparing by postconditioning was lost, since tested doses of NL, NTI, NorBNI, and CTAP were lowered. The efficacy of NorBNI declined first at 3.4 micromol/kg, followed sequentially by NTI (1.1), NL (0.37), and CTAP (0.09), suggesting likely MOR and perhaps DOR participation. Representative small, intermediate, and large enkephalins in the AAR were quantified (fmol/mg protein; mean +/- SE). I/R reduced proenkephalin (58 +/- 9 vs. 33 +/- 4; P < 0.05) and sum total of measured enkephalins, including proenkephalin, peptide B, methionine-enkephalin, and methionine-enkephalin-arginine-phenylalanine (139 +/- 17 vs. 104 +/- 7; P < 0.05) compared with shams. Postconditioning increased total enkephalins (89 +/- 8 vs. 135 +/- 5; P < 0.05) largely by increasing proenkephalin (33 +/- 4 vs. 96 +/- 7; P < 0.05). Thus the infarct-sparing effect of postconditioning appeared to involve endogenously activated MORs and possibly DORs, and preservation of enkephalin precursor synthesis in the AAR.  相似文献   

3.
Mizoguchi H  Narita M  Nagase H  Tseng LF 《Life sciences》2000,67(22):2733-2743
The activation of mu-, delta- and kappa1-opioid receptors by their respective agonists increases the binding of the non-hydrolyzable GTP analog guanosine-5'-(gamma-thio)-triphosphate (GTPgammaS) to G proteins. Beta-endorphin is an endogenous opioid peptide which binds nonselectively to mu-, delta- and putative epsilon-opioid receptors. The present experiment was designed to determine which opioid receptors are involved in the stimulation of [35S]GTPgammaS binding induced by beta-endorphin in the mouse pons/medulla. The mouse pons/medulla membranes were incubated in an assay buffer containing 50 pM [35S]GTPgammaS, 30 microM GDP and various concentrations of beta-endorphin. Beta-endorphin (0.1 nM-10 microM) increased [35S]GTPgammaS binding in a concentration-dependent manner, and 10 microM beta-endorphin produced a maximal stimulation of approximately 260% over baseline. This stimulation of [35S]GTPgammaS binding by beta-endorphin was partially attenuated by the mu-opioid receptor antagonist beta-funaltrexamine (beta-FNA), but not by the delta-opioid receptor antagonist naltrindole (NTI) or the kappa1-opioid receptor antagonist nor-binaltorphimine (nor-BNI). Beta-endorphin stimulated [35S]GTPgammaS binding by about 80% in the presence of 10 microM beta-FNA, 30 nM NTI and 100 nM nor-BNI. The same concentrations of these antagonists completely blocked the stimulation of [35S]GTPgammaS binding induced by 10 microM [D-Ala2,NHPhe4,Gly-ol]enkephalin, [D-Pen(2,5)]enkephalin and U50,488H, respectively. Moreover, the residual stimulation of [35S]GTPgammaS binding induced by beta-endorphin in the presence of the three opioid receptor antagonists was significantly attenuated by 100 nM of the putative epsilon-opioid receptor partial agonist beta-endorphin (1-27). These results indicate that the stimulation of [35S]GTPgammaS binding induced by beta-endorphin is mediated by the stimulation of both mu- and putative epsilon-opioid receptors in the mouse pons/medulla.  相似文献   

4.
Galanin (GAL) is suggested to be a neuropeptide involved in pain transmission. In this study we tried to determine, whether the increase of GAL concentration in brain cells affects impulse transmission between the motor centers localized in the vicinity of the third and fourth cerebral ventricles. The experiments were carried out on rats under chloralose anesthesia. The study objectives were realized using the method allowing to record the amplitude of evoked tongue jerks (ETJ) in response to noxious tooth pulp stimulation during the perfusion of the cerebral ventricles with solutions containing tested compounds. Perfusion of the cerebral ventricles with GAL concentration-dependently inhibited the ETJ amplitude. The antinociceptive effect of GAL was blocked by a galanin receptor antagonist, galantide (GLT) and by opioid antagonists: non-selective naloxone (Nal) and micro-selective beta-funaltrexamine (beta-FNA). In contrast, a delta-opioid receptor antagonist, naltrindole (NTI) or the kappa-opioid receptor antagonist, nor-binaltrophimine (nor-BNI) did not inhibit the effect of GAL. The antinociceptive effect of GAL was more pronounced when GAL was perfused in combination with other neuropeptides/neurohormones, such as endomorphin-2 (EM-2), vasopressin (AVP) and oxytocin (OT). The present results demonstrate that in the orofacial area analgesic activity is modulated by GAL, OT and AVP and that EM-2-induced antinociception involves GAL.  相似文献   

