首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The tumor-promoting arm of transforming growth factor beta(TGF-β)receptor signaling contributes to advanced cancer progression and is considered a master regulator of breast cancer metastasis.In mammals,there are six distinct members in the tumor-necrosis factor receptor(TNFR)-associated factor(TRAF)family(TRAF1–TRAF6),with the function of TRAF4 not being extensively studied in the past decade.Although numerous studies have suggested that there is elevated TRAF4 expression in human cancer,it is still unknown in which oncogenic pathway TRAF4 is mainly implicated.This review highlights TGF-β-induced SMAD-dependent signaling and non-SMAD signaling as the major pathways regulated by TRAF4 involved in breast cancer metastasis.  相似文献   

3.
4.
5.
Molecular mechanism of TNF signaling and beyond   总被引:17,自引:0,他引:17  
Liu ZG 《Cell research》2005,15(1):24-27
  相似文献   

6.
Chloroplast development depends on the synthesis and import of a large number of nuclear-encoded pro- teins. The synthesis of some of these proteins is affected by the functional state of the plastid via a process known as retrograde signaling. Retrograde plastid-to-nucleus signaling has been often characterized in seedlings of Arabidopsis thaliana exposed to norflurazon (NF), an inhibitor of carotenoid biosynthesis. Results of this work suggested that, throughout seedling development, a factor is released from the plastid to the cytoplasm that indicates a perturbation of plastid homeostasis and represses nuclear genes required for normal chloroplast development. The identity of this factor is still under debate. Reactive oxygen species (ROS) were among the candidates discussed as possible retrograde signals in NF-treated plants. In the present work, this proposed role of ROS has been analyzed. In seedlings grown from the very beginning in the presence of NF, ROS-dependent signaling was not detectable, whereas, in seedlings first exposed to NF after light-dependent chloroplast formation had been completed, enhanced ROS production occurred and, among oth- ers, 1O2-mediated and EXECUTER-dependent retrograde signaling was induced. Hence, depending on the developmental stage at which plants are exposed to NF, different retrograde signaling pathways may be activated, some of which are also active in non-treated plants under light stress.  相似文献   

7.
Proteins like Rafkinase inhibitory protein (RKIP) that serve as modulators of signaling pathways, either by promoting or inhibiting the formation of productive signaling complexes through protein-protein interactions, have been demonstrated to play an increasingly important role in a number of cell types and organisms. These proteins have been implicated in development as well as the progression of cancer. RKIP is a particularly interesting regulator, as it is a highly conserved, ubiquitously expressed protein that has been shown to play a role in growth and differentiation in a number of organisms and can regulate multiple signaling pathways. RKIP is also the first MAP kinase signaling modulator to be identified as playing a role in cancer metastasis, and identification of the mechanism by which it regulates Raf-1 activation provides new targets for theraoeutic intervention.  相似文献   

8.
Nemeth MJ  Bodine DM 《Cell research》2007,17(9):746-758
Hematopoietic stem cells (HSCs) are a rare population of cells that are responsible for life-long generation of blood cells of all lineages. In order to maintain their numbers, HSCs must establish a balance between the opposing cell fates of self-renewal (in which the ability to function as HSCs is retained) and initiation of hematopoietic differentiation. Multiple signaling pathways have been implicated in the regulation of HSC cell fate. One such set of pathways are those activated by the Wnt family of ligands. Wnt signaling pathways play a crucial role during embryogenesis and deregulation of these pathways has been implicated in the formation of solid tumors. Wnt signaling also plays a role in the regulation of stem cells from multiple tissues, such as embryonic, epidermal, and intestinal stem cells. However, the function of Wnt signaling in HSC biology is still controversial. In this review, we will discuss the basic characteristics of the adult HSC and its regulatory microenvironment, the "niche", focusing on the regulation of the HSC and its niche by the Wnt signaling pathways.  相似文献   

9.
Age-related macular degeneration (AMD) is one of the major causes of irreversible blindness among aging populations in developed countries and can be classified as dry or wet according to its progression.Wet AMD,which is characterized by angiogenesis on the choroidal membrane,is uncommonly seen but more severe.Controlling or completely inhibiting the factors that contribute to the progression of events that lead to angiogenesis may be an effective strategy for treating wet AMD.Emerging evidence has shown that transforming growth factor-β(TGF-β) signaling plays a significant role in the progression of wet AMD.In this review,we described the roles of and changes in TGF-β signaling in the development of AMD and discussed the mechanisms of the TGF-β superfamily in choroidal neovascularization (CNV) and wet AMD,including the modulation of angiogenesis-related factors,inflammation,vascular fibrosis,and immune responses,as well as cross-talk with other signaling pathways.These remarkable findings indicate that TGF-β signaling is a potential target for wet AMD treatment.  相似文献   

