首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Osteoclasts are specialized cells that secrete lysosomal acid hydrolases at the site of bone resorption, a process critical for skeletal formation and remodeling. However, the cellular mechanism underlying this secretion and the organization of the endo-lysosomal system of osteoclasts have remained unclear. We report that osteoclasts differentiated in vitro from murine bone marrow macrophages contain two types of lysosomes. The major species is a secretory lysosome containing cathepsin K and tartrate-resistant acid phosphatase (TRAP), two hydrolases critical for bone resorption. These secretory lysosomes are shown to fuse with the plasma membrane, allowing the regulated release of acid hydrolases at the site of bone resorption. The other type of lysosome contains cathepsin D, but little cathepsin K or TRAP. Osteoclasts from Gnptab(-/-) (gene encoding GlcNAc-1-phosphotransferase α, β-subunits) mice, which lack a functional mannose 6-phosphate (Man-6-P) targeting pathway, show increased secretion of cathepsin K and TRAP and impaired secretory lysosome formation. However, cathepsin D targeting was intact, showing that osteoclasts have a Man-6-P-independent pathway for selected acid hydrolases.  相似文献   

2.
Type I collagen, the major organic component of bone matrix, undergoes a series of post-translational modifications that occur with aging, such as the non-enzymatic glycation. This spontaneous reaction leads to the formation of advanced glycation end products (AGEs), which accumulate in bone tissue and affect its structural and mechanical properties. We have investigated the role of matrix AGEs on bone resorption mediated by mature osteoclasts and the effects of exogenous AGEs on osteoclastogenesis. Using in vitro resorption assays performed on control- and AGE-modified bone and ivory slices, we showed that the resorption process was markedly inhibited when mature osteoclasts were seeded on slices containing matrix pentosidine, a well characterized AGE. More specifically, the total area resorbed per slice, and the area degraded per resorption lacuna created by osteoclasts, were significantly decreased in AGE-containing slices. This inhibition of bone resorption was confirmed by a marked reduction of the release of type I collagen fragments generated by the collagenolytic enzymes secreted by osteoclasts in the culture medium of AGE-modified mineralized matrices. This effect is likely to result from decreased solubility of collagen molecules in the presence of AGEs, as documented by the reduction of pepsin-mediated digestion of AGE-containing collagen. We found that AGE-modified BSA totally inhibited osteoclastogenesis in vitro, most likely by impairing the commitment of osteoclast progenitors into pre-osteoclastic cells. Although the mechanisms remain unknown, AGEs might interfere with osteoclastic differentiation and activity through their interaction with specific cell-surface receptors, because we showed that both osteoclast progenitors and mature osteoclasts expressed different AGEs receptors, including receptor for AGEs (RAGEs). These results suggest that AGEs decreased osteoclast-induced bone resorption, by altering not only the structural integrity of bone matrix proteins but also the osteoclastic differentiation process. We suggest that AGEs may play a role in the alterations of bone remodeling associated with aging and diabetes.  相似文献   

3.
The resorbing osteoclast is an exceptional cell that secretes large amounts of acid through the coupled activity of a v-type H+-ATPase and a chloride channel that both reside in the ruffled membrane. Impairment of this acid secretion machinery by genetic mutations can abolish bone resorption activity, resulting in osteopetrotic phenotypes. Another key feature of osteoclasts is the transport of high amounts of calcium and phosphate from the resorption lacuna to the basolateral plasma membrane. Evidence exists that this occurs in part through entry of these ions into the osteoclast cytosol. Handling of such large amounts of a cellular messenger requires elaborate mechanisms. Membrane proteins that regulate osteoclast calcium homeostasis and the effect of calcium on osteoclast function and survival are therefore the second main focus of this review.  相似文献   

