首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synaptotagmins (syt) form a large family of transmembrane proteins and some of its isoforms are known to regulate calcium-induced membrane fusion during vesicular traffic. In view of the reported implication of the isoform syt8 in exocytosis we investigated the expression, localisation and calcium-sensitivity of syt8 in secretory cells. An immunopurified antipeptide antibody was generated which is directed against a C-terminal sequence and devoid of crossreactivity towards syt1 to 12. Subcellular fractionation and immunocytochemistry revealed two forms of synaptotagmin 8 (50 and 40 kDa). Whereas the 40-kDa was present in the cytosol in brain, in PC12 and in clonal beta-cells, the 50-kDa form was localised in very typical clusters and partially colocalised with the SNARE protein Vti1a. Moreover, in primary hippocampal neurons syt8 was only found within the soma. Amplification of syt8 by RT-PCR indicated that the observed protein variants were not generated by alternative splicing of the 6th exon and are most likely linked to variations in the N-terminal region. In contrast to the established calcium sensor syt2, endogenous cytosolic syt8 and transiently expressed syt8-C2AB-eGFP did not translocate upon a raise in cytosolic calcium in living cells. Syt8 is therefore not a calcium sensor in exocytotic membrane fusion in endocrine cells.  相似文献   

2.
Synaptotagmin (syt) I is thought to act as a Ca2+ sensor that regulates neuronal exocytosis. Fifteen additional isoforms of syt have been identified, but their functions are less well understood. Here, we used PC12 cells to test the idea that different isoforms of syt impart cells with distinct metal (i.e., Ca2+, Ba2+, and Sr2+) requirements for secretion. These cells express syt's I and IX (syt IX sometimes referred to as syt V), which have low apparent metal affinities, at much higher levels than syt VII, which we show has a relatively high apparent affinity for metals. We found that syt I and VII partially colocalize on large dense core vesicles and that upregulation of syt VII produces a concomitant increase in the divalent cation sensitivity of catecholamine release from PC12 cells. Furthermore, RNA interference-mediated knockdown of endogenous syt VII reduced the metal sensitivity of release. These data support the hypothesis that the complement of syt's expressed by a cell, in conjunction with their metal affinity, determines the divalent cation sensitivity of exocytosis.  相似文献   

3.
The synaptotagmins (syts) are a family of membrane proteins proposed to regulate membrane traffic in neuronal and nonneuronal cells. In neurons, the Ca2+-sensing ability of syt I is critical for fusion of docked synaptic vesicles with the plasma membrane in response to stimulation. Several putative Ca2+-syt effectors have been identified, but in most cases the functional significance of these interactions remains unknown. Here, we have used recombinant C2 domains derived from the cytoplasmic domains of syts I-XI to interfere with endogenous syt-effector interactions during Ca2+-triggered exocytosis from cracked PC12 cells. Inhibition was closely correlated with syntaxin-SNAP-25 and phosphatidylinositol 4,5-bisphosphate (PIP2)-binding activity. Moreover, we measured the expression levels of endogenous syts in PC12 cells; the major isoforms are I and IX, with trace levels of VII. As expected, if syts I and IX function as Ca2+ sensors, fragments from these isoforms blocked secretion. These data suggest that syts trigger fusion via their Ca2+-regulated interactions with t-SNAREs and PIP2, target molecules known to play critical roles in exocytosis.  相似文献   