10.
Stem cells are a population of cells that has infinite or long-term self-renewal ability and can produce various kinds of descendent cells.Transforming growth factor β(TGF-β) family is a superfamily of growth factors,including TGF-β1,TGF-β2 and TGF-β3,bone morphogenetic proteins,activin/inhibin,and some other cytokines such as nodal,which plays very important roles in regulating a wide variety of biological processes,such as cell growth,differentiation,cell death.TGF-β,a pleiotropic cytokine,has been proved to be differentially involved in the regulation of multi-lineage differentiation of stem cells,through the Smad pathway,non-Smad pathways including mitogen-activated protein kinase pathways,phosphatidylinositol-3-kinase/AKT pathways and Rholike GTPase signaling pathways,and their cross-talks.For instance,it is generally known that TGF-β promotes the differentiation of stem cells into smooth muscle cells,immature cardiomyocytes,chondrocytes,neurocytes,hepatic stellate cells,Th17 cells,and dendritic cells.However,TGF-β inhibits the differentiation of stem cells into myotubes,adipocytes,endothelial cells,and natural killer cells.Additionally,TGF-β can provide competence for early stages of osteoblastic differentiation,but at late stages TGF-β acts as an inhibitor.The three mammalian isoforms(TGF-β1,2 and 3) have distinct but overlapping effects on hematopoiesis.Understanding the mechanisms underlying the regulatory effect of TGF-β in the stem cell multi-lineage differentiation is of importance in stem cell biology,and will facilitate both basic research and clinical applications of stem cells.In this article,we discuss the current status and progress in our understanding of different mechanisms by which TGF-β controls multi-lineage differentiation of stem cells.  相似文献   

11.
The pathology and physiology of breast cancer(BC),including metastasis,and drug resistance,is driven by multiple signaling pathways in the tumor microenvironment(TME),which hamper antitumor immunity.Recently,long non-coding RNAs have been reported to mediate pathophysiological developments such as metastasis as well as immune suppression within the TME.Given the complex biology of BC,novel personalized therapeutic strategies that address its diverse pathophysiologies are needed to improve clinical outcomes.In this review,we describe the advances in the biology of breast neoplasia,including cellular and molecular biology,heterogeneity,and TME.We review the role of novel molecules such as long non-coding RNAs in the pathophysiology of BC.Finally,we provide an up-to-date overview of anticancer compounds extracted from marine microorganisms,crustaceans,and fishes and their synergistic effects in combination with other anticancer drugs.Marine compounds are a new discipline of research in BC and offer a wide range of anti-cancer effects that could be harnessed to target the various pathways involved in BC development,thus assisting current therapeutic regimens.  相似文献   

12.
Research in signaling networks contributes to a deeper understanding of organism living activities. With the development of experimental methods in the signal transduction field, more and more mechanisms of signaling pathways have been discovered. This paper introduces such popular bioin-formatics analysis methods for signaling networks as the common mechanism of signaling pathways and database resource on the Internet, summerizes the methods of analyzing the structural properties of networks, including structural Motif finding and automated pathways generation, and discusses the modeling and simulation of signaling networks in detail, as well as the research situation and tendency in this area. Now the investigation of signal transduction is developing from small-scale experiments to large-scale network analysis, and dynamic simulation of networks is closer to the real system. With the investigation going deeper than ever, the bioinformatics analysis of signal transduction would have immense space for development and application.  相似文献   

13.
The plant steroid hormones, brassinosteroids (BRs), and their precursors, phytosterols, play major roles in plant growth, development, and stress tolerance. Here, we review the impressive progress made during recent years in elucidating the components of the sterol and BR metabolic and signaling pathways, and in understanding their mecha- nism of action in both model plants and crops, such as Arabidopsis and rice. We also discuss emerging insights into the regulations of these pathways, their interactions with other hormonal pathways and multiple environmental signals, and the putative nature of sterols as signaling molecules.  相似文献   

14.
Signaling pathways transduce extracellular stimuli into cells through molecular cascades to regulate cellular functions.In stem cells,a small number of pathways,notably those of TGF-?/BMP,Hedgehog,Notch,and Wnt,are responsible for the regulation of pluripotency and differentiation.During embryonic development,these pathways govern cell fate specifications as well as the formation of tissues and organs.In adulthood,their normal functions are important for tissue homeostasis and regeneration,whereas aberrations result in diseases,such as cancer and degenerative disorders.In complex biological systems,stem cell signaling pathways work in concert as a network and exhibit crosstalk,such as the negative crosstalk between Wnt and Notch.Over the past decade,genetic and genomic studies have identified a number of potential drug targets that are involved in stem cell signaling pathways.Indeed,discovery of new targets and drugs for these pathways has become one of the most active areas in both the research community and pharmaceutical industry.Remarkable progress has been made and several promising drug candidates have entered into clinical trials.This review focuses on recent advances in the discovery of novel drugs which target the Notch and Wnt pathways.  相似文献   

