首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In cell extracts of Pseudaminobacter salicylatoxidans strain BN12, an enzymatic activity was detected which converted salicylate in an oxygen-dependent but NAD(P)H-independent reaction to a product with an absorbance maximum at 283 nm. This metabolite was isolated, purified, and identified by mass spectrometry and (1)H and (13)C nuclear magnetic resonance spectroscopy as 2-oxohepta-3,5-dienedioic acid. This metabolite could be formed only by direct ring fission of salicylate by a 1,2-dioxygenase reaction. Cell extracts from P. salicylatoxidans also oxidized 5-aminosalicylate, 3-, 4-, and 5-chlorosalicylate, 3-, 4-, and 5-methylsalicylate, 3- and 5-hydroxysalicylate (gentisate), and 1-hydroxy-2-naphthoate. The dioxygenase was purified and shown to consist of four identical subunits with a molecular weight of about 45,000. The purified enzyme showed higher catalytic constants with gentisate or 1-hydroxy-2-naphthoate than with salicylate. It was therefore concluded that P. salicylatoxidans synthesized a gentisate 1,2-dioxygenase with an extraordinary substrate range, which also allowed the oxidation of salicylate.  相似文献   

2.
A putative gentisate 1,2-dioxygenase was encoded in the dibenzothiophene degradation gene cluster (dbd) from Xanthobacter polyaromaticivorans 127W. The deduced amino acid sequence showed high sequence similarity with gentisate dioxygenases from Pseudomonas alcaligenes (AAD49427, 65% identical), Bradyrhizobium japonicum (NP_766750, 64%), and P. aeruginosa (ZP_00135722, 54%), and moderate similarity with 1-hydroxy-2-naphthoate dioxygenase from Nocardioides sp. KP7 (BAA31235, 33%) and salicylate dioxygenase from Pseudaminobacter salicylatoxidans (AAQ91293, 33%). The enzyme, GDOxp, was heterologously produced in Escherichia coli and purified to homogeneity. GDOxp formed a tetramer and exhibited high dioxygenase activity against 1,4-dihydroxy 2-naphthoate as well as gentisate, suggesting unusually broad substrate specificity. GDOxp easily released ferrous ion under unfavorable temperature and pH conditions to become an inactive monomer protein. An inactive monomer protein can reconstitute a tetramer structure and restore enzyme activity in a cooperative manner upon the addition of ferrous ion. Chymotryptic digestion and protein truncation experiments suggested that the N-terminal region is important for the tetramerization of GDOxp.  相似文献   

3.
The crystallographic structures of the adducts of salicylate 1,2-dioxygenase (SDO) with substrates salicylate, gentisate and 1-hydroxy-2-naphthoate, obtained under anaerobic conditions, have been solved and analyzed. This ring fission dioxygenase from the naphthalenesulfonate-degrading bacterium Pseudaminobacter salicylatoxidans BN12, is a homo-tetrameric class III ring-cleaving dioxygenase containing a catalytic Fe(II) ion coordinated by three histidine residues. SDO is markedly different from the known gentisate 1,2-dioxygenases or 1-hydroxy-2-naphthoate dioxygenases, belonging to the same class, because of its unique ability to oxidatively cleave salicylate, gentisate and 1-hydroxy-2-naphthoate. The crystal structures of the anaerobic complexes of the SDO reveal the mode of binding of the substrates into the active site and unveil the residues which are important for the correct positioning of the substrate molecules. Upon binding of the substrates the active site of SDO undergoes a series of conformational changes: in particular Arg127, His162, and Arg83 move to make hydrogen bond interactions with the carboxyl group of the substrate molecules. Unpredicted concerted displacements upon substrate binding are observed for the loops composed of residues 40-43, 75-85, and 192-198 where several aminoacidic residues, such as Leu42, Arg79, Arg83, and Asp194, contribute to the closing of the active site together with the amino-terminal tail (residues 2-15). Differences in substrate specificity are controlled by several residues located in the upper part of the substrate binding cavity like Met46, Ala85, Trp104, and Phe189, although we cannot exclude that the kinetic differences observed could also be generated by concerted conformational changes resulting from amino-acid mutations far from the active site.  相似文献   

