首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sugar-starch interconversion in epidermal chloroplasts of light-grown cucumber hypocotyl sections as a regulatory mechanism of the osmotic potential of the cell was studied in relation to cell elongation. The presence of chloroplasts in epidermal cells was confirmed by electron microscopy, and also the chloroplasts were shown to act as the site of sucrose-starch interconversion. Chloroplast starch formation was induced by light, which was more distinct in the presence of sucrose (50 mM). The starch formation was microscopically detectable even at 1 hr incubation in the light with sucrose. On the other hand, no starch formation was observed in the dark both in the presence and absence of sucrose. Red light was effective, but not blue light. A photosynthetic inhibitor, 3-(4-chlorophenyl)-1:1-dimethylurea, also inhibited starch formation. Thus, epidermal chloroplast starch formation was induced under conditions where cell elongation is small and the osmotic potential (Ψ 0) of the epidermal cell is high. The sugar quantity (free sugar and reducing sugar) as the osmotica of the cell was larger in the dark than in the light, whereas the quantity of starch was greater in the light than in the dark. It is assumed from these results that one of the regulatory mechanisms of the osmotic potential of the epidermal cells in sugar-starch interconversion which occurs in epidermal chloroplasts.  相似文献   

2.
The sensitivity of light-grown cucumber hypocotyl sections toIAA and GA3 depends on the degree of aging of the tissue. Agreater response to GA3 was obtained with young tissue, whilethat to IAA was obtained with relatively old tissue. The responseto IAA reached a maximum at about 15 hr of incubation; the youngerthe tissue the earlier the time of maximum response. The responseto GA3 continued for more than 70 hr with a constant growthrate. Very young tissue started to respond to GA3 without lagtime; the older the tissue the later the start of the response. Sucrose (2%) inhibited IAA-induced elongation, while there wasa distinct synergism between GA3 and sucrose. The promotiveeffect of sucrose on GA3-induced elongation was also obtainedwhen sections were pretreated with sucrose, then transferredto GA3. Mannitol (1%) strongly inhibited IAA-induced elongation,but not GA3-induced elongation. (Received December 6, 1972; )  相似文献   

3.
IAA-induced growth of light-grown cucumber hypocotyl sectionsis markedly enhanced by GA3-pretreatment of the sections; thereis a distinct synergism between IAA and GA3. Water pretreatmentalso enhances IAA-induced growth. On the other hand, IAA-pretreatedsections showed practically no further growth in response topost treatment with GA3. The enhancing effect of GA3 is obtainedwith only 30 min pretreatment, the maximum effect occuring with2 hr pretreatment. Pretreatment longer than 8 hr is less effective.This enhancing effect of GA3 can be observed soon after posttreatment with IAA. The response of GA3-pretreated sectionsto IAA is greater in pretreatment with higher concentrationsof GA3, and higher degrees of synergism between IAA and GA3are obtained at IAA concentrations less than 10-4 M. This synergisticinteraction between GA3 and IAA is more marked in aged hypocotylsections than in young sections. From these results we concludedthat gibberellin sensitizes hypocotyl cells to the subsequenteffect of auxin on cell elongation. (Received October 6, 1973; )  相似文献   

4.
Pretreatment effects of different gibberellins, helminthosporicacid, cyclic AMP and Kinetin on subsequent IAA-induced elongationwere tested in cucumber hypocotyl sections. Gibberellin A7 wasmore active than GA3, while gibberellin A3 was almost inactive.Both helminthosporic acid and cyclic AMP mimicked GA3-action,though the degree of their activity was less. Kinetin pretreatmentresulted in marked inhibition of IAA-induced elongation. Thepretreatment effect of GA3 was also reflected in a greater responceof the sections to synthetic auxins. (Received October 6, 1973; )  相似文献   

