共查询到20条相似文献,搜索用时 15 毫秒
1.
Gerald H. Sterling Peter H. Doukas†‡ Fiori J. Ricciardi Jr. ‡ Diane W. Biedrzycka John J. O'Neill† 《Journal of neurochemistry》1986,46(4):1170-1175
Choline uptake into cholinergic neurons for acetylcholine (ACh) synthesis is by a specific, high-affinity, sodium- and temperature-dependent transport mechanism (HAChU). To assess the role of choline availability in regulation of ACh synthesis, the structure-activity relationships of several hemicholinium (HC) and quinuclidinyl analogs were evaluated in a dose response manner. As confirms previous studies, the HCs, e.g., HC-3, acetylsecohemicholinium, and HC-15 are potent inhibitors of HAChU, HC-3 being the most potent (I50 = 6.1 X 10(-8) M). In the present study, the most potent quinuclidinyl derivative was the N-methyl-3-quinuclidinone (I50 = 5.6 X 10(-7) M). This compound had approximately 100-fold greater inhibitory activity than the corresponding racemic alcohol, suggesting that the 3-hydroxyl functional group is not absolutely essential for activity. Increasing the size of the N-functional group from a methyl to an allyl in the alcohol led to a 10-fold increase in activity. However, removal of the quaternizing N-methyl group yielding the tertiary amine, 3-quinuclidinol hydrochloride, greatly reduced its capacity to inhibit HAChU. Of the 2-benzylidene-3-quinuclidinone derivatives studied, only the m-chloro derivative significantly reduced HAChU. 相似文献
2.
P. Boksa 《Journal of neurochemistry》1985,45(4):1254-1261
Adrenal chromaffin cells normally synthesize and release catecholamines. In the present study, [3H]acetylcholine synthesis and another characteristic of cholinergic neurons, [3H]choline uptake, were studied in cultures of adult bovine adrenal chromaffin cells. Chromaffin cell cultures took up [3H]choline from the medium and acetylated the [3H]choline to form [3H]acetylcholine. The rate of [3H]acetylcholine synthesis increased after 19 days in culture and continued to increase up to 28 days in culture. [3H]Acetylcholine synthesis could be increased by stimulating the cells with a depolarizing concentration of K+. The ability for K+ to stimulate synthesis of [3H]acetylcholine developed only after 28 days in culture. [3H]Choline was taken up by the cultures through a single mechanism with a high (to intermediate) affinity for choline. [3H]Choline uptake was enhanced by Na+ omission in day-14 cultures, but was at least partially Na+-dependent in day-29 cultures. Hemicholinium-3 (IC50 less than 10 muM) inhibited [3H]choline uptake into chromaffin cell cultures. It is concluded that bovine adrenal chromaffin cells, maintained in culture, are able to exhibit cholinergic properties and this capacity is retained even by the mature adult cell. 相似文献
3.
4.