15.
Smads are intracellular mediators of transforming growth factor β (TGF-β) superfamily signaling. In this review, we focus on the genetic mouse models for Smad pathways, which have provided functional evidence regarding the complex circuitry in angiogenesis and hematopoiesis during development. In the early stages of vascular development, TGF-β signaling is a contri buting factor in angiogenesis and vascular maturation. Whereas in the later embryogenesis, selected molecules of Smad pathways, such as TGF-β type II receptor (TbRII), ALK5, and Smad5, seem to be dispensable for vessel morphogenesis and integrity. TGF-β signaling is not required in the induction of hematopoietic precursors from mesoderm, but inhibits the subsequent expansion of committed hematopoietic precursors. By contrast, bone morphogenetic protein 4 (BMP4) has long been acknowledged pivotal in mesoderm induction and hematopoietic commitment during development. However, recent genetic evidence shows the BMP4-ALK3 axis is not crucial for the formation of hematopoietic cells from FLK1+ mesoderm. Because of the highly redundant mechanisms within the Smad pathways, the precise role of the Smad signaling involved in vascular and hematopoietic development remains nebulous. The generation of novel cell lineage restricted Cre transgenes would shed new light on the future relevant investigations.  相似文献   

16.
17.
Mitochondrial biogenesis and function in plants require the expression of over 1000 nuclear genes encoding mitochondrial proteins (NGEMPs). The expression of these genes is regulated by tissue-specific, developmental, internal, and external stimuli that result in a dynamic organelle involved in both metabolic and a variety of signaling processes. Although the metabolic and biosynthetic machinery of mitochondria is relatively well understood, the factors that regu- late these processes and the various signaling pathways involved are only beginning to be identified at a molecular level. The molecular components of anterograde (nuclear to mitochondrial) and retrograde (mitochondrial to nuclear) signaling pathways that regulate the expression of NGEMPs interact with chloroplast-, growth-, and stress-signaling pathways in the cell at a variety of levels, with common components involved in transmission and execution of these signals. This positions mitochondria as important hubs for signaling in the cell, not only in direct signaling of mitochondrial function per se, but also in sensing and/or integrating a variety of other internal and external signals. This integrates and optimizes growth with energy metabolism and stress responses, which is required in both photosynthetic and non-photosynthetic cells.  相似文献   

18.
Selective degradation of the IκB kinase (IKK) by autophagy   总被引:1,自引:0,他引:1  
Li D 《Cell research》2006,16(11):855-856
Proteasome-mediated degradation and autophagy are the two major pathways mediating the turnover of cellular proteins. The proteasomal pathway is known to be a highly specific and regulated process mediating the degradation of short-lived proteins such as many important factors involved in cellular signaling. In contrast, it is generally thought that autophagy is rather nonselective as it is responsible for the bulk degradation of long-lived proteins and organelles. Challenging this general view, in this issue of Cell Research, Qing et al. report that selective degradation of the IκB kinase (IKK) triggered by the loss of Hsp90 function is mediated by autophagy [1].  相似文献   

19.
Wang L  Xu YY  Ma QB  Li D  Xu ZH  Chong K 《Cell research》2006,16(12):916-922
  相似文献   

20.
Nucleotide oligomerization domain 2(NOD2) is a major cytoplasmic sensor for pathogens and is critical for the clearance of cytosolic bacteria in mammals.However, studies regarding NOD2, especially the initiated signaling pathways, are scarce in teleost species. In this study, we identified a NOD2 molecule(PaNOD2) from ayu(Plecoglossus altivelis).Bioinformatics analysis showed the structure of NOD2 to be highly conserved during vertebrate evolution. Dual-luciferase reporter assays examined the activation of NF-κB signaling and Western blotting analysis detected the phosphorylation of three MAP kinases(p-38, Erk1/2, and JNK1/2).Functional study revealed that, like its mammalian counterparts, PaNOD2 was the receptor of the bacterial cell wall component muramyl dipeptide(MDP), and the leucine-rich repeat motif was responsible for the recognition and binding of Pa NOD2 with the ligand. Overexpression of PaNOD2 activated the NF-κB signaling pathway, leading to the upregulation of inflammatory cytokines, including TNF-α and IL-1β in HEK293 T cells and ayu head kidney-derived monocytes/macrophages(MO/MΦ).Particularly, we found that PaNOD2 activated the MAPK signaling pathways, as indicated by the increased phosphorylation of p-38, Erk1/2, and JNK1/2, which have not been characterized in any teleost species previously. Our findings proved that the NOD2 molecule and initiated pathways are conserved between mammals and ayu. Therefore, ayu could be used as an animal model to investigate NOD2-based diseases and therapeutic applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号