5.
V. Gaba  M. Black 《Planta》1985,164(2):264-271
The control by phytochrome of hypocotyl elongation of light-grown Cucumis sativus L. after a white-light period was examined. The farred-absorbing form of phytochrome inhibits hypocotyl elongation. The response to phytochrome photostationary state () is not linear; all values of from 0.004 to 0.13 promote growth maximally, in the range of values of from 0.13 to 0.22 there is a linear growth response, between values of of 0.22 and 0.35 there is again no differential effect, and for values above 0.35 there is a strong (near linear) effect of on elongation. A kinetic examination of events following the white-light period shows that the major recovery from the photoperiod requires 8.5 h of darkness. End-of-day far-red treatment produces a very different response pattern, with a minor growth stimulation within 28 min of treatment followed by a major effect after 80 to 90 min. Three hours after far-red treatment there is a transient decline in growth rate which persists for about 2 h. Over the whole time course there is a great stimulation of growth rate compared with the controls. A similar growth-rate pattern also occurs if the end-of-day is 0.48, although the magnitude of the growth stimulation is less. Two components are affected by end-of-day , namely the time at which growth recovers and the subsequent growth rate. In the long term, the latter accounts for most of the differences in elongation growth. The dark recovery when only the hypocotyl is irradiated requires 4 h, but end-of-day far-red treatment reduces this to about 1.5 h. The persistence of the far-red-absorbing form of phytochrome for many hours in darkness in these light-grown plants is also demonstrated.Abbreviations and symbols D darkness - FR far-red light - Pfr far-red-absorbing form of phytochrome - R red light - WL white light (from fluorescent lamps) - photostationary state of phytochrome - c calculated   相似文献   

6.
T. H. Attridge  M. Black  V. Gaba 《Planta》1984,162(5):422-426
An interaction is demonstrated between the effects of phytochrome and cryptochrome (the specific blue-light photoreceptor) in the inhibition of hypocotyl elongation of light-grown cucumber (Cucumis sativus L.) cv. Ridge Greenline seedlings. At certain fluence rates of blue light the total inhibition response is greater than the sum of the separate responses to each photoreceptor. The threshold for response to blue light is reduced at least 30-fold by additional red-light irradiation. The synergistic effect is demonstrated for two different fluence rates of red light. Synergism is mediated by phytochrome in both the cotyledons and the hypocotyl.Abbreviations and symbols BL blue light - FR far-red light - Pfr far-red-absorbing form of phytochrome - R red light - photostationary state of phytochrome - c calculated   相似文献   

7.
The mechanism by which dihydroconiferyl alcohol (DCA) stimulatesindole-3-acetic acid (IAA)-induced elongation of cucumber hypocotylsections was studied. Although DCA did not affect the uptakeof IAA-5-3H by hypocotyl sections, the endogenous level of IAA-5-3Hin DCA-treated sections was much higher than in DCA untreatedones. IAA-5-3H in the incubation medium was degraded in thepresence of hypocotyl sections, and this degradation of IAAwas inhibited by DCA. An in vitro experiment with horseradishperoxidase revealed that DCA inhibited the IAA degrading activityof the oxidase, as did caffeic acid and ferulic acid. Theseresults suggested that DCA enhances IAA-induced cucumber hypocotylelongation by acting as an antioxidant of IAA. (Received June 4, 1975; )  相似文献   

8.
  1. Effects of auxin on elongation and cell wall properties werestudied using 5th internode segments of light-grown pea epicotyl.The results were:
  2. The optimum concentration of 2,4-D for elongationinductionwas about 1 µg/ml, both for unpeeled and peeledsegments.
  3. Using stress-relaxation analysis, mechanical propertiesof thecell wall were expressed by the parameters 1/1, To andTm. Unpeeledsegments were first treated with 2,4-D, then theepidermis waspeeled off. Parameters of the epidermal cell wallwere conspicuouslychanged by 2,4-D but those of the inner tissuewere not.
  4. Actinomycin D and cycloheximide inhibited 2,4-D-inducedchangesin cell wall parameters, as well as in elongation, ofunpeeledsegments apd of the epidermis.
  5. 2,4-D did not induceelongation of the isolated epidermis butpromoted that of peeledsegments. This promotion was smalleras compared with unpeeledsegments. 2,4-D did not significantlyinfluence the diffusionpressure deficit of peeled segmentsbut did increase their elasticand plastic extensibilities.
  6. We conclude that auxin primarilyinduces cell wall looseningof the epidermis, most likely throughnucleic acid and proteinsynthesis.
1 Present address: Biological Institute, Department of GeneralEducation, Nagoya City University, Mizuho-ku, Mizuho-cho, Nagoya467, Japan. (Received April 22, 1971; )  相似文献   