4.
The growth of Pseudomonas fluorescens 16N2 on naphthalene was accompanied with accumulation of salicylate in the culture medium and induction of gentisate 1,2-dioxygenase and catechol 1,2-dioxygenase. The transformation of anthracene by the cells growing on hexadecane led to the formation of 3-hydroxy-2-naphthoate and salicylate. Pathways for naphthalene and anthracene degradation are proposed.  相似文献   

5.
The crystallographic structure of salicylate 1,2-dioxygenase (SDO), a new ring fission dioxygenase from the naphthalenesulfonate-degrading strain Pseudaminobacter salicylatoxidans BN12, which oxidizes salicylate to 2-oxohepta-3,5-dienedioic acid by a novel ring fission mechanism, has been solved by molecular replacement techniques and refined at 2.9 Å resolution (Rfree 26.1%; R-factor 19.3%). SDO is a homo-tetramer member of type III extradiol-type dioxygenases with a subunit topology characteristic of the bicupin β-barrel folds. The catalytic center contains a mononuclear iron(II) ion coordinated to three histidine residues (His119, His121, and His160), located within the N-terminal domain in a solvent-accessible pocket. SDO is markedly different from the known gentisate 1,2-dioxygenases (GDO) or 1-hydroxy-2-naphthoate dioxygenase because of its unique ability to oxidatively cleave numerous salicylates, gentisates and 1-hydroxy-2-naphthoate with high catalytic efficiency. The comparison of the structure and substrate specificity for a series of different substrates with the corresponding data for several GDOs and the docking of salicylates/gentisates in the active site of SDO, allowed the identification of several active site residues responsible for differences of substrate specificity. In particular, a more defined electron density of the N-terminal region allowed the discovery of a novel structure fragment in SDO previously unobserved in GDO. This region contributes several residues to the active site that influence substrate specificity for both of these enzymes. Implications on the catalytic mechanism are discussed.  相似文献   

6.
A putative gentisate 1,2-dioxygenase was encoded in the dibenzothiophene degradation gene cluster (dbd) from Xanthobacter polyaromaticivorans 127W. The deduced amino acid sequence showed high sequence similarity with gentisate dioxygenases from Pseudomonas alcaligenes (AAD49427, 65% identical), Bradyrhizobium japonicum (NP_766750, 64%), and P. aeruginosa (ZP_00135722, 54%), and moderate similarity with 1-hydroxy-2-naphthoate dioxygenase from Nocardioides sp. KP7 (BAA31235, 33%) and salicylate dioxygenase from Pseudaminobacter salicylatoxidans (AAQ91293, 33%). The enzyme, GDOxp, was heterologously produced in Escherichia coli and purified to homogeneity. GDOxp formed a tetramer and exhibited high dioxygenase activity against 1,4-dihydroxy 2-naphthoate as well as gentisate, suggesting unusually broad substrate specificity. GDOxp easily released ferrous ion under unfavorable temperature and pH conditions to become an inactive monomer protein. An inactive monomer protein can reconstitute a tetramer structure and restore enzyme activity in a cooperative manner upon the addition of ferrous ion. Chymotryptic digestion and protein truncation experiments suggested that the N-terminal region is important for the tetramerization of GDOxp.  相似文献   

7.
Ralstonia sp. strain U2 metabolizes naphthalene via gentisate (2,5-dihydroxybenzoate) to central metabolites, but it was found unable to utilize gentisate as growth substrate. A putative gentisate transporter encoded by ncg12922 from Corynebacterium glutamicum ATCC 13032 was functionally expressed in Ralstonia sp. strain U2, converting strain U2 to a gentisate utilizer. After ncg12922 was inserted into plasmid pGFPe with green fluorescence protein gene gfp, the expressed fusion protein Ncg12922-GFP could be visualized in the periphery of Escherichia coli cells under confocal microscope, consistent with a cytoplasmic membrane location. In contrast, GFP was ubiquitous in the cytoplasm of E. coli cells carrying pGFPe only. Gentisate 1,2-dioxygenase activity was present in the cell extract from strain U2 induced with gentisate but at a much lower level (one-fifth) than that obtained with salicylate. However, it exhibited a similar level in strain U2 containing Ncg12922 induced either by salicylate or gentisate.  相似文献   