5.
Similar to other G protein-coupled receptors, rapid phosphorylation of the delta-opioid receptor in the presence of agonist has been reported. Hence, agonist-induced desensitization of the delta-opioid receptor has been suggested to be via the receptor phosphorylation, arrestin-mediated pathway. However, due to the highly efficient coupling between the delta-opioid receptor and the adenylyl cyclase, the direct correlation between the rates of receptor phosphorylation and receptor desensitization as measured by the adenylyl cyclase activity could not be established. In the current studies, using an ecdysone-inducible expression system to control the delta-opioid receptor levels in HEK293 cells, we could demonstrate that the rate of deltorphin II-induced receptor desensitization is dependent on the receptor level. Only at receptor concentrations 相似文献   

6.
In the present study, seven novel dimeric analogues of endomorphin-2 with longer spacers were designed and synthesized. Through dimerization, their affinity for delta-opioid receptor was mostly increased, especially the delta-opioid receptor preferred dimeric analogue, DEM(12). The results were confirmed by the in vitro bioassay. The structure-activity relationships were also discussed.  相似文献   

7.
Oligomerization of the human delta-opioid receptor and its regulation by ligand occupancy were explored following expression in HEK293 cells using each of co-immunoprecipitation of differentially epitope-tagged forms of the receptor, bioluminescence resonance energy transfer and time-resolved fluorescence resonance energy transfer. All of the approaches identified constitutively formed receptor oligomers, and the time-resolved fluorescence studies confirmed the presence of such homo-oligomers at the cell surface. Neither the agonist ligand [d-Ala(2),d-Leu(5)]enkephalin nor the inverse agonist ligand ICI174864 were able to modulate the oligomerization status of this receptor. Interactions between co-expressed delta-opioid receptors and beta(2)-adrenoreceptors were observed in co-immunoprecipitation studies. Such hetero-oligomers could also be detected using bioluminescence resonance energy transfer although the signal obtained was substantially smaller than for homo-oligomers of either receptor type. Signal corresponding to the delta-opioid receptor-beta(2)-adrenoreceptor hetero-oligomer was increased in the presence of agonist for either receptor. However, substantial levels of this hetero-oligomer were not detected at the cell surface using time-resolved fluorescence resonance energy transfer. These studies demonstrate that, following transient transfection of HEK293 cells, constitutively formed oligomers of the human delta-opioid receptor can be detected by a variety of approaches. However, these are not regulated by ligand occupancy. They also indicate that time-resolved fluorescence resonance energy transfer represents a means to detect such oligomers at the cell surface in populations of intact cells.  相似文献   

8.
The third extracellular loop of the human delta-opioid receptor (hDOR) is known to play an important role in the binding of delta-selective ligands. In particular, mutation of three amino acids (Trp(284), Val(296), and Val(297)) to alanine significantly diminished delta-opioid receptor affinity for delta-selective ligands. To assess the changes in conformation accompanying binding of the endogenous opioid peptide deltorphin II to the delta-opioid receptor at both the receptor and ligand levels as well as to determine points of contact between the two, an in-depth spectroscopic study that addressed these points was initiated. Fragments of the delta-opioid receptor of variable length and containing residues in the third extracellular loop were synthesized and studied by NMR and CD spectroscopy in a membrane-mimetic milieu. The receptor peptides examined included hDOR-(279-299), hDOR-(283-299), hDOR-(281-297), and hDOR-(283-297). A helical conformation was observed for the longest receptor fragment between Val(283) and Arg(291), whereas a nascent helix occurred in a similar region for hDOR-(281-297). Further removal of N-terminal residues Val(281) and Ile(282) abolished helical conformation completely. Binding of the delta-selective ligand deltorphin II to hDOR-(279-299) destabilized the helix at the receptor peptide N terminus. Dramatic changes in the alpha-proton chemical shifts for Trp(284) and Leu(286) in hDOR-(279-299) also accompanied this loss of helical conformation. Large upfield displacement of alpha-proton chemical shifts was observed for Leu(295), Val(296), and Val(297) in hDOR-(279-299) following its interaction with deltorphin II, thus identifying a gain in beta-conformation at the receptor peptide C terminus. Similar changes did not occur for the shorter peptide hDOR(281-297). A hypothesis describing the conformational events accompanying selective deltorphin II binding to the delta-opioid receptor is presented.  相似文献   