Ionic and Metabolic Requirements for High-Affinity Choline Uptake and Acetylcholine Synthesis in Nerve Terminals at a Neuromuscular Junction 总被引:1,自引:1,他引:1
Abstract: We have shown previously that in the chick ciliary nerve-iris muscle preparation Na+-dependent high-affinity choline uptake was confined to the nerve terminals. In this paper the sodium-dependent high-affinity choline uptake (SDHACU), which is coupled to acetylcholine (ACh) synthesis, was further characterized by measuring uptake of [3H]choline and its conversion to [3hjach under a variety of ionic and metabolic perturbations. Mannitol equilibration with the extracellular space was found to occur in less than 1 min in this preparation. Na+-dependent choline (Ch+) uptake was shown to be linear for 16 min and to reach an equilibrium before Na+-independent Ch+ uptake, which continued to increase for 60 min. Elevated [K+]0 concentrations inhibited Ch+ uptake and ACh synthesis. Glycolytic and respiratory inhibitors also reduced both processes, as did ouabain and omission of [K+]0. Incubation conditions that reduce transmitter release had no effect on inhibition by high [K+]0. Reduction of SDHACU and sodium-dependent ACh synthesis by depolarization with high [K+]0 or by inhibition of Na, K-ATPase implies that the electrochemical gradients for Ch+ and Na+ are important in providing a driving force for high-affinity Ch+ uptake. The inhibition by metabolic blockers suggests active transport, but the effects may be indirect, caused by reduced Na, K-ATPase activity and alterations in membrane potential. While most metabolic inhibitors exerted parallel effects on both Ch+ uptake and ACh synthesis, in some cases Ch+ uptake was more strongly inhibited than ACh synthesis. This occurred in preparations incubated with high [K+]0 and ouabain. Na+-dependent Ch+ uptake and ACh synthesis were found to be temperature-dependent with a Q10 (20–30°) of 3.6 and 6.6, respectively and a Q10 (30–40°) of 1.3 and 1.0, respectively. Inhibition of acetylcholinesterase by paraoxon increases to 92% the proportion of the Ch+ taken up which is converted to ACh. ACh did not reduce Ch+ transport when present at 100 μM. 相似文献
5.
J. Robert Bostwick Diane W. Landers Garrett Crawford Kenneth Lau Stanley H. Appel 《Journal of neurochemistry》1989,53(2):448-458
A compound that can enhance the apparent synthesis of acetylcholine in cultured explants of the medial septal nucleus has been purified from rat brain and identified as phosphoethanolamine. Acetylcholine synthesis is stimulated two- to threefold in cultures grown for 5 days in the presence of phosphoethanolamine, ethanolamine, or cytidine 5'-diphosphoethanolamine at concentrations above 100 microM. This effect appears to result from an increase in the accumulation of choline via the high-affinity, sodium-dependent uptake mechanism. The development of choline acetyltransferase activity is not affected. Phosphoethanolamine and ethanolamine seem to enhance the ability of developing cholinergic neurons to utilize choline accumulated via the sodium-dependent high-affinity choline uptake mechanism for the preferential production of acetylcholine without increasing the general metabolism of the cultures. Choline itself and its related derivatives are not stimulatory for these effects. 相似文献
6.
S. Kar †‡A. M. Issa ‡D. Seto †D. S. Auld †‡B. Collier †‡R. Quirion 《Journal of neurochemistry》1998,70(5):2179-2187
Abstract: The characteristic pathological features of the postmortem brain of Alzheimer's disease (AD) patients include, among other features, the presence of neuritic plaques composed of amyloid β-peptide (Aβ) and the loss of basal forebrain cholinergic neurons, which innervate the hippocampus and the cortex. Studies of the pathological changes that characterize AD and several other lines of evidence indicate that Aβ accumulation in vivo may initiate and/or contribute to the process of neurodegeneration and thereby the development of AD. However, the mechanisms by which Aβ peptide influences/causes degeneration of the basal forebrain cholinergic neurons and/or the cognitive impairment characteristic of AD remain obscure. Using in vitro slice preparations, we have recently reported that Aβ-related peptides, under acute conditions, potently inhibit K+-evoked endogenous acetylcholine (ACh) release from hippocampus and cortex but not from striatum. In the present study, we have further characterized Aβ-mediated inhibition of ACh release and also measured the effects of these peptides on choline acetyltransferase (ChAT) activity and high-affinity choline uptake (HACU) in hippocampal, cortical, and striatal regions of the rat brain. Aβ1–40 (10?8M) potently inhibited veratridine-evoked endogenous ACh release from rat hippocampal slices and also decreased the K+-evoked release potentiated by the nitric oxide-generating agent, sodium nitroprusside (SNP). It is interesting that the endogenous cyclic GMP level induced by SNP was found to be unaltered in the presence of Aβ1–40. The activity of the enzyme ChAT was not altered by Aβ peptides in hippocampus, cortex, or striatum. HACU was reduced significantly by various Aβ peptides (10?14 to 10?6M) in hippocampal and cortical synaptosomes. However, the uptake of choline by striatal synaptosomes was altered only at high concentration of Aβ (10?6M). Taken together, these results indicate that Aβ peptides, under acute conditions, can decrease endogenous ACh release and the uptake of choline but exhibit no effect on ChAT activity. In addition, the evidence that Aβ peptides target primarily the hippocampus and cortex provides a potential mechanistic framework suggesting that the preferential vulnerability of basal forebrain cholinergic neurons and their projections in AD could relate, at least in part, to their sensitivity to Aβ peptides. 相似文献
7.