4.
Synaptotagmin (syt) serves as a Ca2+ sensor in the release of neurotransmitters and hormones. This function depends on the ability of syt to interact with other molecules. Syt binds to phosphatidylserine (PS)-containing lipid bilayers as well as to soluble N-ethylmaleimide sensitive factor receptors (SNAREs) and promotes SNARE assembly. All these interactions are regulated by Ca2+, but their specific roles in distinct kinetic steps of exocytosis are not well understood. To explore these questions we used amperometry recording from PC12 cells to investigate the kinetics of exocytosis. Syt isoforms and syt I mutants were overexpressed to perturb syt-PS and syt-SNARE interactions to varying degrees and evaluate the effects on fusion event frequency and the rates of fusion pore transitions. Syt I produced more rapid dilation of fusion pores than syt VII or syt IX, consistent with its role in synchronous synaptic release. Stronger syt-PS interactions were accompanied by a higher frequency of fusion events and more stable fusion pores. By contrast, syt-SNARE interactions and syt-induced SNARE assembly were uncorrelated with rates of exocytosis. This associates the syt-PS interaction with two distinct kinetic steps in Ca2+ triggered exocytosis and supports a role for the syt-PS interaction in stabilizing open fusion pores.  相似文献   

5.
Synaptotagmins form a family of calcium-sensor proteins implicated in exocytosis, and these vesicular transmembrane proteins are endowed with two cytosolic calcium-binding C2 domains, C2A and C2B. Whereas the isoforms syt1 and syt2 have been studied in detail, less is known about syt9, the calcium sensor involved in endocrine secretion such as insulin release from large dense core vesicles in pancreatic beta-cells. Using cell-based assays to closely mimic physiological conditions, we observed SNARE (soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptor)-independent translocation of syt9C2AB to the plasma membrane at calcium levels corresponding to endocrine exocytosis, followed by internalization to endosomes. The use of point mutants and truncations revealed that initial translocation required only the C2A domain, whereas the C2B domain ensured partial pre-binding of syt9C2AB to the membrane and post-stimulatory localization to endosomes. In contrast with the known properties of neuronal and neuroendocrine syt1 or syt2, the C2B domain of syt9 did not undergo calcium-dependent membrane binding despite a high degree of structural homology as observed through molecular modelling. The present study demonstrates distinct intracellular properties of syt9 with different roles for each C2 domain in endocrine cells.  相似文献   

6.
Synaptotagmins (Syts) constitute a large family of at least 16 members and individual Syt isoforms exhibit distinct Ca2+-binding properties and subcellular localization. It remains to be demonstrated whether multiple Syt isoforms can function independently or cooperatively on certain type of vesicle. In the current study, we have developed NPY-pHluorin to specifically assess exocytosis of large dense core vesicles (LDCVs) and studied the requirement of Syt I and Syt IX for LDCV exocytosis in PC12 cells. We found that down-regulation of both Syt I and Syt IX resulted in a significant loss of Ca2+-dependent LDCV exocytosis. Moreover, our results suggest Syt I and Syt IX play redundant role in controlling the choice of fusion modes. Down-regulation of both Syt I and Syt IX renders more fusion in the kiss-and-run mode. We conclude that Syt I and Syt IX function redundantly in Ca2+-sensing and fusion pore dilation on LDCVs in PC12 cells.  相似文献   

7.
The synaptotagmins (syts) are a family of molecules that regulate membrane fusion. There are 17 mammalian syt isoforms, most of which are expressed in the brain. However, little is known regarding the subcellular location and function of the majority of these syts in neurons, largely due to a lack of isoform-specific antibodies. Here we generated pHluorin-syt constructs harboring a luminal domain pH sensor, which reports localization, pH of organelles to which syts are targeted, and the kinetics and sites of exocytosis and endocytosis. Of interest, only syt-1 and 2 are targeted to synaptic vesicles, whereas other isoforms selectively recycle in dendrites (syt-3 and 11), axons (syt-5, 7, 10, and 17), or both axons and dendrites (syt-4, 6, 9, and 12), where they undergo exocytosis and endocytosis with distinctive kinetics. Hence most syt isoforms localize to distinct secretory organelles in both axons and dendrites and may regulate neuropeptide/neurotrophin release to modulate neuronal function.  相似文献   