9.
Previous investigations have shown that the activation of delta-opioid receptors depresses the release of acetylcholine (ACh) in the rat caudate putamen. This finding raised the possibility that the release of ACh is similarly modulated in the globus pallidus, a region containing a distinct population of cholinergic neurons and enriched in enkephalinergic nerve terminals. In the present study the pallidal release of ACh was characterized and the effects of delta-opioid receptor activation on this release were examined. The results show that this release is stimulated by high K+ in a concentration- and Ca(2+)-dependent manner. D-Pen2,L-Pen5-enkephalin (0.1-10 microM), a selective delta-opioid receptor agonist, produced a dose-related inhibition of the 25 mM K(+)-evoked tritium release. The maximal inhibitory effect, representing a 34% decrease in the K(+)-induced tritium release, was observed at a concentration of 1 microM. This opioid effect was attenuated by the selective delta-opioid receptor antagonist, ICI 174864 (1 microM). These findings support the role of a delta-opioid receptor in the modulation of ACh release in the rat globus pallidus.  相似文献   

10.
11.
Julius D  Basbaum AI 《Cell》2005,122(4):496-498
The delta-opioid receptor and the precursor protein of a neuropeptide, substance P, are colocalized in the large dense-core vesicles of pain-sensing neurons. In this issue of Cell, report that trafficking of the delta-opioid receptor to these vesicles depends on its physical interaction with the substance P domain of its precursor polyprotein (protachykinin). Moreover, in mice lacking this precursor, the contribution of the delta-opioid receptor to pain processing is dramatically altered. These observations suggest a new role for peptide precursors as sorting signals in vesicular transport.  相似文献   

12.
In SH-SY5Y cells, activation of delta-opioid receptors with [D-Pen(2,5)]-enkephalin (DPDPE; 1 microM) did not alter the intracellular free Ca(2+) concentration [Ca(2+)](i). However, when DPDPE was applied during concomitant Gq-coupled m3 muscarinic receptor stimulation by carbachol or oxotremorine-M, it produced an elevation of [Ca(2+)](i). The DPDPE-evoked increase in [Ca(2+)](i) was abolished when the carbachol-sensitive intracellular Ca(2+) store was emptied. There was a marked difference between the concentration-response relationship for the elevation of [Ca(2+)](i) by carbachol (EC(50) 13 microM, Hill slope 1) and the concentration-response relationship for carbachol's permissive action in revealing the delta-opioid receptor-mediated elevation of [Ca(2+)] (EC(50) 0.7 mM; Hill slope 1.8). Sequestration of free G protein beta gamma dimers by transient transfection of cells with a beta gamma binding protein (residues 495-689 of the C terminal tail of G protein-coupled receptor kinase 2) reduced the ability of delta opioid receptor activation to elevate [Ca(2+)](i). However, DPDPE did not elevate either basal or oxotremorine-M-evoked inositol phosphate production indicating that delta-opioid receptor activation did not stimulate phospholipase C. Furthermore, delta-opioid receptor activation did not result in the reversal of muscarinic receptor desensitization, membrane hyperpolarization or stimulation of sphingosine kinase. There was no coincident signalling between the delta-opioid receptor and the lysophosphatidic acid receptor which couples to elevation of [Ca(2+)](i) in SH-SY5Y cells by a PLC-independent mechanism. In SH-SY5Y cells the coincident signalling between the endogenously expressed delta-opioid and m3 muscarinic receptors appears to occur in the receptor activation-Ca(2+) release signalling pathway at a step after the activation of phospholipase C.  相似文献   