4.
We recently reported the cDNA cloning, sequence, and expression of the human cation-independent mannose 6-phosphate receptor (hCI-MPR) (Oshima, A., Nolan, C. M., Kyle, J. W., Grubb, J. H., and Sly, W. S. (1988) J. Biol. Chem. 263, 2553-2562). The sequence of the hCI-MPR was virtually identical to that of the human insulin-like growth factor II receptor cDNA (Morgan, D. O., Edman, J. C., Standring, D. N., Fried, V. A., Smith, M. C., Roth, R. A., and Rutter, W. J. (1987) Nature 329, 301-307). To test the role of the putative bifunctional receptor in intracellular sorting of acid hydrolases, we studied its effect on lysosomal enzyme transport following gene transfer to receptor-negative cells. Receptor-negative mouse P388D1 cells were transfected with a cDNA construct containing the entire coding sequence of hCI-MPR under the control of the mouse metallothionine I promoter. Stable transformants were isolated and characterized. The expressed hCI-MPR was localized in membranes including the plasma membrane, bound mannose 6-phosphate containing ligands, and mediated endocytosis which could be specifically blocked by mannose 6-phosphate. We next measured the effect of the expressed hCI-MPR on intracellular and secreted acid hydrolases. The intracellular activity of the lysosomal marker enzymes beta-glucuronidase and beta-hexosaminidase increased up to 2-fold following transformation. In addition, expression of the receptor greatly reduced the fraction of acid hydrolases secreted. These phenotypic changes in the transformed cell lines support the proposed role of the cation-independent mannose 6-phosphate receptor in intracellular sorting and targeting of lysosomal enzymes.  相似文献   

5.
Osteoclasts are members of the monocyte/macrophage lineage and are formed by cellular fusions from their mononuclear precursors. Their differentiation is regulated by a number of other cells and their products, especially by RANKL and M-CSF. The resorbing osteoclasts are polarized and show specific plasma membrane domains. Polarization and bone resorption need a continuous membrane trafficking and modulation of the cytoskeleton. The most characteristic feature of osteoclasts is their unique capacity to dissolve crystalline hydroxyapatite by targeted secretion of HCl into the extracellular resorption lacuna. Organic matrix is degraded by enzymes like cathepsin K and the degradation products are transcytosed through the cell for secretion. Dissolution of hydroxyapatite releases large amounts of soluble calcium, phosphate and bicarbonate. Removal of these ions apparently involves the vesicular pathways and direct ion transport via different ion exchangers, channels and pumps. Detailed molecular knowledge of osteoclast differentiation and function has helped us to identify several target molecules and develop specific treatments to inhibit pathological bone resorption in various skeletal diseases.  相似文献   

6.
The localization of acid hydrolases was examined in Chinese hamster ovary cells with defective mannose 6-phosphate receptors; these mutants had been shown to exhibit reduced uptake and altered binding of exogenously added acid hydrolase (Robbins, A. R., Myerowitz, R., Youle, R. J., Murray, G. J., and Neville, D. M., Jr. (1981) J. Biol. Chem. 256, 10618-10622). Cells were grown in the presence of [3H]mannose, alpha-L-iduronidase and beta-hexosaminidase were immunoprecipitated sequentially, electrophoresed on polyacrylamide gels containing sodium dodecyl sulfate, and detected by fluorography. About 55% of the alpha-L-iduronidase and beta-hexosaminidase synthesized by the mutants in 12 h was found in the growth medium; parental cells secreted only approximately 15%. The mutants also secreted 2 to 6 times more alpha-mannosidase, beta-glucuronidase, and alpha-L-fucosidase than the parent as determined by measurements of enzyme activity. Intracellular levels of these enzymes were reduced in the mutants. The mutants secreted acid hydrolases in the precursor forms, within the cells these enzymes resided in lysosomes and were processed normally; thus, the mutants appeared aberrant only with respect to distribution of hydrolases between intracellular and extracellular compartments. [35S]methionine-labeled beta-hexosaminidase and alpha-L-iduronidase secreted by the mutants were taken up normally by both human fibroblasts and wild type CHO cells, and this uptake was inhibited by mannose 6-phosphate. Thus, the elevated secretion of acid hydrolases was not due to alteration of the mannose 6-phosphate recognition marker on the enzymes, but appears to result from alterations in the mannose 6-phosphate receptor.  相似文献   

