首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Matrix metalloproteinase (MMP)-9 from alveolar macrophages is a major source of elastolytic activity in the lung. It is increased in the bronchoalveolar lavage fluid of patients with emphysema. Although the importance of macrophage-derived elastolytic activity in the pathogenesis of emphysema is well established, questions remain about MMP-9 regulation and activity. Because surfactant protein A (SP-A) is capable of modulating other functions of human monocytic cells, we hypothesized that SP-A may regulate MMP-9 expression. Vitamin D3-differentiated THP-1 cells and peripheral blood mononuclear cells were stimulated in vitro with several concentrations of SP-A for different incubation times. MMP-9 mRNA expression was measured by dot-blot analysis, gelatinolytic activity in the medium was determined by gel zymography, protein expression was determined by ELISA, and a specific MMP-9 activity assay was used to measure the state of activation of this enzyme in the cell supernatants. SP-A induced the expression of MMP-9 in both cell types, the effect was time and dose dependent, and MMP-9 was released in its zymogen form. On the basis of results of neutralizing antibody studies, we believe that SP-A action is mediated through Toll-like receptor-2. Even though the biological meaning of these findings remains to be elucidated, these observations suggest the presence of a novel, locally controlled mechanism by which MMP-9 levels may be regulated in alveolar macrophages. We speculate that SP-A may influence the protease/antiprotease balance in the lungs of patients with quantitative and/or qualitative changes in surfactant constituents favoring an abnormal breakdown of extracellular matrix components.  相似文献   

4.
Monocyte chemoattractant protein-1 (MCP-1) and matrix metalloproteinase-9 (MMP-9) are involved in vascular inflammation. We tested the hypothesis, and explored the underlining mechanisms that cilostazol, a phosphodiesterase 3 inhibitor with antiplatelet and antithrombotic properties, inhibits lipopolysaccharide (LPS)-induced MCP-1 and MMP-9 expression. In a rabbit aorta balloon-injury model, administration of LPS increased macrophage infiltration and MCP-1 and MMP-9 expression; cilostazol supplementation prevented this phenomenon and reduced intimal hyperplasia. In contrast, the reverse zymography showed that cilostazol did not affect TIMP-1 expression in serum. In monocytic THP-1 cells, cilostazol and N6,O2'-dibutyryl-cAMP (dioctanoyl-cAMP, a cAMP analog) dose-dependently inhibited LPS-induced MCP-1 protein expression and MMP-9 activation, but did not affect the tissue inhibitor of metalloproteinase-1. Quantitative real-time polymerase chain reaction (PCR) showed that cilostazol inhibited MCP-1 and MMP-9 mRNA expression. Cilostazol significantly inhibited LPS-induced activation of p38, JNK, and nuclear factor-kappaB, and the respective inhibitors of p38 and JNK greatly reduced the level of LPS-induced MCP-1 and MMP-9, suggesting the involvement of the p38 and JNK pathways. In conclusion, cilostazol administered with LPS in vivo reduced neointimal hyperplasia and macrophage infiltration in the balloon-injured rabbit aorta; in vitro, cilostazol inhibits LPS-induced MCP-1 and MMP-9 expression. These data suggest that cilostazol may play an important role in preventing endotoxin- and injured-mediated vascular inflammation.  相似文献   

5.
Unregulated activities of the matrix metalloproteinase (MMP) family have been implicated in primary and metastatic tumor growth, angiogenesis, and pathological degradation of extracellular matrix components, such as collagen and laminin. However, clinical trials with small molecule MMP inhibitors have been largely unsuccessful, with a lack of selectivity considered particularly problematic. Enhanced selectivity could be achieved by taking advantage of differences in substrate secondary binding sites (exosites) within the MMP family. In this study, triple-helical substrates and triple-helical transition state analog inhibitors have been utilized to dissect the roles of potential exosites in MMP-9 collagenolytic behavior. Substrate and inhibitor sequences were based on either the alpha1(V)436-450 collagen region, which is hydrolyzed at the Gly (downward arrow) Val bond selectively by MMP-2 and MMP-9, or the Gly (downward arrow) Leu cleavage site within the consensus interstitial collagen sequence alpha1(I-III)769-783, which is hydrolyzed by MMP-1, MMP-2, MMP-8, MMP-9, MMP-13, and MT1-MMP. Exosites within the MMP-9 fibronectin II inserts were found to be critical for interactions with type V collagen model substrates and inhibitors and to participate in interactions with an interstitial (types I-III) collagen model inhibitor. A triple-helical peptide incorporating a fibronectin II insert-binding sequence was constructed and found to selectively inhibit MMP-9 type V collagen-based activities compared with interstitial collagen-based activities. This represents the first example of differential inhibition of collagenolytic activities and was achieved via an exosite-binding triple-helical peptide.  相似文献   

