首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The objective of the present study was to determine to what extent activin participates in setting the level of FSH secretion and if this regulation includes mediation via changes in GnRH secretion. We administered follistatin, the high-affinity binding protein for activin, to five ovariectomized sheep; we reasoned that the resultant binding of follistatin to activin should lower activin bioavailability and FSH secretion. Hypophyseal portal and peripheral blood samples were collected simultaneously at 10-min intervals for 18 h to measure GnRH, LH, FSH, and both activin-free and total follistatin. Six hours into collection, each ewe received 150 microg/kg i.v. of recombinant human follistatin-288. A week later, the same ewes were subjected to a second series of blood collections of similar length (time control). The FSH levels in pituitary portal blood were approximately 8-fold higher than those in the peripheral circulation. The FSH secretory patterns changed minimally during the time-control period. In contrast, follistatin had profound suppressive effects on FSH secretion. Maximal FSH suppression after FS-288 administration occurred at 5-6 h in the pituitary portal (65% suppression) and 9-10 h in the peripheral (48% suppression) circulation. Follistatin had no effect on GnRH or LH secretory patterns. Disappearance of total follistatin (i.e., free follistatin plus activin-bound follistatin) from the circulation was slower (P < 0.05) than that of free follistatin alone, suggesting that some of the follistatin was complexed with circulating activin, thus reducing the bioavailability of activin. The slower clearance of total follistatin and the lack of follistatin effects on GnRH secretion suggest that changes in activin bioavailability dictate the level of pituitary FSH secretion and that this is a pituitary-specific effect.  相似文献   

3.
Primary pituitary cell cultures derived from adult male rats were used to explore the direct effects of purified porcine inhibin and follistatin, and recombinant human activin A on FSH beta, as well as LH beta and alpha-subunit mRNA levels. Subunit mRNAs were determined by blot hybridization using alpha, LH beta, and FSH beta cDNA and genomic fragments. Treatment with inhibin for 72 h significantly suppressed alpha and FSH beta mRNA levels with parallel changes in FSH secretion. No change in LH beta mRNA levels was observed. A decrease in FSH beta mRNA to undetectable levels was seen 4 h after inhibin administration. Recombinant human Activin A caused dose-dependent and parallel increases in FSH beta mRNA levels and FSH secretion. This increase was evident at 4 h after activin administration and maintained at longer times. alpha and LH beta mRNA levels remained unchanged. Follistatin addition to cultures for 72 h significantly reduced FSH beta mRNA levels. In a time-course experiment, a reduction in FSH beta mRNA to undetectable levels was observed 24 h after follistatin administration. There were no changes in alpha or LH beta mRNA levels. These data demonstrate that the actions of these gonadal peptides on FSH secretion may be accounted for, at least in part at the level of biosynthesis, by reductions in FSH beta mRNA levels directly at the level of the anterior pituitary gland.  相似文献   

4.
Roles of activin/bone morphogenetic protein (BMP) system in the pathogenesis of human pituitary adenoma remain unknown although these factors stimulate follicle-stimulating hormone (FSH) secretion in the normal pituitary. Here we demonstrated that type-I and -II subunit mRNAs of activin/BMP receptors are expressed in Pit-1-negative FSH-producing (FSH-oma) and nonfunctioning pituitary adenomas (NF-oma). Basal levels of serum FSH standardized by luteinizing hormone (LH) were markedly high in FSH-omas in contrast to NF-omas. However, gonadotropin-releasing hormone (GnRH)-induced increment of FSH standardized by that of LH was not changed in FSH-omas, suggesting that imbalanced FSH secretion by FSH-oma is not attributable to GnRH regardless of the expression of GnRH receptor. Although activin betaA subunit was detected in neither adenoma, the betaB subunit was expressed highly in FSH-omas and, to lesser extent, in NF-omas. As for BMPs, BMP-6 and -7 were detected in NF-omas while BMP-4 and -15 were not detected in either type of adenoma. In the presence of pituitary activin/BMP system, the levels of co-expressing follistatin mRNA in the tumors were reduced in FSH-oma compared with NF-oma, suggesting that endogenous follistatin is involved in FSH overproduction through inhibition of activin/BMP system independently of GnRH.  相似文献   