7.
Bone remodeling is a process of continuous resorption and formation/mineralization carried out by osteoclasts and osteoblasts, which, along with osteocytes, comprise the bone multicellular unit (BMU). A key component of the BMU is the bone remodeling compartment (BRC), isolated from the marrow by a canopy of osteoblast-like lining cells. Although much progress has been made regarding the cytokine-dependent and hormonal regulation of bone remodeling, less attention has been placed on the role of extracellular pH (pH(e)). Osteoclastic bone resorption occurs at acidic pH(e). Furthermore, osteoclasts can be regarded as epithelial-like cells, due to their polarized structure and ability to form a seal against bone, isolating the lacunar space. The major ecto-phosphatases of osteoclasts and osteoblasts, acid and alkaline phosphatases, both have ATPase activity with pH optima several units different from neutrality. Furthermore, osteoclasts and osteoblasts express plasma membrane purinergic P2 receptors that, upon activation by ATP, accelerate bone osteoclast resorption and impair osteoblast mineralization. We hypothesize that these ecto-phosphatases help regulate [ATP](e) and localized pH(e) at the sites of bone resorption and mineralization by pH-dependent ATP hydrolysis coupled with P2Y-dependent regulation of osteoclast and osteoblast function. Furthermore, osteoclast cellular HCO3(-), formed as a product of lacunar V-ATPase H(+) secretion, is secreted into the BRC, which could elevate BRC pH(e), in turn affecting osteoblast function. We will review the existing data addressing regulation of BRC pH(e), present a hypothesis regarding its regulation, and discuss the hypothesis in the context of the function of proteins that regulate pH(e).  相似文献   

8.
THE role of lysosomal enzymes in intracellular digestion is now well established [11]. Most often we think of lysosomal hydrolases in catabolism of endogenous or foreign material taken up by endocytosis. There is however, a number of reports dealing with the release of acid hydrolases into the extracellular fluid in a variety of eukaryote cells. These cells range from Saccharomyces cerevisiae [15], Dictyostelium discoideum [10], Leishmania donovani [20], Acanthamoeba castellani [22], Entamoeba histolytica [12, 31], and species of Tetrahymena [1–3, 6] to mammalian cells in culture [49]. Concerning the latter, fibroblasts and hepatocytes in culture release acid hydrolases to the extracellular medium, but only if the synthesis of a specific recognition marker is impaired in the cells. This marker (man-nose-6-phosphate) is used for receptor mediated segregation of lysosomal enzymes into the lysosomal compartments. If the receptor or the marker are lacking, the hydrolases fail to enter the lysosomal compartment, and are secreted in immature form together with molecules belonging to the constitutive secretory pathway of the cells [8, 49]. Such a release of acid hydrolases seems to occur spontaneously from mammalian osteoclasts [4]. Macrophages, on the other hand, need a specific stimulation for their release process [40]. In lower eukaryotes the release may  相似文献   

9.
CELLULAR BIOLOGY OF BONE RESORPTION   总被引:2,自引:0,他引:2  
Past knowledge and the recent developments on the formation, activation and mode of action of osteoclasts, with particular reference to the regulation of each individual step, have been reviewed. The following conclusions of consensus have emerged.
1. The resorption of bone is the result of successive steps that can be regulated individually.
2. Osteoclast progenitors are formed in bone marrow. This is followed by their vascular dissemination and the generation of resting preosteoclasts and osteoclasts in bone.
3. The exact pathways of differentiation of the osteoclast progenators to mature osteoclasts are debatable, but there is clear evidence that stromal cells support osteoclast generation.
4. Osteoclasts are activated following contact with mineralized bone. This appears to be controlled by osteoblasts that expose mineral to osteoclasts and/or release a factor that activates these cells.
5. Activated osteoclasts dissolve the bone mineral and digest the organic matter of bone by the action of agents secreted in the segregated microcompartments underlying their ruffled borders. The mineral is solubilized by protons generated from CO, by carbonic anhydrase and secreted by an ATP-driven vacuolar H+-K+-ATPase located at the ruffled border. The organic matrix of the bone is removed by acid proteinases, particularly cysteine-proteinases that are secreted together with other lysosomal enzymes in the acid environment of the resorption zone.
6. Osteoclastic bone resorption is directly regulated by a polypeptide hormone, calcitonin (CT), and locally, by ionized calcium (Ca2+) generated as a result of osteoclastic bone resorption.
7. There is new evidence that osteoclast activity may also be influenced by the endothelial cells via generation of products including PG, NO and endothelin.  相似文献   