9.
The interaction of kinetin with IAA and GA3 on the elongationof hypocotyl sections of Cucumis sativus L. cv. National Picklingwas studied. Kinetin in the concentration range of 10–7M to 10–4 M markedly inhibited IAA-induced elongation,while in a lower range from 10–10 M to 10–8 M, itsynergistically enhanced IAA-induced elongation. Kinetin alonein this range had no effect. A 5-to 15-min pulse treatment seemsenough to induce the maximum effect for both inhibition andpromotion. Since the magnitude of the maximum inhibition dependedon the concentration and not on the duration of treatment, thereaction in the cell caused by kinetin seemed to be completedwithin a short period. Washing of the sections with distilledwater after kinetin treatment (30 min) did not significantlyeliminate the kinetin effect. This probably indicates that thebinding of kinetin molecules to a supposed acceptor is not reversible.Interaction of kinetin with GA3 in their pretreatment effectson IAA-induced elongation shows that in the inhibitory concentrationrange, the kinetin effect was partly overcome by GA3, and thatin the promotive range, the magnitude of the enhancement wasdetermined by kinetin regardless of the presence of GA3. Theeffect of kinetin seems to dominate over that of GA3 indicatingthat the modes of their pretreatment effects differ from oneanother. (Received June 24, 1977; )  相似文献   

10.
Carol Moll  Russell L. Jones 《Planta》1981,152(5):450-456
The relationship between calcium ions and gibberellic acid (GA3)-induced growth in the excised hypocotyl of lettuce (Lactuca sativa L.) was investigated. The short-term kinetics of growth responses were measured using a linear displacement transducer. Test solutions were added either as drops to the filter paper on which the hypocotyl stood (non-flow-past) or by switching solution flowing past the base of hypocotyl (flow-past), resulting in differences in growth behavior. Drops of CaCl2 added at a high concentration (10 mM) inhibited growth within a few minutes. This inhibition was reversed by ethylenediaminetetraacetic acid (EDTA). Drops of EDTA or ethyleneglycol-bis(2-aminoethylether)-tetraacetic acid caused a rapid increase in growth rate. Growth induced by EDTA was not further promoted by GA3. A continuous H2O flow resulted in growth rates comparable to those in response to GA3. Addition of CaCl2 to the flow-past medium inhibited growth and this inhibition was reversed by a decrease in CaCl2 concentration. The growth rate was found to be a function of CaCl2 concentration. When a constant CaCl2 concentration was maintained by the flow-past medium, a shift in pH from 5.5 to 4.25 had no obvious effect on hypocotyl elongation. Gibberellic acid was found to reverse the inhibitory effect of CaCl2, causing an increase in growth rate similar to that found previously when GA3 was added to hypocotyls grown in H2O under non-flow-past conditions. We propose that gibberellin controls extension growth in lettuce hypocotyl sections by regulating the uptake of Ca2+ by the hypocotyl cells.Abbreviations EDTA ethylenediaminetetraacetic acid - EGTA ethyleneglycol-bis(2-aminoethylether)-tetraacetic acid - GA gibberellin - GA3 gibberellic acid - IAA indole-3-acetic acid  相似文献   

11.
Biphasic response of cucumber hypocotyl sections to auxin   总被引:1,自引:0,他引:1  
The pattern of the response to auxin of cucumber hypocotyl sections,its relation to acid-induced growth and the role of the epidermiswere investigated. In longterm incubation, IAA had practicallyno effect on sections without epidermis (peeled sections). Timecourse measurementsshowed that the response to IAA of nonpeeledsections was biphasic; the first phase started right after IAAtreatment and continued for about 1 hr, then after a periodof 1 hr with a greatly decreased growth rate the second phasestarted with a higher rate. Peeled sections lacked thesecondphase; their growth rate in the first phase depended on theacidity of the incubation medium. These results were confirmedby utilizing one side-peeled sections and measuring the curvatureof the sections which represented the difference in the growthrate between the peeled and nonpeeled sides. The following pointswere suggested. The first phase resembles acid-induced growthand the growth capacity is limited by the epidermis; the secondphase is specific to auxin and requires the presence of theepidermis. The first phase was hardly influenced by temperature,while the second one was greatly affected; its Q,10 being morethan 4.0, suggesting that the first phase is of physical nature. (Received December 26, 1975; )  相似文献   

12.
Summary Auxin-induced cell elongation necessitates plasma membrane enlargement. The effect of auxin (10 M 2,4-dichlorophenoxyacetic acid) treatment on amount, composition, and rate of synthesis of plasma membrane lipids was examined. Auxin-treated and control soybean (Glycine max L.) hypocotyl segments were incubated with [14C]acetate for times ranging from 0.5 to 18 h, prior to isolation of plasma membrane by aqueous two-phase partitioning. The composition of individual plasma membrane lipids in elongating segments did not differ from the composition in treatment time-matched control segments, except that after longer auxin treatments, phospholipids had more unsaturated fatty acids. Plasma membrane phospholipid and free sterol content both increased in elongating segments. The relative proportion of sterols and phospholipids in the plasma membrane primarily depended on time after segment excision, for both auxin-treated and control segments. Auxin enhanced the rate of lipid incorporation into the plasma membrane by 6 h, and stimulated the synthesis of some phospholipids and sterols.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - ER endoplasmic reticulum - GC gas chromatography - IAA indole-3-acetic acid - PA phosphatidic acid - PC phosphatidylcholine - PE phosphatidylethanolamine - PG phosphatidylglycerol - PI phosphatidylinositol - PM plasma membrane - PS phosphatidylserine  相似文献   