13.
《Life sciences》1995,57(17):PL247-PL252
The effect of pretreatment with a δ opioid receptor antagonist, naltrindole (NTI), on the development of physical dependence on morphine was investigated in mice. Several withdrawal signs, an increase in cortical noradrenaline (NA) turnover and a decrease in dopamine (DA) turnover in the limbic forebrain were observed following naloxone challenge in morphine-dependent mice. Pretreatment with NTI (0.3–5 mg/Kg, S.c.) during chronic morphine treatment dose-dependently suppressed the behavioral and biochemical changes after withdrawal. The blocking effects of NTI suggest that δ opioid receptors may play a significant role in modulating the development of physical dependence on morphine.  相似文献   

14.
TRK-820, a new type of 4,5-epoxymorphinan derivative, was investigated in vivo for antinociceptive activities and its selectivity on various opioid receptors in mice. TRK-820 given s.c. or p.o. was found to be 351- and 796-fold more potent than U50,488H with acetic acid-induced abdominal constriction test. The duration of the antinociceptive effect produced by TRK-820 was longer than that produced by mu-opioid receptor agonist morphine or other kappa-opioid receptor agonists. In addition, with four other antinociceptive assays, low temperature hot plate (51 degrees C), thermal tail flick, mechanical tail pressure and tail pinch tests, TRK-820 was also found to be 68- to 328-fold more potent than U-50488H, and 41- to 349-fold more potent than morphine in producing antinociception, as comparing the weight of the different compound. However, TRK-820 was less active in inhibiting the high temperature (55 degrees C) hot plate response. The antinociceptive effects produced by TRK-820 were inhibited by nor-BNI, but not by naloxone or naltrindole (NTI) with the abdominal constriction test, indicating that the antinociception is selectively mediated by the stimulation of kappa-, but not mu- or delta-opioid receptors. Co-administration of TRK-820 with morphine slightly enhanced the antinociception induced by morphine in the mouse hot plate test. On the other hand, pentazocine significantly reduced the morphine-induced antinociception. TRK-820 produced sedation at doses, which are much higher than the doses for producing antinociception. These results indicate that the potent antinociception induced by TRK-820 is mediated via the stimulation of kappa-, but not mu- or delta-opiod receptors.  相似文献   

15.
Chronic treatment with naloxone (Nx) or naltrexone (Ntx) induces paradoxical analgesia. In the present study, the effects of chronic treatment with opioid receptor antagonists, such as nor-binaltorphimine (nor-BNI) for kappa and naltrindole (NTI) for delta receptors, on analgesic response using the hot plate test and on morphine physical dependence in rats were examined. The hot plate latency was significantly increased by pretreatment with Nx (5 mg/kg, s.c.), nor-BNI (20 mg/kg, i.p.) or NTI (20 mg/kg, i.p.) for 5 days. After chronic pretreatment with these antagonists, the rats were treated with morphine-admixed food (0.5 mg/g of food) for 3 days. Chronic pretreatment with Nx and NTI significantly increased Nx precipitated body weight loss in morphine dependent rats, while chronic pretreatment with nor-BNI produced small increase. These results indicate that chronic treatment with nor-BNI or NTI as well as with Nx induces obviously paradoxical analgesia, and that chronic blockade of mu or delta may enhance the development of physical dependence on morphine.  相似文献   

16.
17.
A Dray  T P Davis 《Peptides》1985,6(2):217-221
Metorphamide (Tyr-Gly-Gly-Phe-Met-Arg-Arg-Val-NH2) a novel amidated octapeptide fragment of proenkephalin A was synthesized, purified and subsequently shown to inhibit the reflex contractions of the rat urinary bladder following intracerebroventricular and spinal intrathecal microinjections. The effects of metorphamide were consistently antagonized by naloxone but not by the delta-opioid receptor antagonist ICI 174,864. Comparison of metorphamide with other proenkephalin A fragments suggested that the activity of this peptide was not due to in vivo processing to other active fragments. These data suggest that metorphamide has potent in vivo mu-opioid activity but little delta-opioid receptor activity.  相似文献   