5.
The timed secretion of the luteinizing hormone (LH) and follicle stimulating hormone (FSH) from pituitary gonadotrophs during the estrous cycle is crucial for normal reproductive functioning. The release of LH and FSH is stimulated by gonadotropin releasing hormone (GnRH) secreted by hypothalamic GnRH neurons. It is controlled by the frequency of the GnRH signal that varies during the estrous cycle. Curiously, the secretion of LH and FSH is differentially regulated by the frequency of GnRH pulses. LH secretion increases as the frequency increases within a physiological range, and FSH secretion shows a biphasic response, with a peak at a lower frequency. There is considerable experimental evidence that one key factor in these differential responses is the autocrine/paracrine actions of the pituitary polypeptides activin and follistatin. Based on these data, we develop a mathematical model that incorporates the dynamics of these polypeptides. We show that a model that incorporates the actions of activin and follistatin is sufficient to generate the differential responses of LH and FSH secretion to changes in the frequency of GnRH pulses. In addition, it shows that the actions of these polypeptides, along with the ovarian polypeptide inhibin and the estrogen-mediated variations in the frequency of GnRH pulses, are sufficient to account for the time courses of LH and FSH plasma levels during the rat estrous cycle. That is, a single peak of LH on the afternoon of proestrus and a double peak of FSH on proestrus and early estrus. We also use the model to identify which regulation pathways are indispensable for the differential regulation of LH and FSH and their time courses during the estrous cycle. We conclude that the actions of activin, inhibin, and follistatin are consistent with LH/FSH secretion patterns, and likely complement other factors in the production of the characteristic secretion patterns in female rats.  相似文献   

6.
Site-specific mutagenesis of human follistatin   总被引:1,自引:0,他引:1  
Follistatin is a monomeric protein originally discovered in ovarian follicular fluid as a suppressor of pituitary follicle-stimulating hormone (FSH) secretion, and later identified as a binding protein for activin. To explore the role of the Asn-linked carbohydrate chains on the follistatin molecule in regard to the inhibition of FSH secretion and activin binding ability, site-specific mutations were introduced at either or both of the two potential Asn-linked glycosylation sites of human follistatin with 315 amino acids (hFS-315). The three types of follistatin mutants were expressed individually in Chinese hamster ovary cells. When tested for their ability to inhibit FSH secretion and to bind activin, each mutant was found to have a similar property as the non-mutated recombinant hFS-315, suggesting that glycosylation of the follistatin molecule has no effect in these functions. However, a two amino acid insertion in between the second and the third amino acid residues in hFS-315 caused the resulting compound to lose completely its inhibitory activity on FSH secretion from the pituitary as well as its binding ability to activin. This finding suggests that the amino-terminal region of the follistatin molecule is critical for both of these functions.  相似文献   