10.
11.
 Monospecific antibodies against two major glycoproteins of rat lysosomal membranes with apparent molecular masses of 96 and 85 kDa, termed LGP96 and LGP85, respectively, were used as probes to determine the expression and distribution of lysosomal membranes in rat osteoclasts. At the light microscopic level, the preferential immunoreactivity for both proteins was found at high levels at the side facing bone of actively bone-resorbing osteoclasts. Osteoclasts detached from bone surface were devoid of immunoreactivity for each protein. At the electron microscopic level, both proteins were exclusively confined to the apical plasma membrane at the ruffled border of active osteoclasts with well-developed ruffled border membrane. No immunolabeling for both proteins was observed in the basolateral membrane and the clear zone of bone-resorbing osteoclasts. The plasma membrane of preosteoclasts and post- and/or resting osteoclasts showed little or no reactivity against these two antibodies. The results indicate that lysosomal membrane glycoproteins are actively synthesized in active osteoclasts, rapidly transported to the ruffled border area, and contribute to the formation and maintenance of the acidic resorption lacuna of osteoclasts. Accepted: 9 December 1998  相似文献   

12.
Loss of the ClC-7 chloride channel leads to osteopetrosis in mice and man   总被引:45,自引:0,他引:45  
Chloride channels play important roles in the plasma membrane and in intracellular organelles. Mice deficient for the ubiquitously expressed ClC-7 Cl(-) channel show severe osteopetrosis and retinal degeneration. Although osteoclasts are present in normal numbers, they fail to resorb bone because they cannot acidify the extracellular resorption lacuna. ClC-7 resides in late endosomal and lysosomal compartments. In osteoclasts, it is highly expressed in the ruffled membrane, formed by the fusion of H(+)-ATPase-containing vesicles, that secretes protons into the lacuna. We also identified CLCN7 mutations in a patient with human infantile malignant osteopetrosis. We conclude that ClC-7 provides the chloride conductance required for an efficient proton pumping by the H(+)-ATPase of the osteoclast ruffled membrane.  相似文献   

13.
We employed a novel technique to inspect the substrate-apposed surface of activated osteoclasts, the cells that resorb bone, in the scanning electron microscope. The surface revealed unexpected complexity. At the periphery of the cells were circles and crescents of individual or confluent nodules. These corresponded to the podosomes and actin rings that form a ‘sealing zone’, encircling the resorptive hemivacuole into which protons and enzymes are secreted. Inside these rings and crescents the osteoclast surface was covered with strips and patches of membrane folds, which were flattened against the substrate surface and surrounded by fold-free membrane in which many orifices could be seen. Corresponding regions of folded and fold-free membrane were found by transmission electron microscopy in osteoclasts incubated on bone. We correlated these patterns with the distribution of several proteins crucial to resorption. The strips and patches of membrane folds corresponded in distribution to vacuolar H+-ATPase, and frequently co-localized with F-actin. Cathepsin K localized to F-actin-free foci towards the center of cells with circular actin rings, and at the retreating pole of cells with actin crescents. The chloride/proton antiporter ClC-7 formed a sharply-defined band immediately inside the actin ring, peripheral to vacuolar H+-ATPase. The sealing zone of osteoclasts is permeable to molecules with molecular mass up to 10,000. Therefore, ClC-7 might be distributed at the periphery of the resorptive hemivacuole in order to prevent protons from escaping laterally from the hemivacuole into the sealing zone, where they would dissolve the bone mineral. Since the activation of resorption is attributable to recognition of the αVβ3 ligands bound to bone mineral, such leakage would, by dissolving bone mineral, release the ligands and so terminate resorption. Therefore, ClC-7 might serve not only to provide the counter-ions that enable proton pumping, but also to facilitate resorption by acting as a ‘functional sealing zone’.  相似文献   