8.
Li H  Waites CL  Staal RG  Dobryy Y  Park J  Sulzer DL  Edwards RH 《Neuron》2005,48(4):619-633
The release of monoamine neurotransmitters from cell bodies and dendrites has an important role in behavior, but the mechanism (vesicular or non vesicular) has remained unclear. Because the location of vesicular monoamine transporter 2 (VMAT2) defines the secretory vesicles capable of monoamine release, we have studied its trafficking to assess the potential for monoamine release by exocytosis. In neuroendocrine PC12 cells, VMAT2 localizes exclusively to large dense-core vesicles (LDCVs), and we now show that cytoplasmic signals target VMAT2 directly to LDCVs within the biosynthetic pathway. In neurons, VMAT2 localizes to a population of vesicles that we now find undergo regulated exocytosis in dendrites. Although hippocampal neurons do not express typical LDCV proteins, transfected chromogranins A, B, and brain-derived neurotrophic factor (BDNF) colocalize with VMAT2. VMAT2 thus defines a population of secretory vesicles that mediate the activity-dependent somatodendritic release of multiple retrograde signals involved in synaptic function, growth, and plasticity.  相似文献   

9.
Synaptotagmin (syt) I is a Ca2+-binding protein that is well accepted as a major sensor for Ca2+-regulated release of transmitter. However, controversy remains as to whether syt I is the only protein that can function in this role and whether the remaining syt family members also function as Ca2+ sensors. In this study, we generated a PC12 cell line that continuously expresses a short hairpin RNA (shRNA) to silence expression of syt I by RNA interference. Immunoblot and immunocytochemistry experiments demonstrate that expression of syt I was specifically silenced in cells that stably integrate the shRNA-syt I compared with control cells stably transfected with the empty shRNA vector. The other predominantly expressed syt isoform, syt IX, was not affected, nor was the expression of the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins when syt I levels were knocked down. Resting Ca2+ and stimulated Ca2+ influx imaged with fura-2 were not altered in syt I knockdown cells. However, evoked release of catecholamine detected by carbon fiber amperometry and HPLC was significantly reduced, although not abolished. Human syt I rescued the release events in the syt I knockdown cells. The reduction of stimulated catecholamine release in the syt I knockdown cells strongly suggests that although syt I is clearly involved in catecholamine release, it is not the only protein to regulate stimulated release in PC12 cells, and another protein likely has a role as a Ca2+ sensor for regulated release of transmitter. RNA interference; amperometry; exocytosis  相似文献   

10.
alpha-Latrotoxin (alpha-LTX) induces exocytosis of small synaptic vesicles (SSVs) in neuronal cells both by a calcium-independent mechanism and by opening cation-permeable pores. Since the basic molecular events regulating exocytosis in neurons and endocrine cells may be similar, we have used the exocytosis of insulin-containing large dense core vesicles (LDCVs) as a model system. In primary pancreatic beta-cells and in the derived cell lines INS-1 and MIN6, alpha-LTX increased insulin release in the absence of extracellular calcium, but the insulin-secreting cell lines HIT-T15 and RINm5F were unresponsive. alpha-LTX did not alter membrane potential or cytosolic calcium, and its stimulatory effect on exocytosis was still observed in pre-permeabilized INS-1 cells kept at 0.1 microM Ca2+. Consequently, pore formation or ion fluxes induced by alpha-LTX could be excluded. The Ca2+-independent alpha-LTX-binding protein, latrophilin, is a novel member of the secretin family of G protein-coupled receptors (GPCR). Sensitivity to alpha-LTX correlated with expression of latrophilin, but not with synaptotagmin I or neurexin Ialpha expression. Moreover, transient expression of latrophilin in HIT-T15 cells conferred alpha-LTX-induced exocytosis. Our results indicate that direct stimulation of exocytosis by a GPCR mediates the Ca2+-independent effects of alpha-LTX in the absence of altered ion fluxes. Therefore, direct regulation by receptor-activated heterotrimeric G proteins constitutes an important feature of the endocrine exocytosis of insulin-containing LDCVs and may also apply to SSV exocytosis in neurons.  相似文献   