7.
Activin stimulates proliferation of rat ovarian thecal-interstitial cells   总被引:7,自引:0,他引:7  
There is growing evidence that the function of ovarian theca-interstitial (T-I) cells may be modulated by paracrine actions of activin, inhibin, and follistatin. Furthermore, either dysregulation, dysfunction, or both, of these peptides may play a role in conditions associated with T-I hyperplasia, such as polycystic ovary syndrome (PCOS) and hyperthecosis. This study was designed to evaluate the role of activin, inhibin, and follistatin in the modulation of T-I cell proliferation. Interaction of these peptides with insulin-like growth factor-I (IGF-I), a known stimulator of T-I cell proliferation, was also assessed. Purified rat T-I cells were cultured for 48 h in chemically defined media and with or without activin (3-30 ng/ml), inhibin (3-30 ng/ml), follistatin (100 ng/ml), and/or IGF-I (10 nM). T-I cell proliferation was assessed using radiolabeled thymidine incorporation assay. Activin alone stimulated proliferation of T-I cells in a dose-dependent fashion (by up to 320% above control; P < 0.001), whereas inhibin alone or follistatin alone had no significant effect. Inhibin had also no effect on activin-induced proliferation. Follistatin significantly reduced the stimulatory effects of activin and decreased proliferation by up to 46% (P < 0.01) below the level attained in the presence of activin alone. IGF-I (10 nM), at a dose producing a near-maximal effect, increased proliferation by 175% above control (P < 0.001); insulin (10 nM) increased proliferation by 52% above control (P < 0.03). A combination of IGF-I (10 nM) and activin (30 ng/ml) resulted in a 1090% increase of proliferation above control (P < 0.001); this stimulatory effect was significantly greater than that achieved in the presence of either activin alone or IGF-I alone (P < 0.001). Similarly, a combination of insulin (10 nM) and activin (30 ng/ml) increased proliferation by 506% above control levels. Flow cytometry evaluation revealed that activin increased the proportion of actively dividing cells (in S or G2/M phase of the cell cycle) by 42% (P < 0.02), whereas IGF-I had no effect on the proportion of actively dividing cells. The present findings indicate that an activin-follistatin system may be involved in the regulation of the size of ovarian thecal-stromal compartment. In view of the synergy between activin and IGF-I, and the difference in the effects on the cell cycle distribution, stimulation of T-I proliferation by these agents is likely to be mediated via separate transduction pathways. Excess activin or insufficient follistatin may contribute to T-I hyperplasia.  相似文献   

8.
The current dogma is that the differential regulation of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) synthesis and secretion is modulated by gonadotropin-releasing hormone (GnRH) pulse frequency and by changes in inhibins, activins, and follistatins both at the pituitary and at the peripheral level. To date no studies have looked at the overlapping function of these regulators in a combined setting. We tested the hypothesis that changes in GnRH pulse frequency alter the relative abundance of these regulators at the pituitary and peripheral levels in a manner consistent with changes in pituitary and circulating concentrations of FSH; that is, an increase in FSH will be accompanied by increased stimulatory input (activin) and/or reduced follistatin and inhibin. Ovariectomized ewes were subjected to a combination hypothalamic pituitary disconnection (HPD)-hypophyseal portal blood collection procedure. Hypophyseal portal and jugular blood samples were collected for a 6-h period from non-HPD ewes, HPD ewes, or HPD ewes administered GnRH hourly or every 3 h for 4 days. In the absence of endogenous hypothalamic and ovarian hormones that regulate gonadotropin secretion, 3-hourly pulses of GnRH increased pituitary content of FSH more than hourly GnRH, although these differences were not evident in the peripheral circulation. The results failed to support the hypothesis in that the preferential increase of pituitary content of FSH by the lower GnRH pulse frequency could be explained by changes in the pituitary content of inhibin A, follistatin, or activin B. Perhaps the effects of GnRH pulse frequency on FSH is due to changes in the balance of free versus bound amounts of these FSH regulatory proteins or to the involvement of other regulators not monitored in this study.  相似文献   

9.
The aim was to investigate potential interactions between FSH and intraovarian growth factors in modulating secretion of inhibin A (inh A), activin A (act A), follistatin (FS), estradiol (E2), and progesterone (P4) by bovine granulosa cells cultured under conditions in which a nonluteinized FSH-responsive phenotype is maintained. Cells from 4- to 6-mm follicles were cultured in serum-free medium containing insulin (10 ng/ml) and androstenedione (10(-7) M), and effects of ovine FSH (0.037-3 ng/ml) were tested alone and in combination with insulin-like growth factors (IGF) (LR3 IGF-I analogue; 2-50 ng/ml) and epidermal growth factor (EGF; 0.1-10 ng/ml). Medium was changed every 48 h and cultures ended after 144 h, when cell number was determined. Between 48-96 h and 96-144 h, FSH promoted (P < 0.0001) increases in output of inh A (6-fold), act A (15-fold), FS (6-fold), and E2 (18-fold), with maximal responses (in parentheses) elicited by 0.33 ng/ml FSH during the final period. Higher FSH doses (1 and 3 ng/ml) gave reduced responses for each of the above hormones, whereas P(4) output was maximal (3-fold) at these doses. FSH promoted a slight increase in cell number ( approximately 1.7-fold; P < 0.001). LR3 IGF-I alone markedly increased (P < 0.0001) output of inh A (8-fold), act A (41-fold), FS (12-fold), and E2 (18-fold); this was accompanied by modest increases (P < 0.01) in P4 output ( approximately 2.5-fold) and cell number ( approximately 2-fold). Whereas FSH enhanced inh A, act A, FS, and E2 secretion evoked by lower doses of LR3 IGF-I, it suppressed (P < 0.001) the response to the highest dose. EGF alone promoted a 1.7-fold increase in cell number (P < 0.001) without affecting hormone release; however, it abolished (P < 0.001) FSH-induced secretion of inh A, act A, FS, and E2. Both FSH alone and LR3 IGF-I alone dose-dependently increased the act A:FS ratio ( approximately 3-fold; P < 0.005) and act A:inh A ratio (3-fold to 6-fold; P < 0.001), suggesting that both factors selectively raise activin "tone" and that this could be a key requirement for FSH and IGF-induction of follicular E2 production. This hypothesis was reinforced by the finding that addition of FS, to reduce the act A:FS ratio and sequester secreted activin, markedly suppressed (P < 0.001) FSH (3-fold)-, and LR3 IGF-I (2-fold)-induced E2 output.  相似文献   