Choline Uptake and Acetylcholine Synthesis in Synaptosomes: Investigations Using Two Different Labeled Variants of Choline 总被引:2,自引:3,他引:2
Molly H. Weiler Cameron B. Gundersen Donald J. Jenden 《Journal of neurochemistry》1981,36(5):1802-1812
Abstract: Using sequential incubations in media of different K+ composition, we investigated the dynamics of choline (Ch) uptake and acetylcholine (ACh) synthesis in rat brain synaptosomal preparations, using two different deuterated variants of choline and a gas chromatographic-mass spectrometric (GC-MS) assay for ACh and Ch. Synaptosomes were preincubated for 10 min in a Krebs medium with or without high K+ and with 2 μM-[2H9]Ch. At the end of the preincubation all variants of ACh and Ch were measured in samples of the pellet and medium. In the second incubation (4 min) samples of synaptosomes were resuspended in normal or high K+ solutions containing [2H4]Ch (2 μM) and all variants of ACh and Ch were measured in the pellet and medium at the end of this period. This protocol allowed us to compare the effects of preincubation in normal or high K+ solution on the metabolism during a second low or high K+ incubation of a [2H9]Ch pool accumulated during the preincubation period. Moreover, we were able to compare and contrast the effects of this protocol on [2H9]Ch metabolism versus [2H4]Ch metabolism. The most striking result we obtained was that [2H9]Ch that had been retained by the synaptosomes after the preincubation was not acetylated during a subsequent incubation in normal or high K+ media. This result suggests that if an intraterminal pool of Ch is involved in ACh synthesis, the size of this pool is below the limits of detection of our assay. We have confirmed the observation that a prior depolarizing incubation results in an enhanced uptake of Ch during a second incubation in normal K+ Krebs. Moreover, Ch uptake is stimulated by prior incubation under depolarizing conditions relative to normal preincubation when the second incubation is in a high K+ solution. These results are discussed in terms of current models of the regulation of ACh synthesis in brain. 相似文献
8.
Basal forebrain cholinergic neurons (BFCNs) degenerate in aging and Alzheimer’s disease. It has been proposed that estrogen
can affect the survival and function of BFCNs. This study characterized primary rat BFCN cultures and investigated the effect
of estrogen on high-affinity choline uptake (HACU). BFCNs were identified by immunoreactivity to the vesicular acetylcholine
transporter (VAChT) and represented up to 5% of total cells. HACU was measured in living BFCN cultures and differentiated
from low-affinity choline uptake by hemicholinium-3 (HC-3) inhibition. A HC-3 concentration curve showed that 0.3 μM HC-3,
but not higher concentrations that inhibit LACU, could distinguish the two transport activities. 17-β-Estradiol treatment
increased HACU in some culture preparations that contained non-neuronal cells. Elimination of dividing cells using antimitotic
treatments resulted in a lack of estrogen effects on HACU. These results suggest that estrogen may have indirect effects on
BFCNs that are mediated through non-neuronal cells. 相似文献
9.