8.
1-Hydroxy-2-naphthoate is formed as an intermediate in the bacterial degradation of phenanthrene. A monooxygenase which catalyzed the oxidation of 1-hydroxy-2-naphthoateto 1,2-dihydroxynaphthalene was purified from the phenanthrene- and naphthalene-degrading Pseudomonas putida strain BS202-P1. The purified protein had a molecular weight of45 kDa and required NAD(P)H and FAD as cofactors. The purified enzyme also catalysed the oxidation of salicylate and various substituted salicylates. The comparison of the Kmand Vmax values for 1-hydroxy-2-naphthoate and salicylate demonstrated a higher catalytic efficiency of the enzyme for salicylate as a substrate. A significant substrate-inhibition was detected with higher concentrations of 1-hydroxy-2-naphthoate.The aminoterminal amino acid sequence of the purified enzyme showed significant homologies to salicylate 1-monooxygenases from other Gram negative bacteria. It was therefore concluded that during the degradation of phenanthrene the conversion of 1-hydroxy-2-naphthoate to 1,2-dihydroxynaphthalene is catalysed by a salicylate1-monooxygenase. Together with previous studies, this suggested that the enzymes of the naphthalene pathway are sufficient to catalyse also the mineralization of phenanthrene.  相似文献   

9.
Corynebacterium glutamicum used gentisate and 3-hydroxybenzoate as its sole carbon and energy source for growth. By genome-wide data mining, a gene cluster designated ncg12918-ncg12923 was proposed to encode putative proteins involved in gentisate/3-hydroxybenzoate pathway. Genes encoding gentisate 1,2-dioxygenase (ncg12920) and fumarylpyruvate hydrolase (ncg12919) were identified by cloning and expression of each gene in Escherichia coli. The gene of ncg12918 encoding a hypothetical protein (Ncg12918) was proved to be essential for gentisate-3-hydroxybenzoate assimilation. Mutant strain RES167Deltancg12918 lost the ability to grow on gentisate or 3-hydroxybenzoate, but this ability could be restored in C. glutamicum upon the complementation with pXMJ19-ncg12918. Cloning and expression of this ncg12918 gene in E. coli showed that Ncg12918 is a glutathione-independent maleylpyruvate isomerase. Upstream of ncg12920, the genes ncg12921-ncg12923 were located, which were essential for gentisate and/or 3-hydroxybenzoate catabolism. The Ncg12921 was able to up-regulate gentisate 1,2-dioxygenase, maleylpyruvate isomerase, and fumarylpyruvate hydrolase activities. The genes ncg12922 and ncg12923 were deduced to encode a gentisate transporter protein and a 3-hydroxybenzoate hydroxylase, respectively, and were essential for gentisate or 3-hydroxybenzoate assimilation. Based on the results obtained in this study, a GSH-independent gentisate pathway was proposed, and genes involved in this pathway were identified.  相似文献   

10.
Liu D  Zhu T  Fan L  Quan J  Guo H  Ni J 《Biotechnology letters》2007,29(10):1529-1535
A 1,125-bp long ORF encoding a novel gentisate 1,2-dioxygenase with two-domain bicupins was cloned from Silicibacter pomeroyi DSS-3 and expressed in Escherichia coli. The resulting product was purified to homogeneity and partially characterized. Non-reductive SDS-PAGE and gel filtration showed that the active recombinant gentisate 1,2-dioxygenase had an estimated molecular mass of 132 kDa, and reductive SDS-PAGE indicated an approximate size of 45 kDa. The enzyme thus appears to be a homotrimeric protein. This is in contrast to the homotetrameric or dimeric protein of the gentisate 1,2-dioxygenases that have been characterized thus far. The K (m) and K (cat)/K (m) for gentisate were 12 muM and 653 x 10(4) M(-1 )s(-1); the pI was 4.6-4.8. It was optimally active at 40 degrees C and pH 8.0.  相似文献   