10.
Primary cultures of ovine pituitary cells were used to characterize the effects of inhibin and activin on the secretion of gonadotropins and on the regulation of number of GnRH receptors in the presence or absence of estradiol. Number of GnRH receptors was determined by the specific binding of a saturating dose of [125I]des-Gly10-D-Trp6-GnRH-ethylamide (GnRH-A). Recombinant human inhibin-A (rh-inhibin-A) or inhibin in porcine and bovine follicular fluid (pFF and bFF, respectively) decreased secretion of FSH in a dose-dependent manner, with maximum inhibition at an inhibin concentration of approximately 0.1 nM. Neither pFF or bFF affected secretion of LH, although rh-inhibin-A caused a modest decrease (p less than 0.05) in secretion of LH. Treatment of cells with rh-inhibin-A, bFF, or pFF approximately doubled the number of GnRH receptors. Scatchard analysis indicated that increases in GnRH-A binding were due to an increase in receptor number rather than a change in affinity. Additionally, rh-inhibin-A, at a dose that doubled numbers of GnRH receptors, increased GnRH-induced LH release above that caused by GnRH alone, indicating that the increase in receptor number leads to increased responsiveness to GnRH. Recombinant human activin-A (rh-activin-A) increased secretion of FSH but did not affect secretion of LH. Number of GnRH receptors was not affected by lower concentrations of rh-activin-A but was decreased (p less than 0.05) by 3.0 nM activin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
12.
Metformin is an insulin sensitizer molecule used for the treatment of infertility in women with polycystic ovary syndrome and insulin resistance. It modulates the reproductive axis, affecting the release of gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH). However, metformin's mechanism of action in pituitary gonadotropin-secreting cells remains unclear. Adenosine 5' monophosphate-activated protein kinase (PRKA) is involved in metformin action in various cell types. Here, we investigated the effects of metformin on gonadotropin secretion in response to activin and GnRH in primary rat pituitary cells (PRP), and studied PRKA in rat pituitary. In PRP, metformin (10 mM) reduced LH and follicle-stimulating hormone (FSH) secretion induced by GnRH (10(-8) M, 3 h), FSH secretion, and mRNA FSHbeta subunit expression induced by activin (10(-8) M, 12 or 24 h). The different subunits of PRKA are expressed in pituitary. In particular, PRKAA1 is detected mainly in gonadotrophs and thyrotrophs, is less abundant in lactotrophs and somatotrophs, and is undetectable in corticotrophs. In PRP, metformin increased phosphorylation of both PRKA and acetyl-CoA carboxylase. Metformin decreased activin-induced SMAD2 phosphorylation and GnRH-induced mitogen-activated protein kinase (MAPK) 3/1 (ERK1/2) phosphorylation. The PRKA inhibitor compound C abolished the effects of metformin on gonadotropin release induced by GnRH and on FSH secretion and Fshb mRNA induced by activin. The adenovirus-mediated production of dominant negative PRKA abolished the effects of metformin on the FSHbeta subunit mRNA and SMAD2 phosphorylation induced by activin and on the MAPK3/1 phosphorylation induced by GnRH. Thus, in rat pituitary cells, metformin decreases gonadotropin secretion and MAPK3/1 phosphorylation induced by GnRH and FSH release, FSHbeta subunit expression, and SMAD2 phosphorylation induced by activin through PRKA activation.  相似文献   