6.
Members of the matrix metalloproteinase (MMP) family of enzymes participate in matrix remodeling and share a number of structural and functional features. The activity of this family of proteinases is carefully regulated at the level of zymogen activation and by a family of specific inhibitors termed tissue inhibitors of metalloproteinases (TIMP). It is now becoming clear that levels of certain MMPs are modulated by their association with cellular receptors that mediate their rapid internalization and degradation. In the current investigation we report that the amount of MMP-9 in conditioned cell culture medium is significantly increased when mouse embryonic fibroblasts are grown in the presence of the 39-kDa receptor-associated protein (RAP), an antagonist of ligand binding to low density lipoprotein receptor-related protein (LRP). In vitro assays reveal that the MMP-9.TIMP-1 complex binds to LRP with high affinity and that the binding determinant for LRP appears to reside on MMP-9. Cell lines expressing LRP mediate the internalization of 125I-labeled MMP-9.TIMP-1 complexes, whereas cell lines genetically deficient in LRP show a diminished capacity to mediate the cellular catabolism of MMP-9.TIMP-1 complexes. The results demonstrate that LRP is a functional receptor for MMP-9 and suggest a major role for LRP in modulating remodeling of the extracellular matrix by regulating extracellular proteinase activity.  相似文献   

7.
The role of CRP as a mediator in atherosclerosis and inflammation is being investigated worldwide. In the present study, the effect of CRP on matrix metalloproteinases (MMP)-1, 2, 9, and their tissue inhibitor (TIMP-1) gene expression in THP-1 monocytic cell line was investigated. Specific mitogen activated protein (MAP) kinase (ERK, p38, and JNK) inhibitors were used to elucidate the signaling pathways involved. Effect of atorvastatin was determined in the presence of CRP on the expression of genes. Time and dose-dependent experiments were performed in the presence of CRP. The results showed that the treatment of THP-1 cells with 100 μg of CRP/ml/106 cells for 24 h enhanced the expression of MMPs and TIMP-1 genes significantly. CRP upregulated the expression of these genes via FcγRII and utilized ERK signaling pathway to transduce signals. Atorvastatin was able to significantly attenuate CRP-induced MMPs expression and augmented TIMP-1 gene expression significantly. In conclusion, CRP is not only a risk marker for vascular events, but also directly involved in the mechanisms leading to remodeling and destabilization of atherosclerotic plaque. Also, atorvastatin serves as potential therapeutic modality to curb these harmful events.  相似文献   

8.
Endothelial cell transition from a differentiated, quiescent phenotype to a migratory, proliferative phenotype is essential during angiogenesis. This transition is dependent on alterations in the balanced production of stimulatory and inhibitory factors, which normally keep angiogenesis in check. Activation of MAPK/ERKs is essential for endothelial cell migration and proliferation. However, its role in regulation of endothelial cell adhesive mechanisms requires further delineation. Here, we show that sustained activation of MAPK/ERKs results in disruption of cadherin-mediated cell-cell adhesion, down-regulation of PECAM-1 expression, and enhanced cell migration in microvascular endothelial cells. Expression of a constitutively active MEK-1 in mouse brain endothelial (bEND) cells resulted in down-regulation of VE-cadherin and catenins expression concomitant with down-regulation of PECAM-1 expression. In contrast, inhibition of MEK-1 restored parental morphology, cadherin/catenins expression and localization. These data are further supported by our observation that sustained activation of MAPK/ERKs in phorbol myristate acetate incubated HUVEC lead to disruption of cadherin-mediate cell-cell interactions and enhanced capillary formation on Matrigel. Thus, sustained activation of MAPK/ERKs plays an important role in disruption of cell-cell adhesion and migration of endothelial cells.  相似文献   

9.
We showed previously that the expressions of various src family protein tyrosine kinases (PTKs) were induced independently during the monocytic differentiation of HL-60 cells. The role of PTKs was further assessed in the present study by investigating the effects of PTK inhibitors on the differentiation. It was demonstrated that PTK inhibitors such as genistein and herbimycin A modulated monocytic differentiation of HL-60 cells; they inhibited the differentiation induced by TPA, while promoting that induced by vitamin D3 (D3). Immunoblotting analysis of protein molecules which had been phosphorylated on their tyrosine residues demonstrated that TPA induced phosphorylation of certain molecules different from those induced by D3 in HL-60 cells. PTK inhibitors blocked the phosphorylation and modulated differentiation driven by the inducers. These data suggest that PTKs are involved both promotively and suppressively in signaling events that induce monocytic differentiation of HL-60 cells.  相似文献   