Abstract: Intracerebroventricular administration of N6, 2′-O-dibutyryladenosine 3′,5′-cyclic monophosphate (db-cyclic AMP) to mice increased high-affinity choline transport (HAChT) into synaptosomal preparations from the hippocampus, striatum, and frontal cortex in a time-dose-, and brain region-dependent manner. Similar observations were made when the cyclic AMP analogue 8-bromo-cyclic AMP, the adenylyl cyclase activator forskolin, and the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine were administered. Inhibition of phosphatase 1 and 2A, with okadaic acid, increased basal choline transport and enhanced the response to db-cyclic AMP. The early increase of HAChT activity induced by db-cyclic AMP was blocked by H-7 and H-89, protein kinase A inhibitors, but not by cycloheximide, a protein synthesis inhibitor. Kinetic analysis of the early changes of HAChT revealed an increase in the apparent Vmax without a change of the Km for choline. Hemicholinium-3 (HC-3) binding was not altered when studied 1 h after db-cyclic AMP administration. In contrast, HC-3 binding and HAChT activity were both elevated when estimated 3 h after the treatment, and pretreatment with cycloheximide partially prevented the db-cyclic AMP-induced HAChT rise. As evidence that enhanced HAChT is associated with a direct action of cyclic AMP-dependent pathways on the cholinergic nerve terminals, addition of 8-bromocyclic AMP to isolated hippocampal synaptosomes induced an increase of HAChT that was prevented by H-89. Choline acetyltransferase activity was not affected at any time during the studies. The synthesis of acetylcholine, however, was enhanced 1 h after db-cyclic AMP addition. Our studies show that cyclic AMP-mimetic compounds appear to modulate the choline carrier by a dual mode: an early increase of the maximal velocity without a change of the number of HC-3 binding sites and a late rise of transport that is accompanied by an increase of HC-3 binding. We postulate that HAChT and consequently acetylcholine synthesis in vivo is modulated, in part, by protein kinase A. 相似文献
10.
[3H]Hemicholinium-3 (HC-3) was used to label sodium-dependent, high-affinity choline uptake sites in regions of rat brain. Autoradiography revealed a high density of [3H]HC-3 binding sites in brain regions with a high density of cholinergic terminals, such as the interpeduncular nucleus, caudate-putamen, and olfactory tubercle. This distribution of [3H]HC-3 binding sites was in close agreement with the amounts of choline acetyltransferase in specific nuclei and subregions of rat brain. Destruction of presynaptic cholinergic projections in the cerebral cortex and the basal ganglia by injection of excitotoxins reduced [3H]HC-3 binding by 40-50%. These data indicate that sodium-dependent [3H]HC-3 binding sites are related to the choline transport system present in cholinergic neurons. 相似文献
11.
Abstract: The effect of choline (60 mg/kg, i.p.) on fluphenazine- and pentylenetetrazol-induced alterations in the concentration of acetylcholine (ACh) and/or the rate of sodium-dependent high-affinity choline uptake (HACU) in rat striatum and hippocampus was studied. Systemic administration of the dopamine receptor blocking agent fluphenazine hydrochloride (0.5 mg/kg, i.p.) decreased the concentration of ACh in the striatum; this effect was prevented by the prior administration of choline. The central nervous system stimulant pentylenetetrazol (30 mg/kg, i.p.) reduced the concentration of ACh in both striatum and hippocampus and increased the velocity of HACU in the hippocampus. Pretreatment with choline totally prevented the depletion of ACh induced by pentylenetetrazol in the striatum. In the hippocampus, prior administration of choline prevented the pentylenetetrazol-induced increase in the rate of HACU and attenuated the effect of pentylenetetrazol on the levels of ACh. Results indicate that the acute administration of choline antagonizes pharmacologically induced alterations in cholinergic activity as assessed by the rate of HACU and the steady-state concentration of ACh. Furthermore, data support the hypothesis that the administration of choline increases the ability of central cholinergic neurons to synthesize ACh under conditions of increased neuronal activity. 相似文献
12.