13.
The secretion of follicle-stimulating hormone (FSH) by pituitary cells is stimulated by activin and gonadotropin-releasing hormone, GnRH. To examine the possible interrelationships between the intracellular actions of these secretagogues, responsiveness to activin was tested following pretreatment with 0, 0.1, or 10 nM GnRH. In cells pretreated with 0 or 0.1 nM GnRH, FSH secretion was increased approximately 2-fold during a subsequent challenge with either activin or GnRH. In contrast, in cells pretreated with 10 nM GnRH, FSH secretion became unresponsive to GnRH but could still be stimulated 2-fold by activin. These results demonstrate that activin is able to stimulate FSH secretion in cells that have undergone desensitization to GnRH.  相似文献   

14.
We showed previously that inhibin, partially purified from cynomolgus monkey Sertoli cell culture medium (primate Sertoli cell inhibin referred to as pSCI), selectively suppressed basal FSH secretion from dispersed rat pituitary cells and decreased total cellular FSH, but not LH content, suggesting a decrease in FSH biosynthesis. In order to investigate the mechanism of action of inhibin at the molecular level, we have now examined the effects of pSCI on steady state levels of the subunit mRNAs encoding LH and FSH and correlated these with release and intracellular content of LH, FSH, and glycoprotein alpha-subunit. Dispersed pituitary cells from 7- to 8-week-old adult male rats were cultured in the presence of pSCI or control medium for 2-72 h. FSH secretion was reduced significantly by 6 h (P less than 0.05) and reached a nadir (38% of control) by 48 h. LH secretion was unchanged, while release of the alpha-subunit was decreased to 89% of control at 72 h (P less than 0.05). Also by 72 h, cell content of both FSH (73% of control) and alpha-subunit (81% of control) were significantly suppressed (P less than 0.001, P less than 0.01), while LH was slightly affected. Total RNA was extracted from the pituitary cell cultures, electrophoresed in 1.2% agarose-formaldehyde gels, transferred to nylon membranes, and hybridized with 32P-labeled cDNA probes for the rat alpha-, LH beta-, and FSH beta-subunits.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The interaction between somatostatin and activin A was studied in terms of FSH secretion in rat pituitary cells in primary culture. Incubation of pituitary cells with 1 nM activin A for 48 hrs resulted in an increase in FSH release into incubation medium. The effect of activin A was dependent on cell-density and the higher the density, the smaller the stimulatory action of activin A. Somatostatin, by itself, did not affect the FSH secretion. When 100 nM somatostatin was included together with activin A or the cells were pretreated with somatostatin for 2 hrs, the activin A-induced FSH secretion was enhanced. This potentiation effect of somatostatin was inversely dependent on the cell-density. These results indicate that somatostatin enhances, rather than inhibits, the activin A action in pituitary cells.  相似文献   