11.
The 3-hydroxybenzoate inducible gentisate 1,2-dioxygenases have been purified to homogeneity from P. acidovorans and P. testosteroni, the two divergent species of the acidovorans group of Pseudomonas. Both enzymes exhibit a 40-fold higher specific activity than previous preparations and have an (alpha Fe)4 quaternary structure (holoenzyme Mr = 164,000 and 158,000, respectively). The enzymes have different amino terminal sequences, amino acid contents, and isoelectric points. Each enzyme contains essential active site iron that is EPR silent but binds nitric oxide quantitatively to give an EPR active complex (S = 3/2), showing that the iron is Fe2+ with coordination sites for exogenous ligands. The EPR spectra of these complexes are altered uniquely for each enzyme when gentisate is bound. This suggests that substrate binds to or near the iron and shows that the substrate-iron interactions of each enzyme are subtly different. The kinetic parameters for turnover of gentisate by the enzymes are nearly identical (kcat/Km = 4.3 x 10(6) s-1 M-1). Both enzymes cleave a wide range of gentisate analogs substituted in the 3 or 4 ring position, although at reduced rates relative to gentisate. Of the two enzymes, P. testosteroni gentisate 1,2-dioxygenase exhibits substantially lower kcat/Km values for the turnover of these compounds. Evidence for both steric and electronic substituent effects is obtained. In accord with the results of Wheelis et al. (Wheelis, M. L., Palleroni, N. J., and Stanier, R. Y. (1967) Arch. Mikrobiol. 59, 302-314), 3-hydroxybenzoate is shown to be metabolized by P. acidovorans through the gentisate pathway, and gentisate 1,2-dioxygenase is the only ring cleavage dioxygenase induced. In contrast, 3-hydroxybenzoate is metabolized by P. testosteroni exclusively through the protocatechuate pathway utilizing protocatechuate 4,5-dioxygenase, although gentisate 1,2-dioxygenase is coinduced. Growth of P. testosteroni on 3-O-methylbenzoate or 5-O-methylsalicylate is shown to result in a approximately 10-fold increase in the amount of gentisate 1,2-dioxygenase relative to protocatechuate 4,5-dioxygenase. Together, these results suggest that induction of gentisate 1,2-dioxygenase by 3-hydroxybenzoate in P. testosteroni may be adventitious and that this enzyme may function in fundamentally different metabolic pathways in the two related Pseudomonas species.  相似文献   

12.
Two 3-hydroxybenzoate-inducible gentisate 1,2-dioxygenases were purified to homogeneity from Pseudomonas alcaligenes NCIB 9867 (P25X) and Pseudomonas putida NCIB 9869 (P35X), respectively. The estimated molecular mass of the purified P25X gentisate 1, 2-dioxygenase was 154 kDa, with a subunit mass of 39 kDa. Its structure is deduced to be a tetramer. The pI of this enzyme was established to be 4.8 to 5.0. The subunit mass of P35X gentisate 1, 2-dioxygenase was 41 kDa, and this enzyme was deduced to exist as a dimer, with a native molecular mass of about 82 kDa. The pI of P35X gentisate 1,2-dioxygenase was around 4.6 to 4.8. Both of the gentisate 1,2-dioxygenases exhibited typical saturation kinetics and had apparent Kms of 92 and 143 microM for gentisate, respectively. Broad substrate specificities were exhibited towards alkyl and halogenated gentisate analogs. Both enzymes had similar kinetic turnover characteristics for gentisate, with kcat/Km values of 44.08 x 10(4) s-1 M-1 for the P25X enzyme and 39.34 x 10(4) s-1 M-1 for the P35X enzyme. Higher kcat/Km values were expressed by both enzymes against the substituted gentisates. Significant differences were observed between the N-terminal sequences of the first 23 amino acid residues of the P25X and P35X gentisate 1,2-dioxygenases. The P25X gentisate 1,2-dioxygenase was stable between pH 5.0 and 7.5, with the optimal pH around 8.0. The P35X enzyme showed a pH stability range between 7.0 and 9.0, and the optimum pH was also 8.0. The optimal temperature for both P25X and P35X gentisate 1, 2-dioxygenases was around 50 degrees C, but the P35X enzyme was more heat stable than that from P25X. Both enzymes were strongly stimulated by 0.1 mM Fe2+ but were completely inhibited by the presence of 5 mM Cu2+. Partial inhibition of both enzymes was also observed with 5 mM Mn2+, Zn2+, and EDTA.  相似文献   