Yvette Morot Gaudry-Talarmain Marie-Françoise Diebler Seana O''Regan 《Journal of neurochemistry》1989,52(3):822-829
We examined the effects of two drugs, AH5183 and cetiedil, demonstrated to be potent inhibitors of acetylcholine (ACh) transport by isolated synaptic vesicles on cholinergic functions in Torpedo synaptosomes. AH5183 exhibited a high specificity toward vesicular ACh transport, whereas cetiedil was shown to inhibit both high-affinity choline uptake and vesicular ACh transport. Choline acetyltransferase was not affected by either drug. High external choline concentrations permitted us to overcome cetiedil inhibition of high-affinity choline transport, and thus synthesis of [14C]ACh in treated preparations was similar to that in controls. We then tested evoked ACh release in drug-treated synaptosomes under conditions where ACh translocation into the vesicles was blocked. We observed that ACh release was impaired only in cetiedil-treated preparations; synaptosomes treated with AH5183 behaved like the controls. Thus, this comparative study on isolated nerve endings allowed us to dissociate two steps in drug action: upstream, where both AH5183 and cetiedil are efficient blockers of the vesicular ACh translocation, and downstream, where only cetiedil is able to block the ACh release process. 相似文献
13.
The coupling of choline transport to acetylcholine synthesis has been investigated by measurement of the isotopic dilution of a pulse of [3H]choline during its incorporation into the recently synthesised acetylcholine of cerebral cortex synaptosomes. Recently synthesised acetylcholine was identified as that containing 14C-labelled precursors introduced by a preincubation before the pulse. When [14C]glucose was used to label acetyl-CoA coupling ratios (calculated as the inverse of the dilution of extracellular [3H]choline during its incorporation into [3H]acetylcholine) of about 0.05-0.2 were found at a choline concentration of 1 microM, rising to 0.5 at choline concentrations of 10-50 microM. Experiments using [14C]choline as a precursor gave similar results, and it was shown that the isotopic dilution did not occur extrasynaptosomally and was not affected by low glucose concentrations. Coupling ratios were always less than unity and rose as the choline concentration increased. It is concluded that choline transported into the nerve terminal has no privileged access to choline acetyltransferase. The results can be explained by a rate-controlling transport of choline into the terminal followed by its rapid acetylation rather than any linkage or coupling of the two processes. 相似文献
14.
Arachidonic Acid Inhibits Choline Uptake and Depletes Acetylcholine Content in Rat Cerebral Cortical Synaptosomes 总被引:1,自引:2,他引:1
The effects of arachidonic acid on [3H]choline uptake, on [3H]acetylcholine accumulation, and on endogenous acetylcholine content and release in rat cerebral cortical synaptosomes were investigated. Arachidonic acid (10-150 microM) produced a dose-dependent inhibition of high-affinity [3H]choline uptake. Low-affinity [3H]choline uptake was also inhibited by arachidonic acid. Fatty acids inhibited high-affinity [3H]choline uptake with the following order of potency: arachidonic greater than palmitoleic greater than oleic greater than lauric; stearic acid (up to 150 microM) had no effect. Inhibition of [3H]choline uptake by arachidonic acid was reversed by bovine serum albumin. In the presence of arachidonic acid, there was an increased accumulation of choline in the medium, but this did not account for the inhibition of [3H]choline uptake produced by the fatty acid. Arachidonic acid inhibited the synthesis of [3H]acetylcholine from [3H]choline, and this inhibition was equal in magnitude to the inhibition of high-affinity [3H]choline uptake produced by the fatty acid. A K+-stimulated increase in [3H]acetylcholine synthesis was inhibited completely by arachidonic acid. Arachidonic acid also depleted endogenous acetylcholine stores. Concentrations of arachidonic acid and hemicholinium-3 that produced equivalent inhibition of [3H]choline uptake also produced equivalent depletion of acetylcholine content. In the presence of eserine, arachidonic acid had no effect on acetylcholine release. The results suggest that arachidonic acid may deplete acetylcholine content by inhibiting high-affinity choline uptake and subsequent acetylcholine synthesis. This raises the possibility that arachidonic acid may play a role in the impairment of cholinergic transmission seen in cerebral ischemia and other conditions in which large amounts of the free fatty acid are released in brain. 相似文献
15.