11.
Fusion pore dynamics are regulated by synaptotagmin*t-SNARE interactions   总被引:10,自引:0,他引:10  
Bai J  Wang CT  Richards DA  Jackson MB  Chapman ER 《Neuron》2004,41(6):929-942
Exocytosis involves the formation of a fusion pore that connects the lumen of secretory vesicles with the extracellular space. Exocytosis from neurons and neuroendocrine cells is tightly regulated by intracellular [Ca2+] and occurs rapidly, but the molecular events that mediate the opening and subsequent dilation of fusion pores remain to be determined. A putative Ca2+ sensor for release, synaptotagmin I (syt), binds directly to syntaxin and SNAP-25, which are components of a conserved membrane fusion complex. Here, we show that Ca2+-triggered syt*SNAP-25 interactions occur rapidly. The tandem C2 domains of syt cooperate to mediate binding to syntaxin/SNAP-25; lengthening the linker that connects C2A and C2B selectively disrupts this interaction. Expression of the linker mutants in PC12 cells results in graded reductions in the stability of fusion pores. Thus, the final step of Ca2+-triggered exocytosis is regulated, at least in part, by direct contacts between syt and SNAP-25/syntaxin.  相似文献   

12.
《The Journal of cell biology》1994,127(5):1419-1433
Neurons and endocrine cells have two types of secretory vesicle that undergo regulated exocytosis. Large dense core vesicles (LDCVs) store neural peptides whereas small clear synaptic vesicles store classical neurotransmitters such as acetylcholine, gamma-aminobutyric acid (GABA), glycine, and glutamate. However, monoamines differ from other classical transmitters and have been reported to appear in both LDCVs and smaller vesicles. To localize the transporter that packages monoamines into secretory vesicles, we have raised antibodies to a COOH- terminal sequence from the vesicular amine transporter expressed in the adrenal gland (VMAT1). Like synaptic vesicle proteins, the transporter occurs in endosomes of transfected CHO cells, accounting for the observed vesicular transport activity. In rat pheochromocytoma PC12 cells, the transporter occurs principally in LDCVs by both immunofluorescence and density gradient centrifugation. Synaptic-like microvesicles in PC12 cells contain relatively little VMAT1. The results appear to account for the storage of monoamines by LDCVs in the adrenal medulla and indicate that VMAT1 provides a novel membrane protein marker unique to LDCVs.  相似文献   

13.
Many synaptotagmins are Ca2+-binding membrane proteins with functions in Ca2+-triggered exocytosis. Synaptotagmin IV (syt IV) has no Ca2+ binding activity, but nevertheless modulates exocytosis. Here, cell-attached capacitance recording was used to study single vesicle fusion and fission in control and syt IV overexpressing PC12 cells. Unitary capacitance steps varied widely in size, indicating that both microvesicles (MVs) and dense-core vesicles (DCVs) undergo fusion. Syt IV overexpression reduced the size of DCVs and endocytotic vesicles but not MVs. Syt IV also reduced the basal rate of Ca2+-induced fusion. During kiss-and-run, syt IV increased the conductance and duration of DCV fusion pores but not MV fusion pores. During full-fusion of DCVs syt IV increased the fusion pore conductance but not the duration. Syt IV overexpression increased the duration but not the conductance of fission pores during endocytosis. The effects of syt IV on fusion pores in PC12 cells resembled the effects on fusion pores in peptidergic nerve terminals. However, differences between these and results obtained with amperometry may indicate that amperometry and capacitance detect the fusion of different populations of vesicles. The effects of syt IV on fusion pores are discussed in terms of structural models and kinetic mechanisms.  相似文献   

14.
Botulinum neurotoxins (BoNTs) cause botulism by entering neurons and cleaving proteins that mediate neurotransmitter release; disruption of exocytosis results in paralysis and death. The receptors for BoNTs are thought to be composed of both proteins and gangliosides; however, protein components that mediate toxin entry have not been identified. Using gain-of-function and loss-of-function approaches, we report here that the secretory vesicle proteins, synaptotagmins (syts) I and II, mediate the entry of BoNT/B (but not BoNT/A or E) into PC12 cells. Further, we demonstrate that BoNT/B entry into PC12 cells and rat diaphragm motor nerve terminals was activity dependent and can be blocked using fragments of syt II that contain the BoNT/B-binding domain. Finally, we show that syt II fragments, in conjunction with gangliosides, neutralized BoNT/B in intact mice. These findings establish that syts I and II can function as protein receptors for BoNT/B.  相似文献   