16.
The aim of the present study was to evaluate the possible direct effects of GnRH, oxytocin (OT) and vasoactive intestinal peptide (VIP) on the release of LH and PRL by dispersed porcine anterior pituitary cells. Pituitary glands were obtained from mature gilts, which were ovariectomized (OVX) one month before slaughter. Gilts randomly assigned to one of the four groups were treated: in Group 1 (n = 8) with 1 ml/100 kg b.w. corn oil (placebo); in Group 2 (n = 8) and Group 3 (n = 8) with estradiol benzoate (EB) at the dose 2.5 mg/100 kg b.w., respectively, 30-36 h and 60-66 h before slaughter; and in Group 4 (n = 9) with progesterone (P4) at the dose 120 mg/ 100 kg b.w. for five consecutive days before slaughter. In gilts of Group 2 and Group 3 treatments with EB have induced the negative and positive feedback in LH secretion, respectively. Isolated anterior pituitary cells (10(6)/well) were cultured in McCoy's 5a medium with horse serum and fetal calf serum for 3 days at 37 degrees C under the atmosphere of 95% air and 5% CO2. Subsequently, the culture plates were rinsed with fresh McCoy's 5A medium and the cells were incubated for 3.5 h at 37 degrees C in the same medium containing one of the following agents: GnRH (100 ng/ml), OT (10-1000 nM) or VIP (1-100 nM). The addition of GnRH to cultured pituitary cells resulted in marked increases in LH release (p < 0.001) in all experimental groups. In the presence of OT and VIP we noted significant increases (p < 0.001) in LH secretion by pituitary cells derived from gilts representing the positive feedback phase (Group 3). In contrast, OT and VIP were without any effect on LH release in Group 1 (placebo) and Group 2 (the negative feedback). Pituitary cells obtained from OVX gilts primed with P4 produced significantly higher amounts (p < 0.001) of LH only after an addition of 100 nM OT. Neuropeptide GnRH did not affect PRL secretion by pituitary cells obtained from gilts of all experimental groups. Oxytocin also failed to alter PRL secretion in Group 1 and Group 2. However, pituitary cells from animals primed with EB 60-66 h before slaughter and P4 produced markedly increased amounts of PRL in the presence of OT. Neuropeptide VIP stimulated PRL release from pituitary cells of OVX gilts primed with EB (Groups 2 and 3) or P4. In contrast, in OVX gilts primed with placebo, VIP was without any effect on PRL secretion. In conclusion, the results of our in vitro studies confirmed the stimulatory effect of GnRH on LH secretion by porcine pituitary cells and also suggest a participation of OT and VIP in modulation of LH and PRL secretion at the pituitary level in a way dependent on hormonal status of animals.  相似文献   

17.
The purpose of this study was to investigate whether progesterone exerted progesterone receptor mediated direct effects on the anterior pituitary in the secretion of FSH and whether such effects were mediated through the 5 alpha-reduction of progesterone. Treatment of anterior pituitary dispersed cells for 48 h with 0.5 nM estradiol reduced the ED50 for gonadotropin releasing hormone (GnRH)-stimulated FSH release from 0.58 to 0.36 ng/ml and the ED50 for GnRH-induced LH release from 0.54 to 0.19 ng/ml. When dispersed pituitary cells were treated with 0.5 nM estradiol and exposed to various doses of progesterone for 1 to 6 h, the most consistent rise in basal and GnRH-stimulated FSH release was observed with the 50 nM dose of progesterone with a 3-h exposure period. All three doses of progesterone elevated basal LH and GnRH-stimulated LH was increased by the 50 and 100 nM doses of progesterone during the 3-h period of treatment. Using the 50 nM dose of progesterone, basal and GnRH-stimulated LH was increased after 2, 3 and 6 h of progesterone treatment. When the period of exposure of progesterone was extended to 12, 36 or 48 h, there was a significant inhibition of GnRH-stimulated FSH release. GnRH-stimulated LH release was inhibited at 36 and 48 but not 12 h after progesterone treatment. These studies showed that the effect of progesterone administered for periods of 1 to 6 h enhanced the secretion of LH and FSH whereas progesterone administered for periods beyond 12 h inhibited FSH and LH release by dispersed pituitary cells in culture. These results are similar to those observed in vivo after progesterone treatment. Furthermore estrogen priming of the dispersed pituitary cells was necessary to observe the effects of progesterone. The progesterone antagonist RU486 prevented the progesterone-induced rise in GnRH-stimulated FSH release. Furthermore the 5 alpha-reductase inhibitor N,N-diethyl-4-methyl-3-oxo-4-aza-5 alpha-androstane- 17 beta-carboxamide also prevented the progesterone-induced rise in GnRH-stimulated FSH release in estrogen-treated dispersed pituitary cells. These results indicate that the anterior pituitary is a major site of action of progesterone in the release of FSH and that 5 alpha-reduction of progesterone plays an important role in FSH release.  相似文献   