14.
Bone is maintained by two cell types, bone-forming osteoblasts and bone-resorbing osteoclasts. Osteoblasts express two factors, osteoprotegerin and receptor activator of NF-kappaB ligand (RANKL), inhibiting and promoting osteoclast differentiation, respectively. In contrast, modulators of bone resorption expressed by osteoclasts have not been so well studied enough. In the present study, we demonstrate proteome analysis of secreted proteins during osteoclast differentiation to elucidate the molecular mechanism of bone resorption and bone remodeling. To achieve this objective, we chose RAW264.7 cells with RANKL as a homogeneous osteoclast differentiation model and used two methods, two-dimensional gel electrophoresis (2-DE) and isotope-coded affinity tags (ICAT) analysis with two-dimensional liquid chromatography. We found 23 spots in 2-DE and 19 proteins in ICAT analysis which were expressed differently during osteoclast differentiation. These two methods gave us closely related but different information about proteins, suggesting they are complementary or at least supplementary methods at present. Cathepsins, osteopontin, legumain, macrophage inflammatory protein-1alpha, and other proteins were observed as up- or down-regulated proteins and are discussed in the context of osteoclast differentiation and bone resorption. In addition to confirming previous observations, this study indicates novel proteins related to osteoclast differentiation which are potential therapeutic targets for the treatment of bone diseases, such as osteoporosis.  相似文献   

15.
The osteoclast is a polarized cell which secretes large amounts of newly synthesized lysosomal enzymes into an apical extracellular lacuna where bone resorption takes place. Using immunocytochemical techniques, we have localized the cation-independent mannose-6-phosphate (Man6P) receptor and lysosomal enzymes in this cell type in order to determine the expression and distribution of this receptor and its ligands. The results demonstrate that the osteoclast expresses large amounts of immunoreactive cation-independent Man6P receptors, despite the fact that most of the lysosomal enzymes it synthesizes are secreted. The lysosomal enzymes and the receptors are co-distributed along the exocytic pathway, i.e., the endoplasmic reticulum, including the perinuclear envelope, the Golgi stacks as well as numerous small transport vesicles that appear to fuse with the ruffled border membrane. Within the Golgi complex, the receptors and lysosomal enzymes were found distributed in two predominant patterns; (a) in all the cisternae, from cis to trans, or (b) predominantly in cis- and trans-Golgi cisternae, with the middle Golgi cisternae being unstained or depleted in antigen. This pattern suggests that enzymes and receptors traverse the Golgi from cis to trans and preferentially accumulate in cis- and in trans-cisternae. This study therefore suggests that, in the osteoclast, Man6P receptors are involved in the vectorial transport and targeting of newly synthesized lysosomal enzymes, presumably via a constitutive pathway, to the apical membrane where they are secreted into the bone-resorbing compartment. This mechanism could insure polarized secretion of lysosomal enzymes into the bone-resorbing lacuna.  相似文献   

16.
Phosphorylation of the high mannose-type oligosaccharides attached to newly synthesized acid hydrolases occurs in two sequential steps within the endoplasmic reticulum and the Golgi apparatus, and the products generated at the two sites differ with respect to the location of the phosphorylated mannose residue. To investigate the mechanism of this two-step phosphorylation, biosynthesis of the Man-6-P recognition marker was studied in class E Thy-1- and J774 cells metabolically labeled with [2-3H]mannose. Class E Thy-1- cells produce truncated high mannose oligosaccharides that lack 4 mannose residues from the alpha 1,6-branch of the core beta-linked mannose residue; three of the missing residues are potential phosphorylation sites. Acid hydrolases produced by these mutant cells were phosphorylated on the alpha 1,3-branch of the truncated oligosaccharide even when transport to the Golgi apparatus was inhibited. J774 cells produce normal high mannose oligosaccharides, but they secrete a large percentage of their newly synthesized acid hydrolases. The secreted enzymes contained primarily diphosphorylated units in which a phosphate was positioned to both the alpha 1,3- and alpha 1,6-branches of the core beta-linked mannose. J774 cells treated with deoxymannojirimycin continued to phosphorylate and to secrete acid hydrolases. The secreted hydrolases, however, contained only monophosphorylated oligosaccharides in which the phosphate was restricted to the alpha 1,6-branch. These results indicate that mannose residues within high mannose oligosaccharides impose constraints on the phosphorylation of their composite structures. We conclude that the two-step phosphorylation occurs as a result of a common phosphotransferase at both the pre-Golgi and Golgi locations and a change in the conformation of the oligosaccharides attached to the acid hydrolases through the action of Golgi-associated alpha-mannosidase I.  相似文献   