15.
Ca(2+)-triggered exocytosis in neurons and neuroendocrine cells is regulated by the Ca(2+)-binding protein synaptotagmin (syt) I. Sixteen additional isoforms of syt have been identified, but little is known concerning their biochemical or functional properties. Here, we assessed the abilities of fourteen syt isoforms to directly regulate SNARE (soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein receptor)-catalyzed membrane fusion. One group of isoforms stimulated neuronal SNARE-mediated fusion in response to Ca(2+), while another set inhibited SNARE catalyzed fusion in both the absence and presence of Ca(2+). Biochemical analysis revealed a strong correlation between the ability of syt isoforms to bind 1,2-dioleoyl phosphatidylserine (PS) and t-SNAREs in a Ca(2+)-promoted manner with their abilities to enhance fusion, further establishing PS and SNAREs as critical effectors for syt action. The ability of syt I to efficiently stimulate fusion was specific for certain SNARE pairs, suggesting that syts might contribute to the specificity of intracellular membrane fusion reactions. Finally, a subset of inhibitory syts down-regulated the ability of syt I to activate fusion, demonstrating that syt isoforms can modulate the function of each other.  相似文献   

16.
Neurons and certain kinds of endocrine cells, such as adrenal chromaffin cells, have large dense-core vesicles (LDCVs) and synaptic vesicles or synaptic-like microvesicles (SLMVs). These secretory vesicles exhibit differences in Ca(2+) sensitivity and contain diverse signaling substances. The present work was undertaken to identify the synaptotagmin (Syt) isoforms present in secretory vesicles. Fractionation analysis of lysates of the bovine adrenal medulla and immunocytochemistry in rat chromaffin cells indicated that Syt 1 was localized in LDCVs and SLMVs, whereas Syt 7 was the predominant isoform present in LDCVs. In contrast to PC12 cells and the pancreatic β cell line INS-1, Syt 9 was not immunodetected in LDCVs in rat chromaffin cells. Double-staining revealed that Syt 9-like immunoreactivity was nearly identical with fluorescent thapsigargin binding, suggesting the presence of Syt 9 in the endoplasmic reticulum (ER).The exogenous expression of Syt 1-GFP in INS-1 cells, which had a negligible level of endogenous Syt 1, resulted in an increase in the amount of Syt 9 in the ER, suggesting that Syt 9 competes with Syt 1 for trafficking from the ER to the Golgi complex. We conclude that LDCVs mainly contain Syt 7, whereas SLMVs contain Syt 1, but not Syt 7, in rat and bovine chromaffin cells.  相似文献   

17.
Previous studies have indicated that neuro-endocrine cells store monoamines and acetylcholine (ACh) in different secretory vesicles, suggesting that the transport proteins responsible for packaging these neurotransmitters sort to distinct vesicular compartments. Molecular cloning has recently demonstrated that the vesicular transporters for monoamines and ACh show strong sequence similarity, and studies of the vesicular monoamine transporters (VMATs) indicate preferential localization to large dense core vesicles (LDCVs) rather than synaptic-like microvesicles (SLMVs) in rat pheochromocytoma PC12 cells. We now report the localization of the closely related vesicular ACh transporter (VAChT). In PC12 cells, VAChT differs from the VMATs by immunofluorescence and fractionates almost exclusively to SLMVs and endosomes by equilibrium sedimentation. Immunoisolation further demonstrates colocalization with synaptophysin on SLMVs as well as other compartments. However, small amounts of VAChT also occur on LDCVs. Thus, VAChT differs in localization from the VMATs, which sort predominantly to LDCVs. In addition, we demonstrate ACh transport activity in stable PC12 transformants overexpressing VAChT. Since previous work has suggested that VAChT expression confers little if any transport activity in non-neural cells, we also determined its localization in transfected CHO fibroblasts. In CHO cells, VAChT localizes to the same endosomal compartment as the VMATs by immunofluorescence, density gradient fractionation, and immunoisolation with an antibody to the transferrin receptor. We have also detected ACh transport activity in the transfected CHO cells, indicating that localization to SLMVs is not required for function. In summary, VAChT differs in localization from the VMATs in PC12 cells but not CHO cells.  相似文献   