10.
Matrix metalloproteinases (MMPs) are endopeptidases considered to be important regulators of the microenvironment of cancer. While MMPs are traditionally associated with the extracellular matrix (ECM), here we provide new evidence from an analysis of gene expression profiles from human tumor tissue that MMP-9 (gelatinase B) is associated with elements of the immune system in a way analogous to the association of other MMPs, such as MMP-2 (gelatinase A), with components of the ECM. An analysis of three independent microarray datasets of lung adenocarcinomas from previous studies [Nat. Med. 8, 816-824 (2002); Proc. Natl. Acad. Sci. USA 98, 13790-13795 (2001); Proc. Natl. Acad. Sci. USA, 98, 13784-13789 (2001)] showed that, in each dataset, out of the set of genes with significant correlations in mRNA expression to the expression of MMP9 (P < 0.005), a highly disproportionate number were found to be annotated in the Locuslink database as having a role in the anti-pathogen response. By comparison, out of the set of genes significantly correlated with the expression of MMP2, a highly disproportionate number were known components of the ECM. The same patterns observed in the lung data for both MMP2 and MMP9 were found as well in an additional published dataset of colon and ovarian adenocarcinomas [Am. J. Pathol. 159, 1231-1238 (2001)]. The results of this study suggest a greater functional role for MMP-9 in the immune response to cancer than what may previously have been thought.  相似文献   

11.
12.
Limited information is available on the expression and role of matrix metalloproteinase (MMP)-12 in chondrocytes. We characterized the expression mechanism of MMP-12 and possible function in chondrocytes. Interleukin (IL)-1beta induced the expression and activation of MMP-12 in primary culture chondrocytes and cartilage explants via mitogen-activated protein (MAP) kinase signaling pathways. Among MAP kinases, extracellular signal-regulated kinase and p38 kinase are necessary for MMP-12 expression, whereas c-jun N-terminal kinase is required for the activation of MMP-12. The possibility that MMP-12 acts as a modulator of other MMP was examined. MMP-12 alone did not affect other MMP expressions. However, MMP-12 enhanced expression and activation of MMP-9 in the presence of IL-1beta. Our results indicate that IL-1beta in chondrocytes induces the expression and activation of MMP-12, which, in turn, augments MMP-9 expression and activation.  相似文献   

13.
Matrix metalloproteinases (MMPs) are a family of proteolytic enzymes that play a central role in degradation of protein components of the extracellular matrix and basement membrane. Previous studies have shown that MMP-2 and MMP-9 are present in human seminal plasma, but there is little information available on the presence of MMPs in canine seminal plasma. This study aims to investigate the presence of MMPs in canine seminal plasma and their clinical manifestation at the level of various semen parameters in canine species. Latent and active forms of MMP-2 and MMP-9 were evaluated using gelatin zymography and their association with semen parameters was examined. Results demonstrate that both latent and active forms of MMP-2 and MMP-9 are present in canine seminal plasma and the latent forms are predominant. The latent and active MMP-9 activities were elevated in the semen with unsatisfactory quality traits and proMMP-2 was inversely correlated with semen quality whereas, MMP-2 was positively correlated with semen quality traits. These findings suggest that proMMP-9 and MMP-9 activation contributes to the variation in semen, while the activation of MMP-2 improves the sperm functionality.  相似文献   

14.
Emerging evidence has suggested a critical role for activator protein-1 (AP)-1 in regulating various cellular functions. The goal of this study was to investigate the effects of Helicobacter pylori and mitogen-activated protein kinases (MAPK) on AP-1 subcomponents expression and AP-1 DNA-binding activity in gastric epithelial cells. We found that H. pylori infection resulted in a time- and dose-dependent increase in the expression of the proteins c-Jun, JunB, JunD, Fra-1, and c-Fos, which make up the major AP-1 DNA-binding proteins in AGS and MKN45 cells, while the expression levels of Fra-2 and FosB remained unchanged. Helicobacter pylori infection and MAPK inhibition altered AP-1 subcomponent protein expression and AP-1 DNA-binding activity, but did not change the overall subcomponent composition. Different clinical isolates of H. pylori showed various abilities to induce AP-1 DNA binding. Mutation of cagA, cagPAI, or vacA, and the nonphosphorylateable CagA mutant (cagA(EPISA)) resulted in less H. pylori-induced AP-1 DNA-binding activity, while mutation of the H. pylori flagella had no effect. extracellular signal-related kinase (ERK), p38, and c-Jun N-terminal kinase (JNK) each selectively regulated AP-1 subcomponent expression and DNA-binding activity. These results provide more insight into how H. pylori and MAPK modulate AP-1 subcomponents in gastric epithelial cells to alter the expression of downstream target genes and affect cellular functions.  相似文献   