13.
Pseudomonas sp. strains C4, C5 and C6 degrade carbaryl (1-naphthyl N-methylcarbamate) via 1-naphthol, 1,2-dihydroxynaphthalene, salicylate and gentisate. Carbon source-dependent metabolic studies suggest that enzymes responsible for carbaryl degradation are probably organized into ‘upper’ (carbaryl to salicylate), ‘middle’ (salicylate to gentisate) and ‘lower’ (gentisate to TCA cycle) pathway. Carbaryl and 1-naphthol were found to induce all carbaryl pathway enzymes, while salicylate and gentisate induce middle and lower pathway enzymes. The strains were found to harbor plasmid(s), and carbaryl degradation property was found to be stable. Genes encoding enzymes of the degradative pathway such as 1-naphthol 2-hydroxylase, salicylaldehyde dehydrogenase, salicylate 5-hydroxylase and gentisate 1,2-dioxygenase were amplified from chromosomal DNA of these strains. The gene-specific PCR products were sequenced from strain C6, and phylogenetic tree was constructed. Southern hybridization and PCR analysis using gel eluted DNA as template supported the presence of pathway genes onto the chromosome and not on the plasmid(s).  相似文献   

14.
15.
Gentisate 1,2-dioxygenase, which participates in salicylate and m-hydroxybenzoate metabolism, was purified from cell-free extracts of Rhodococcus erythropolis S-1, a Gram-positive bacterium. The purified enzyme gave a single band on native PAGE and SDS–PAGE. The molecular mass of the enzyme was estimated to be 328 kDa. The structure of the enzyme appears to be an octamer of identical subunits. The enzyme from this bacterium was similar in general enzymatic properties to a gentisate 1,2-dioxygenase from a Gram-negative bacterium except for molecular mass and structure.  相似文献   

16.
E Grund  C Knorr    R Eichenlaub 《Applied microbiology》1990,56(5):1459-1464
Eight actinomycetes of the genera Amycolatopsis and Streptomyces were tested for the degradation of aromatic compounds by growth in a liquid medium containing benzoate, monohydroxylated benzoates, or quinate as the principal carbon source. Benzoate was converted to catechol. The key intermediate in the degradation of salicylate was either catechol or gentisate, while m-hydroxybenzoate was metabolized via gentisate or protocatechuate. p-Hydroxybenzoate and quinate were converted to protocatechuate. Catechol, gentisate, and protocatechuate were cleaved by catechol 1,2-dioxygenase, gentisate 1,2-dioxygenase, and protocatechuate 3,4-dioxygenase, respectively. The requirement for glutathione in the gentisate pathway was dependent on the substrate and the particular strain. The conversion of p-hydroxybenzoate to protocatechuate by p-hydroxybenzoate hydroxylase was gratuitously induced by all substrates that were metabolized via protocatechuate as an intermediate, while protocatechuate 3,4-dioxygenase was gratuitously induced by benzoate and salicylate in two Amycolatopsis strains.  相似文献   

17.
Eight actinomycetes of the genera Amycolatopsis and Streptomyces were tested for the degradation of aromatic compounds by growth in a liquid medium containing benzoate, monohydroxylated benzoates, or quinate as the principal carbon source. Benzoate was converted to catechol. The key intermediate in the degradation of salicylate was either catechol or gentisate, while m-hydroxybenzoate was metabolized via gentisate or protocatechuate. p-Hydroxybenzoate and quinate were converted to protocatechuate. Catechol, gentisate, and protocatechuate were cleaved by catechol 1,2-dioxygenase, gentisate 1,2-dioxygenase, and protocatechuate 3,4-dioxygenase, respectively. The requirement for glutathione in the gentisate pathway was dependent on the substrate and the particular strain. The conversion of p-hydroxybenzoate to protocatechuate by p-hydroxybenzoate hydroxylase was gratuitously induced by all substrates that were metabolized via protocatechuate as an intermediate, while protocatechuate 3,4-dioxygenase was gratuitously induced by benzoate and salicylate in two Amycolatopsis strains.  相似文献   