18.
Wang HB  Guan JS  Bao L  Zhang X 《Neurochemical research》2008,33(10):2028-2034
In small dorsal root ganglion neurons, δ-opioid receptors (DORs) have been found to be mainly distributed in the cytoplasm and often associated with the membrane of large dense-core vesicles (LDCVs) that contain neuropeptides. To study the distribution of DORs under various physiological or pharmacological conditions, the receptors fused with different tags are constructed, transfected into cells or animals, and examined with microscopy. In this study, we show that DOR with different tags have distinct patterns of subcellular distribution in neuroendocrine cells, PC12 cells. Both immunostaining and vesicle fraction analysis showed that the native DORs expressed in PC12 cells were mainly associated with LDCVs. In transfected PC12 cells, DOR tagged with Myc or hemagglutinin exhibited LDCV localization. However, DOR fused with GFP at N- or C-terminus was found to be mainly localized on the cell surface, and mediated the function of DOR agonist. Therefore, the distribution of DOR fused with GFP differs from the native DORs. These results suggest that the subcellular distribution of the receptor could be better presented by the fused tag with smaller molecular size. Special issue article in honor of Dr. Ji-Sheng Han.  相似文献   

19.
Plasma insulin levels are determined mainly by the rate of exocytosis of the insulin-containing large dense core vesicles (LDCVs) of pancreatic islet beta-cells. This process involves the recruitment of LDCVs to the plasma membrane, where they are docked by the assembly of multiprotein SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complexes. However, fusion of the two membranes will proceed only in the presence of Ca(2+) ions, implicating a Ca(2+) sensor protein. The synaptotagmin gene family, comprising 15 members, was proposed to act as such Ca(2+) sensor in regulated exocytosis in neurons and neuroendocrine and endocrine cells. Herein, we review the physiological function of the various synaptotagmins with reference to their impact on insulin exocytosis. Cumulating evidence emphasizes the crucial role of synaptotagmin VII and IX as mediators of glucose-induced insulin secretion.  相似文献   

20.
Synaptotagmin IV (Syt IV) was originally described as an immediate early gene product induced by forskolin or membrane depolarization in PC12 cells; however, nothing is known about the subcellular localization and transport of the newly translated Syt IV protein in PC12 cells. In this study, we investigated the transport mechanism of Syt IV protein induced by forskolin and found that forskolin treatment dramatically increases the Syt IV protein level (approximately 10-fold, to a level comparable to that of Syt IX) and promotes the transport of Syt IV protein from the Golgi to the cell periphery by a microtubule-dependent motor(s). The expression levels and subcellular localizations of two major Syt isoforms (I and IX) in PC12 cells, on the other hand, were unaffected by such treatment. Immunoelectron microscopic analysis showed that some Syt IV signals are clearly associated with dense-core vesicles in forskolin-treated PC12 cells, although the majority of the Syt IV molecules at the cell periphery were present on clear vesicular structures other than dense-core vesicles. An N-terminal antibody-uptake experiment indicated that Syt IV-containing vesicles in forskolin-treated PC12 cells undergo Ca(2+)-dependent exocytosis, because uptake of the anti-Syt IV-N antibody from the culture medium was slightly, but significantly, increased after forskolin treatment. Our results indicate that forskolin (or the increased cAMP level) is important for the transport of the Syt IV protein from the Golgi to the cell periphery, but not sufficient for the sorting of all Syt IV molecules to mature dense-core vesicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号