High affinity choline uptake (HACU) was investigated in the hippocampal formation following fetal septal cell suspension transplants into rats with fimbria-fornix lesions. Nine-14 weeks after transplantation, HACU was markedly decreased in hippocampi from animals with fimbria-fornix lesions; this decrease was ameliorated by fetal septal cells transplanted into the host hippocampus. HACU related to septal transplantation was activated in vitro by K+, and in vivo by the administration of scopolamine and picrotoxin. These findings suggest that fetal septal cell transplantation can restore HACU in the host hippocampus following fimbria-fornix lesions, and that HACU related to the graft has pharmacological properties similar to those of the normal adult HACU system. The activation of HACU by picrotoxin, a gamma-aminobutyric acid (GABA) antagonist, suggests that transplanted cholinergic neurons receive either direct or indirect functional input from GABAergic afferents from the transplant and/or host hippocampus. Lesions of the fimbria-fornix also resulted in an increased binding to muscarinic receptors in the dorsal hippocampus. This increase in binding was not significantly ameliorated by intrahippocampal grafts of cholinergic neurons. 相似文献
16.
Lynn Wecker 《Journal of neurochemistry》1988,51(2):497-504
The main objective of this study was to test the hypothesis that the chronic administration of choline supplements a bound pool of choline from which free choline can be mobilized and used to support acetylcholine synthesis when the demand for precursor is increased. For these experiments, brain slices from rats fed diets containing different amounts of choline were incubated in a choline-free buffer and acetylcholine synthesis was measured under resting conditions and in the presence of K+-induced increases in acetylcholine synthesis and release. Rats fed the choline-supplemented diet had circulating choline levels that were 52% greater than the controls, and striatal and cerebral cortical slices from this group produced significantly more free choline during the incubation than slices from the controls. However, the synthesis and release of acetylcholine by these tissues did not differ from those by controls, during either resting or K+-evoked conditions. In contrast, acetylcholine synthesis and release by striatal and hippocampal slices from choline-deficient rats, animals that had circulating choline levels that were 80% of control values, decreased significantly; the production of free choline by these tissues was also depressed. Results indicate that, despite an increased production of free choline by brain slices from choline-supplemented rats, the synthesis of acetylcholine was unaltered, even in the presence of an increased neuronal demand. In contrast, the choline-deficient diet led to a decreased release of free choline from bound stores and an impaired ability of brain to synthesize acetylcholine. 相似文献
17.
Abstract: The experiments described in this paper were designed to test whether increasing choline availability over normal physiological levels increases acetylcholine synthesis in the cat's superior cervical ganglion. When ganglia were perfused with Krebs solution, an increase in the medium's choline concentration over physiological (10−3 M) levels increased tissue choline but did not increase tissue acetylcholine or the release of acetylcholine from stimulated ganglia. However, increasing plasma choline in the whole animal increased ganglionic acetylcholine levels. The basis for this difference in the effects of in vivo and in Vitro exposure to elevated choline levels on the tissue acetylcholine content was found to involve plasma factor(s), rather than indirect actions of choline, and the acetylcholine content of isolated ganglia was increased when the tissue was perfused with plasma, instead of Krebs solution, containing 10−3 M-choline. The extra acetylcholine generated by this procedure was associated with a subsequent transient increase in transmitter release during short intervals of stimulation, but most of the extra acetylcholine was not readily available for release from stimulated ganglia. It is concluded that increasing choline available to sympathetic ganglia over physiological concentration does not have a sustained effect on the turnover of releasable transmitter under the conditions of these experiments. 相似文献
18.