17.
In higher eukaryotes, the transport of soluble lysosomal enzymes involves the recognition of their mannose 6-phosphate signal by two receptors: the cation-independent mannose 6-phosphate/insulin-like growth factor II receptor (CI-MPR) and the cation-dependent mannose 6-phosphate receptor (CD-MPR). It is not known why these two different proteins are present in most cell types. To investigate their relative function in lysosomal enzyme targeting, we created cell lines that lack either or both MPRs. This was accomplished by mating CD-MPR-deficient mice with Thp mice that carry a CI-MPR deleted allele. Fibroblasts prepared from embryos that lack the two receptors exhibit a massive missorting of multiple lysosomal enzymes and accumulate undigested material in their endocytic compartments. Fibroblasts that lack the CI-MPR, like those lacking the CD-MPR, exhibit a milder phenotype and are only partially impaired in sorting. This demonstrates that both receptors are required for efficient intracellular targeting of lysosomal enzymes. More importantly, comparison of the phosphorylated proteins secreted by the different cell types indicates that the two receptors may interact in vivo with different subgroups of hydrolases. This observation may provide a rational explanation for the existence of two distinct mannose 6-phosphate binding proteins in mammalian cells.  相似文献   

18.
Steroid hormones and bone.   总被引:2,自引:0,他引:2  
  相似文献   

19.
Nitrogen-containing bisphosphonate drugs inhibit bone resorption by inhibiting FPP synthase and thereby preventing the synthesis of isoprenoid lipids required for protein prenylation in bone-resorbing osteoclasts. NE10790 is a phosphonocarboxylate analogue of the potent bisphosphonate risedronate and is a weak anti-resorptive agent. Although NE10790 was a poor inhibitor of FPP synthase, it did inhibit prenylation in J774 macrophages and osteoclasts, but only of proteins of molecular mass approximately 22-26 kDa, the prenylation of which was not affected by peptidomimetic inhibitors of either farnesyl transferase (FTI-277) or geranylgeranyl transferase I (GGTI-298). These 22-26-kDa proteins were shown to be geranylgeranylated by labelling J774 cells with [(3)H]geranylgeraniol. Furthermore, NE10790 inhibited incorporation of [(14)C]mevalonic acid into Rab6, but not into H-Ras or Rap1, proteins that are modified by FTase and GGTase I, respectively. These data demonstrate that NE10790 selectively prevents Rab prenylation in intact cells. In accord, NE10790 inhibited the activity of recombinant Rab GGTase in vitro, but did not affect the activity of recombinant FTase or GGTase I. NE10790 therefore appears to be the first specific inhibitor of Rab GGTase to be identified. In contrast to risedronate, NE10790 inhibited bone resorption in vitro without markedly affecting osteoclast number or the F-actin "ring" structure in polarized osteoclasts. However, NE10790 did alter osteoclast morphology, causing the formation of large intracellular vacuoles and protrusion of the basolateral membrane into large, "domed" structures that lacked microvilli. The anti-resorptive activity of NE10790 is thus likely due to disruption of Rab-dependent intracellular membrane trafficking in osteoclasts.  相似文献   

20.
The signaling through receptor tyrosine kinases expressed on mature osteoclasts has recently been suggested to be involved in osteoclastic bone resorption. This study investigated the mechanism and the possible physiological relevance of Gas6/Tyro 3, a receptor tyrosine kinase signaling pathway in osteoclasts in stimulating osteoclastic bone resorption using several mouse culture systems. Gas6, expressed ubiquitously in bone cells, did not affect the differentiation or the survival of osteoclasts, but stimulated osteoclast function to form resorbed pits on a dentine slice. The expression of its receptor, Tyro 3, was seen only in mature osteoclasts among bone cells. Gas6 up-regulated the phosphorylation of cellular proteins including p42/p44 mitogen-activated protein kinase (MAPK), but not p38 or c-Jun N-terminal kinase MAPK, and increased the kinase activity of immunoprecipitated Tyro 3 in isolated osteoclasts. The ability of Gas6 to stimulate pit formation resorbed by osteoclasts was abrogated by PD98059, a specific inhibitor of p42/p44 MAPK. In addition, the Gas6 mRNA level in bone marrow was up-regulated by ovariectomy and was reduced by estrogen replacement. These results strongly suggest that Gas6 acts directly on mature osteoclasts through activation of Tyro 3 and p42/p44 MAPK, possibly contributing to the bone loss by estrogen deficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号