18.
We investigated the pharmacological properties of a newly synthesised delta agonist AR-M1000390, derived from SNC-80 ((+)-4-[(alpha R)-alpha-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethyl-benzamide), in the neuroblastoma cell line SK-N-BE expressing only human delta-opioid receptors. Binding and functional experiments showed a weak affinity (K(i) = 106 +/- 34 nM) correlated with a weak potency (EC(50) = 111 +/- 31 nM) to inhibit the forskolin-stimulated cAMP accumulation. Sustained activation of opioid receptors in the presence of the maximal inhibitory concentration of AR-M1000390 produced a rapid and strong desensitization. In order to examine the contribution of internalization and down-regulation in the desensitization processes, binding and functional experiments were conducted in the presence or in the absence of hypertonic sucrose solution to block clathrin-dependent opioid receptor endocytosis. We observed both the inability of AR-M1000390 to down-regulate opioid receptors and the absence of any effect of sucrose on desensitization. The lack of delta-opioid receptor internalization by AR-M1000390 was further corroborated by confocal microscopy using antibodies directed either against the endogenous delta-opioid receptors or the FLAG-tagged delta-opioid receptors stably expressed in the SK-N-BE cells. These data suggest that uncoupling rather than internalization is responsible for delta-opioid receptors desensitization by AR-M1000390.  相似文献   

19.
To examine the role of delta-opioid receptors in the modulation of striatal acetylcholine (ACh) release, the action of D-Pen2,L-Pen5-enkephalin, a selective delta-opioid receptor agonist, was tested on [3H]ACh release from slices of the rat caudate-putamen. Slices, incubated with [3H]choline, were superfused with a physiological buffer and stimulated twice by exposure to a high potassium (K+) concentration. In the absence of a cholinesterase inhibitor, 1 microM D-Pen2,L-Pen5-enkephalin produced a 46 and 35% decrease in the release of [3H]ACh evoked by 15 and 25 mM K+, respectively. The depressant action of the enkephalin analogue was concentration dependent, with a maximal effect on K+-evoked [3H]ACh release occurring at 1.0 microM, and was completely blocked in the presence of the delta-opioid receptor selective antagonist, ICI 174864 (1 microM). In the presence of the cholinesterase inhibitors physostigmine (10 microM) and neostigmine (10 microM), or the muscarinic receptor agonist oxotremorine (10 microM), D-Pen2,L-Pen5-enkephalin did not depress the K+-evoked release of [3H]ACh. Atropine (1 microM) blocked the inhibitory effect of physostigmine on the depressant action of D-Pen2,L-Pen5-enkephalin. The results of this study indicate that delta-opioid receptor activation is associated with an inhibition of striatal ACh release, but this opioid-cholinergic interaction is not apparent under conditions of presynaptic muscarinic receptor activation.  相似文献   

20.
Accumulating evidence has indicated that membrane-permeable G protein-coupled receptor ligands can enhance cell surface targeting of their cognate wild-type and mutant receptors. This pharmacological chaperoning was thought to result from ligand-mediated stabilization of immature receptors in the endoplasmic reticulum (ER). In the present study, we directly tested this hypothesis using wild-type and mutant forms of the human delta-opioid receptor as models. ER-localized receptors were isolated by expressing the receptors in HEK293 cells under tightly controlled tetracycline induction and blocking their ER export with brefeldin A. The ER-retained delta-opioid receptor precursors were able to bind [(3)H]diprenorphine with high affinity, and treatment of cells with an opioid antagonist naltrexone led to a 2-fold increase in the number of binding sites. After removing the transport block, the antagonist-mediated increase in the number of receptors was detectable at the cell surface by flow cytometry and cell surface biotinylation assay. Importantly, opioid ligands, both antagonists and agonists, were found to stabilize the ER-retained receptor precursors in an in vitro heat inactivation assay and the treatment enhanced dissociation of receptor precursors from the molecular chaperone calnexin. Thus, we conclude that pharmacological chaperones facilitate plasma membrane targeting of delta-opioid receptors by binding and stabilizing receptor precursors, thereby promoting their release from the stringent ER quality control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号