Riluzole Enhances Glutamate Uptake in Rat Astrocyte Cultures 总被引:2,自引:0,他引:2
1. Riluzole is used for the treatment of amyotrophic lateral sclerosis and reported to have neuroprotective effects in animal models of Parkinson's disease, Huntington's disease, and brain ischemia. The neuroprotective action of riluzole has been attributed to its ability to inhibit glutamate release (A. Doble, Neurology 47(4):233S-241S, 1996). 2. The effect of riluzole on L-[2,3-3H] glutamate uptake was investigated in rat cortical astrocyte cultures. 3. Riluzole showed a biphasic concentration-dependent effect on basal glutamate uptake. At low concentrations (1 and 10 microM) riluzole significantly increased glutamate uptake, whereas from 100 microM promoted a slight reduction. 4. Considering the large range of glutamate levels in the synaptic cleft, we studied the 1 microM riluzole effect on uptake of glutamate at different concentrations (1-1000 microM). Riluzole was more effective at low glutamate concentrations (10 microM), enhancing the basal glutamate uptake up to 42%. 5. The action of riluzole on astrocytic glutamate uptake could be an additional mechanism to its neuroprotective role, perhaps suggesting a modulatory action on glutamatergic system involving glutamate clearance from synaptic cleft. 相似文献
19.
Relations Between the Extracellular Concentrations of Choline and Acetylcholine in Rat Striatum 总被引:1,自引:1,他引:1
Yasushi Ikarashi Akira Takahashi Hirohisa Ishimaru Tadashi Arai Yuji Maruyama 《Journal of neurochemistry》1997,69(3):1246-1251
Abstract: Changes in extracellular levels of acetylcholine (ACh) and choline (Ch) in the striatum of rats were examined by in vivo microdialysis after intraperitoneal injections of drugs. A dopamine D2 antagonist, sulpiride (20 mg/kg), and a muscarinic antagonist, atropine (3.5 mg/kg), increased ACh levels and decreased Ch levels. On the contrary, the D2 agonist (±)-2-( N -phenylethyl- N -propyl)amino-5-hydroxytetralin (N-434; 5 mg/kg) and an anesthetic, pentobarbital (50 mg/kg), decreased ACh levels and increased Ch levels. Perfusion of 10 µ M hemicholinium-3 (HC-3), a Ch uptake inhibitor, through the striatum induced a complete inhibition of ACh release and increased Ch levels in all drug-treated groups. The degree of relative increase in the level of Ch induced by HC-3 differed among the drug-pretreated groups; compared with the control group, the relative increase was larger in the sulpiride- and atropine-treated groups and smaller in the N-434 and pentobarbital-treated groups. Thus, we demonstrated reciprocal relations between extracellular concentrations of Ch and ACh after treatments by drugs. The data suggest that in the striatum, which is rich in cholinergic innervation, the extracellular Ch concentration is to a large extent determined by activity of the cholinergic transmission reflected in high-affinity choline uptake. 相似文献
20.
Lynn Wecker 《Journal of neurochemistry》1991,57(4):1119-1127
The objective of these experiments was to determine whether preincubating hippocampal slices with choline provides precursor that can be used during a subsequent incubation to support or enhance the synthesis of acetylcholine (ACh). Slices were preincubated for 60 min with 0, 10, 25, or 50 microM choline, washed, resuspended, and then incubated for 10 min in choline-free buffer containing 4.74 (Krebs-Ringer bicarbonate, KRB) or 25 mM KCl. The tissue contents of ACh and choline were determined prior to and after the preincubation, as well as after the incubation; the amounts of ACh and choline released were measured, and ACh synthesis was calculated. Preincubation in the absence of choline increased the tissue content of ACh to 242% of original levels; preincubation with 10 microM choline did not lead to a further increase, but preincubation with 25 or 50 microM choline increased the ACh content to 272% of original levels, significantly greater than that of slices preincubated with either 0 or 10 microM choline. When tissues were subsequently incubated for 10 min with either KRB or 25 mM KCl, ACh release from slices preincubated with 50 microM choline was greater than from slices preincubated with 0, 10, or 25 microM choline. Incubation of slices with KRB did not alter the tissue content of ACh, but when tissues were incubated with 25 mM KCl, the ACh content of slices preincubated with 0 or 10 microM choline decreased significantly, whereas that of slices preincubated with 25 or 50 microM choline did not.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献