15.
Detection of matrix metalloproteinase (MMP) activities in the urine from patients with a variety of cancers has been closely correlated to disease status. Among these activities, the presence of a group of high molecular weight (HMW) MMPs independently serves as a multivariate predictor of the metastatic phenotype (). The identity of these HMW MMP activities has remained unknown despite their novelty and their potentially important applications in non-invasive cancer diagnosis and/or prognosis. Here, we report the identification of one of these HMW urinary MMPs of approximately 125-kDa as being a complex of gelatinase B (MMP-9) and neutrophil gelatinase-associated lipocalin (NGAL). Multiple biochemical approaches verified this identity. Analysis using substrate gel electrophoresis demonstrated that the 125-kDa urinary MMP activity co-migrates with purified human neutrophil MMP-9 x NGAL complex. The 125-kDa urinary MMP-9 x NGAL complex was recognized by a purified antibody against human NGAL as well as by a monospecific anti-human MMP-9 antibody. Furthermore, these same two antibodies were independently capable of specifically immunoprecipitating the 125-kDa urinary MMP activity in a dose-dependent manner. In addition, the complex of MMP-9 x NGAL could be reconstituted in vitro by mixing MMP-9 and NGAL in gelatinase buffers with pH values in the range of urine and in normal urine as well. Finally, the biochemical consequences of the NGAL and MMP-9 interaction were investigated both in vitro using recombinant human NGAL and MMP-9 and in cell culture by overexpressing NGAL in human breast carcinoma cells. Our data demonstrate that NGAL is capable of protecting MMP-9 from degradation in a dose-dependent manner and thereby preserving MMP-9 enzymatic activity. In summary, this study identifies the 125-kDa urinary gelatinase as being a complex of MMP-9 and NGAL and provides evidence that NGAL modulates MMP-9 activity by protecting it from degradation.  相似文献   

16.
17.
Proteolytic shedding is an important step in the functional down-regulation and turnover of most membrane proteins at the cell surface. Extracellular matrix metalloproteinase inducer (EMMPRIN) is a multifunctional glycoprotein that has two Ig-like domains in its extracellular portion and functions in cell adhesion as an inducer of matrix metalloproteinase (MMP) expression in surrounding cells. Although the shedding of EMMPRIN is reportedly because of cleavage by metalloproteinases, the responsible proteases, cleavage sites, and stimulants are not yet known. In this study, we found that human tumor HT1080 and A431 cells shed a 22-kDa EMMPRIN fragment into the culture medium. The shedding was enhanced by phorbol 12-myristate 13-acetate and inhibited by TIMP-2 but not by TIMP-1, suggesting the involvement of membrane-type MMPs (MT-MMPs). Indeed, down-regulation of the MT1-MMP expression in A431 cells using small interfering RNA inhibited the shedding. The 22-kDa fragment was purified, and the C-terminal amino acid was determined. A synthetic peptide spanning the cutting site was cleaved by MT1-MMP in vitro. The cleavage site is located in the linker region connecting the two Ig-like domains. The N-terminal Ig-like domain is important for the MMP inducing activity of EMMPRIN and for cell-cell interactions, presumably through its ability to engage in homophilic interactions, and the 22-kDa fragment retained the ability to augment MMP-2 expression in human fibroblasts. Thus, the MT1-MMP-dependent cleavage eliminates the functional N-terminal domain of EMMPRIN from the cell surface, which is expected to down-regulate its function. At the same time, the released 22-kDa fragment may mediate the expression of MMPs in tumor tissues.  相似文献   

18.
19.
20.
Retinoic acid (RA) has been shown to induce human neuroblastoma SKNBE cell differentiation into a neuronal phenotype. Whether this neuronal differentiation is associated with modulation of matrix gelatinase [matrix metalloproteinase (MMP)-2 and MMP-9] expression was investigated in SKNBE cell cultures exposed to RA for 14 days. Their differentiation into a neuronal phenotype was typified by neural cell adhesion molecule and growth-associated protein-43 expression. Gelatinase expression was assessed by gel zymography, quantitative RT-PCR, and immunocytochemistry. Neuronal markers were located in neurites and ganglion-like clusters of neuronal cells induced upon RA exposure. MMP-2 expression was constitutive and remained unchanged at both the mRNA and protein levels in response to RA, tumor necrosis factor-alpha (TNFalpha), or phorbol 12-myristate 13-acetate (PMA) treatment. In contrast, MMP-9 was inducible by RA, TNFalpha, or PMA. MMP-9 was progressively enhanced by RA as a function of time exposure until day 14. The addition of TNFalpha or PMA potentiated RA-induced MMP-9 expression with a synergic maximal effect at day 14 of RA exposure. Immunoreactive MMP-9 was located early in outgrowing neurites, but only at day 14 of RA exposure in extensive neuritic networks. Taken together, the correlation between the MMP-9 expression by SKNBE cells and the time scale of their differentiation into a neuronal phenotype allowed us to propose that MMP-9 could participate in the neurite growth process and cell migration and organization into ganglion-like clusters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号