18.
Corynebacterium glutamicum assimilated phenol, benzoate, 4-hydroxybenzoate p-cresol and 3,4-dihydroxybenzoate. Ring cleavage was by catechol 1,2-dioxygenase when phenol or benzoate was used and by protocatechuate 3,4-dioxygenase when the others were used as substrate. The locus ncg12319 of its genome was cloned and expressed in Escherichia coli. Enzyme assays showed that ncg12319 encodes a catechol 1,2-dioxygenase. This catechol 1,2-dioxygenase was purified and accepted catechol, 3-, or 4-methylcatechols, but not chlorinated catechols, as substrates. The optimal temperature and pH for catechol cleavage catalyzed by the enzyme were 30 degrees C and 9, respectively, and the Km and Vmax were determined to be 4.24 micromol l(-1) and 3.7 micromol l(-1) min(-1) mg(-1) protein, respectively.  相似文献   

19.
The nucleotide sequence of the todC1C2BADE genes which encode the first three enzymes in the catabolism of toluene by Pseudomonas putida F1 was determined. The genes encode the three components of the toluene dioxygenase enzyme system: reductaseTOL (todA), ferredoxinTOL (todB), and the two subunits of the terminal dioxygenase (todC1C2); (+)-cis-(1S, 2R)-dihydroxy-3-methylcyclohexa-3,5-diene dehydrogenase (todD); and 3-methylcatechol 2,3-dioxygenase (todE). Knowledge of the nucleotide sequence of the tod genes was used to construct clones of Escherichia coli JM109 that overproduce toluene dioxygenase (JM109(pDT-601]; toluene dioxygenase and (+)-cis-(1S, 2R)-dihydroxy-3-methylcyclohexa-3,5-diene dehydrogenase (JM109(pDTG602]; and toluene dioxygenase, (+)-cis-(1S, 2R)-dihydroxy-3-methylcyclohexa-3,5-diene dehydrogenase, and 3-methylcatechol 2,3-dioxygenase (JM109(pDTG603]. The overexpression of the tod-C1C2BADE gene products was detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The three E. coli JM109 strains harboring the plasmids pDTG601, pDTG602, and pDTG603, after induction with isopropyl-beta-D-thiogalactopyranoside, oxidized toluene to (+)-cis-(1S, 2R)-dihydroxy-3-methylcyclohexa-3,5-diene, 3-methylcatechol, and 2-hydroxy-6-oxo-2,4-heptadienoate, respectively. The tod-C1C2BAD genes show significant homology to the reported nucleotide sequence for benzene dioxygenase and cis-1,2-dihydroxycyclohexa-3,5-diene dehydrogenase from P. putida 136R-3 (Irie, S., Doi, S., Yorifuji, T., Takagi, M., and Yano, K. (1987) J. Bacteriol. 169, 5174-5179). In addition, significant homology was observed between the nucleotide sequences for the todDE genes and the sequences reported for cis-1,2-dihydroxy-6-phenylcyclohexa-3,5-diene dehydrogenase and 2,3-dihydroxybiphenyl-1,2-dioxygenase from Pseudomonas pseudoalcaligenes KF707 (Furukawa, K., Arimura, N., and Miyazaki, T. (1987) J. Bacteriol. 169, 427-429).  相似文献   

20.
Two Escherichia coli transformants with catechol 1,2-dioxygenase activity were selected from a gene library of the benzamide-assimilating bacterium Arthrobacter species strain BA-5-17, which produces four catechol 1,2-dioxygenase isozymes. A DNA fragment isolated from one transformant contained a complete open reading frame (ORF). The deduced amino acid sequence of the ORF shared high identity with hydroxyquinol 1,2-dioxygenase. An enzyme expressed by the ORF was purified to homogeneity and characterized. When hydroxyquinol was used as a substrate, the purified enzyme showed 6.8-fold activity of that for catechol. On the basis of the sequence identity and substrate specificity of the enzyme, we concluded that the ORF encoded hydroxyquinol 1,2-dioxygenase. When catechol was used as a substrate, cis,cis-muconic acid and 2-hydroxymuconic 6-semialdehyde, which were products by the intradiol and extradiol ring cleavage activities, respectively, were produced. These results showed that the hydroxyquinol 1,2-dioxygenase reported here was a novel dioxygenase that catalyzed both the intradiol and extradiol cleavage of catechol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号