13.
Summary The types and amount of plasma membrane proteins synthesized during cell elongation in response to auxin (2,4-dichlorophenoxyacetic acid) treatment were investigated. Auxin-treated and control soybean (Glycine max L.) hypocotyl segments were incubated with [35S]methionine for various times, ranging from 0.5 to 18 h, prior to isolation of plasma membrane by aqueous two-phase partitioning. Protein accumulated in the plasma membrane after auxin treatment. Despite this accumulation, the protein incorporation rate, estimated by the amount of label in the plasma membrane following a 0.5 h [35S]methionine pulse, was unaffected by auxin treatment at both 0.5 and 18 h of treatment. Protein apparently accumulated by a mechanism distinct from enhanced incorporation. The plasma membrane proteins synthesized by elongating segments differed from controls at 18 h, as evidenced by the pattern of fluorographs following a 0.5 h radiolabelling. However, auxin treatment did not alter the 2-D gel pattern of the polypeptides detectable by silver stain.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - IEF isoelectric focusing - PM plasma membrane - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis  相似文献   

14.
Carol Moll  Russell L. Jones 《Planta》1981,152(5):442-449
The short-term kinetics of growth of the excised lettuce (Lactuca sativa L.) hypocotyl were characterized with respect to the effects of gibberellic acid (GA3), indole-3-acetic acid (IAA), KCl and pH. A Hall-device-based, miniaturized, linear displacement transducer was developed to measure the growth of 2-mm hypocotyl sections with 1-m resolution. Following treatment with GA3, a lag time of less than 10 min was typically followed by an increase in growth rate with two acceleration phases, reaching a final elevated rate within about 1 h. The kinetics of the response to GA1, a mixture of GA4 and GA7, and GA9 were similar to the response to GA3. There was no response to IAA treatment either in the presence or absence of GA3. KCl alone had no effect on the growth rate, but caused an increase in rate when added after GA3, with a lag time of usually less than 1 h. Responses to pH changes had lag times of a few minutes in all cases. A shift from H2O to pH 6 buffer inhibited growth, while a shift from H2O to pH 4 buffer resulted in a transient increase to a rate comparable to that induced by GA3. A shift from pH 6 to pH 5 caused an increase in growth rate, followed by a gradual decline to an H2O control rate after more than an hour. The responses to GA3 at pH 4 and pH 5 were similar to that found for addition of GA3 to water controls.Abbreviations GA gibberellin - GA3 gibberellic acid - GA1, GA4+7, GA9 gibberellins A1, A4+7, A9 - IAA indole-3-acetic acid  相似文献   

15.
IAA-induced elongation and control growth of light-grown cucumberhypocotyl sections were markedly inhibited by DCCD, an inhibitorof membrane-bound ATPases. The concentration effective for inducingmarked inhibition was more than 10–5 M. At 10–5M DCCD, there was an apparent antagonism between IAA and DCCD.At 5 x 10–5 M DCCD, the inhibition was partially recoveredby 10–4 M of IAA. The results might indicate a close associationof the auxin action with membrane-bound ATPases. The DCCD inhibitionwas so strong that treatment with 10–4 M DCCD for about5 min significantly suppressed further growth and longer incubationkilled the sections. In contrast, DCCD had not inhibitory effecton both control growth and IAA-induced elongation if GA3 waspresent simultaneously. DCCD treatment followed by GA3 treatmentstill resulted in the inhibition, suggesting that the inhibitionwas not reversible. In order to obtain reversal of DCCD inhibitionby GA3 both compounds must be present at the same time. TheGA3 effect is discussed in connection with the mechanism ofDCCD action on membrane-bound ATPases. (Received October 6, 1975; )  相似文献   