18.
This study investigated plasma and pituitary concentrations of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) and steroid hormones (progesterone: P4, testosterone:T, estradiol-17beta: E2) by enzyme-immunoassay (EIA) in minke whales (Balaenoptera acutorostrata) captured during the feeding season (December to March) in the Antarctic Ocean. Plasma FSH and LH levels in female minke whales were higher (P <0.05) than in male whales. Although the pituitary weight was not significantly different between male and female whales, pituitary FSH and LH levels were higher in females than in males (P<0.01) and mature whales than immature whales (P<0.05). Plasma levels of FSH, T and E2 were not significantly different between immature and mature male whales, but plasma LH and pituitary FSH and LH levels were higher (P<0.05) in mature than in immature whales. In both immature and mature whales regardless of gender, pituitary FSH and LH levels were correlated significantly (r=0.69: P<0.01). In mature male whales, plasma T and E2 levels (r=0.60: P<0.01), and testis weight and plasma T levels (r=0.46: P <0.05) were correlated. In immature female whales, plasma FSH and LH levels were highly correlated (r=0.68: P<0.001), but were not for mature female whales. The results show that gender and maturity influence gonadal and pituitary function of minke whales during the feeding season.  相似文献   

19.
Lv X  Guo Y  Shi D 《Theriogenology》2012,77(6):1223-1231
Quinestrol, a synthetic estrogen with marked estrogenic effects and prolonged activity, has potential as a contraceptive for Mongolian gerbils. The objective of this study was to describe the effects of quinestrol on reproductive hormone expression, secretion, and receptor levels in female Mongolian gerbils. Serum and pituitary concentrations of follicle stimulating hormone (FSH) and luteinizing hormone (LH) were decreased, whereas serum concentrations of estradiol (E2) and progesterone (P4) were increased after quinestrol treatment; the effects were both time- and dose-dependent. Furthermore, quinestrol downregulated expression of FSHβ and LHβ mRNA in the pituitary gland, as well as FSH receptor (FSHR) and estrogen receptor (ER) β in the ovary. However, it up-regulated mRNA expression levels of ERα and progesterone receptor (PR) in the pituitary gland and uterus, as well as mRNA for LH receptor (LHR) and PR in the ovary (these effects were time- and dose-dependent). In contrast, quinestrol had no significant effects on the mRNA expression levels of ERα in the ovary, or the gonadotropin α (GtHα) subunit in the pituitary gland. We inferred that quinestrol impaired synthesis and secretion of FSH and LH and that the predominant ER subtype in the pituitary gland of Mongolian gerbils may be ERα. Overall, quinestrol disrupted reproductive hormone receptor expression at the mRNA level in the pituitary-gonadal axis of the Mongolian gerbil.  相似文献   

20.
Several studies have shown that pituitary folliculo-stellate (FS) cells exhibit local functions within the pituitary gland. On the other hand, we have shown previously that activin A increases the number of FSH-producing gonadotropes in cultured rat anterior pituitary cells. In this study, we investigated whether FS cells exert an influence on the action of activin A. FS cells were prepared by culturing the dispersed rat anterior pituitary cells in media containing 15% fetal calf serum and 6 mM glutamine for 15 days. Most cells had the morphological characteristics of FS cells and S-100 protein immunoreactivity, a specific marker of FS cells. The number of FSH cells, which was higher in activin A-treated than in control cultures, was reduced to the control level by incubation with activin A plus conditioned media from FS cell-enriched cultures (FSCM). This inhibitory effect of FSCM was neutralized by a follistatin antibody, but not by anti-S-100 protein or anti-basic fibroblast growth factor. Furthermore, follistatin suppressed activin A stimulated increases in the number of FSH cells in a similar inhibitory pattern to that of FSCM. Meanwhile, the number of FSH cells was not affected by FSCM or follistatin in the absence of activin A. These results suggest that FS cells are involved in the regulation of the function and/or the morphogenesis of the FSH cell-lineage by affecting the action of activin A, and that this paracrine effect of FS cells is mediated by follistatin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号