16.
The effect of far red light on the light-grown bean hypocotyland its interaction with indole-3-acetic acid (IAA) were studied.Elongation of younger zones of the hypocotyl was inhibited butthat of older zones was promoted by far red light. This wascontrolled by phytochrome. Both the hook and shank portionscould receive far red light and its effect could be transmittedto either portions of the hypocotyl. When IAA was applied to the upper cut surface of the hypocotylunit, elongation of the shank portion was promoted even withoutfar red irradiation. IAA did not change the aspect of the growthcurves but amplified the elongation of each zone. When IAA wasapplied to each zone of the shank portion, elongation of zonesolder than the treated one was promoted but that of youngerzones was inhibited. This effect was emphasized by far red light.When IAA was applied to the older shank portion, elongationof the treated zone was synergistically promoted by IAA andfar red light, but when applied to the elbow or younger shankportion, far red light completely nullified the promoting effectof IAA. (Received October 1, 1979; )  相似文献   

17.
Cell elongation and cell division in elongating lettuce hypocotyl sections   总被引:1,自引:1,他引:0  
The roles of cell division and cell elongation in the growth of sections excised from hypocotyls of lettuce (Lactuca sativa L. cv. Arctic) were investigated. Elongation of sections incubated in the light is inhibited compared to dark-grown sections and this inhibition is reversed by gibberellic acid (GA3). The elongation of both dark-grown and GA3-treated, light-grown sections can be enhanced by 10mM KCl. Under all conditions of incubation, elongation growth is greatest in the uppermost quarter of the hypocotyl section while the basal quarter does not elongate. In darkness the two apical segments of sections marked into four equal parts grow at the same rate, while in light, growth of the apical segment exceeds that of the second segment. Cell division in cortical or epidermal cells, as measured by mitotic index or cell number, is not affected by illumination conditions nor by GA3 or KCl treatments. Although -irradiation and FUDR pretreatment eliminate or cause a marked reduction in cell division in the excised hypocotyl, sections from seeds irradiated with -rays or incubated in 5-fluorodeoxyuridine elongate in response to GA3 and KCl treatment as do sections from non-pretreated controls. Therefore, since neither GA3 nor darkness affect celldivision activity and since treatments which eliminate or significantly reduce cell division do not affect growth, we conclude that the effect of GA3 and darkness in this material is to increase cell elongation.Abbreviations FUDR 5-fluorodeoxyuridine - GA(s) gibberellin(s) - GA3 gibberellic acid  相似文献   

18.
Moore TC 《Plant physiology》1967,42(5):677-684
The capacities of indole-3-acetic acid (IAA) and gibberellin A3 (GA3) to counteract the inhibitory effects of (2-chloroethyl) trimethylammonium chloride (CCC), 2-isopropyl-4-dimethylamino-5-methylphenyl-1-piperidinecarboxylate methyl chloride (Amo-1618), and N,N-dimethylaminosuccinamic acid (B-995) on hypocotyl elongation in light-grown cucumber (Cucumis sativus L.) seedlings were investigated. One μg of GA3 applied to the shoot tip was sufficient to completely nullify the effect of 10 μg of Amo-1618 or 25 μg of B-995 applied simultaneously to the shoot tip, and 10 μg of GA3 completely counteracted the effect of 10−3 m CCC added to the root medium. One μg of IAA counteracted the effect of 10−3 m CCC in the root medium, but IAA did not nullify the action of either Amo-1618 or B-995. Experiments were conducted using 2 growth retardants simultaneously, which indicated that Amo-1618 and CCC inhibit a common process, namely GA biosynthesis, essential to hypocotyl elongation. However, since the effect of CCC was overcome by applications of both GA and IAA, growth retardation resulting from treatment with CCC apparently is not due solely to inhibition of GA biosynthesis. B-995 did not interact additively with either Amo-1618 or CCC, which suggests that B-995 affects a process different from those affected by the other 2 retardants. Thus, while inhibition evoked by B-995 is reversible by applied GA, the action of B-995 does not appear to be inhibition of GA biosynthesis.  相似文献   

19.
Hypocotyl sections with and without the cotyledons were cutfrom bean seedlings and incubated under white light of 6000lux. The cotyledons had an inhibitory effect as well as a promotiveeffect on hypocotyl growth. The former effect was more strikingin the dwarf variety, and the latter in the tall variety. Whenthe hypocotyl units were exposed to light for shorter times(6 hr or less) or incubated under weaker light (1600 and 50lux), the inhibitory effect of the cotyledons decreased greatly,and in the tall variety the presence of cotyledons producedno inhibition, but a promotion of hypocotyl growth. GA treatmentenhanced hypocotyl growth and counteracted the growth inhibitioncaused by the cotyledons. On the whole, the GA effect was moremarked in the tall variety than in the dwarf. The elongation of bean hypocotyls may be controlled by a balancebetween the inhibitory and promotive effects of cotyledons,and the predominance of the former over the latter may be oneof the causes for expressing dwarfing. (Received November 13, 1976; )  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号