首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Accurately identifying DNA polymorphisms can bridge the gap between phenotypes and genotypes and is essential for molecular marker assisted genetic studies. Genome complexities,including large-scale structural variations, bring great challenges to bioinformatic analysis for obtaining high-confidence genomic variants, as sequence differences between non-allelic loci of two or more genomes can be misinterpreted as polymorphisms. It is important to correctly filter out artificial variants to avoid ...  相似文献   

2.
The major histocompatibility complex (MHC) is a dynamic genetic region with an essential role in the adaptive immunity of jawed vertebrates. The MHC polymorphism is affected by many processes such as birth-and- death evolution, gene conversion, and concerted evolution. Studies investigating the evolution of MHC class I genes have been biased toward a few particular taxa and model species. However, the investigation of this region in nonavian reptiles is still in its infancy. We present the first characterization of MHC class I genes in a species from the family Lacertidae. We assessed genetic diversity and a role of selection in shaping the diversity of MHC class I exon 4 among 37 individuals of Eremias multiocellata from a population in Lanzhou, China. We generated 67 distinct DNA sequences using cloning and sequencing methods, and identified 36 putative functional variants as well as two putative pseudogene-variants. We found the number of variants within an individual varying between two and seven, indicating that there are at least four MHC class I loci in this species. Gene duplication plays a role in increasing copy numbers of MHC genes and allelic diversity in this species. The class I exon 4 sequences are characteristic of low nucleotide diversity. No signal of recombination is detected, but purifying selection is detected in β2-microglobulin interaction sites and some other silent sites outside of the function-constraint regions. Certain identical alleles are shared by Eremias multiocellata and E. przewalskii and E. brenchleyi, suggesting trans-species polymorphism. The data are compatible with a birth-and-death model of evolution.  相似文献   

3.
Temporal changes in SSR allelic diversity of major rice cultivars in China   总被引:1,自引:0,他引:1  
Forty simple sequence repeats (SSRs) were used to assess the changes of diversity in 310 major Chinese rice cultivars grown during the 1950s-1990s. Of the 40 SSR loci, 39 were polymorphic. A total of 221 alleles were detected with an average of 5.7 alleles per locus (Na). The Nei's genetic diversity index (He) varied drastically among the loci (0.207 to 0.874, mean 0.625). Comparing the temporal changes in Na and He, the cultivars from the 1950s had more alleles and higher He scores than the cultivars from the other four decades. Analysis of molecular variance (AMOVA) indicated that the genetic differentiation among the five decades was not significant in the whole set, but significant within indica and japonica. More changes among the decades were revealed in indica cultivars than in japonica cultivars. Some alleles had been lost in current rice cultivars in the 1990s, occurring more frequently in indica. These results suggest that more elite alien genetic resources should be explored to widen the genetic backgrounds of rice cultivars currently grown in China.  相似文献   

4.
Red rice is an interfertiie, weedy form of cultivated rice (Oryza sativa L.) that competes aggressively with the cropin the southern US, reducing yields and contaminating harvests. No wild Oryza species occur In North America andthe weed has been proposed to have evolved through multiple mechanisms, including "de-domestication" of UScrop cultivars, accidental introduction of Asian weeds, and hybridization between US crops and Asian wild/weedyOryza strains. The phenotype of US red rice ranges from "crop mimics", which share some domestication traitswith the crop, to strains closely resembling Asian wild Oryza species. Assessments of genetic diversity haveindicated that many weed strains are closely related to Asian taxa (including indica and aus rice varieties, whichhave never been cultivated in the US, and the Asian crop progenitor O. rufipogon), whereas others show geneticsimilarity to the tropical japonica varieties cultivated in the southern US. Herein, we review what is known aboutthe evolutionary origins and genetic diversity of US red rice and describe an ongoing research project to furthercharacterize the evolutionary genomics of this aggressive weed.  相似文献   

5.
松属植物遗传多样性研究进展   总被引:17,自引:0,他引:17  
李斌  顾万春 《遗传》2003,25(6):740-748
研究松属遗传多样性的方法涉及表型、同工酶、染色体、DNA等多层面。 松树表型性状变异广泛,其不同树种不同性状的遗传力(或遗传率)均存在差异。到目前为止,同工酶仍是检测松树遗传多样性的最常用方法,一般而言,松属树种群体内等位酶多样性程度高,群体间分化较低,但各树种的情形也不尽相同。松属树种染色体水平的变异很低,其核型高度一致。核DNA组较一般阔叶树大,遗传多样性丰富,但叶绿体等质体DNA则多样性较低。影响遗传多样性的因素很多,其中自身的交配系统和外部的生长环境是影响它的两个主要因素。最后,回顾了松树的起源及其遗传多样性保护策略等方面的研究。 Abstract:The ways of probing genetic diversity of pines involve many aspects,such as morphology,chromosome,isozyme,DNA,etc.The phenotypic characteristics in pines vary widely and the differences of inheritability(h2) are obvious among characteristics and among species.Up to now,isozyme is still the most common means to measure genetic diversity of pines.Generally,there are high allozyme diversity within populations and low differentiation coefficient among populations,but differences exist between species in Pinus.The variations of chromosome among pines are very low and the karyotypes of pines are consentaneous,but the genomes of pines in cell nucleus are much larger than that of broadleaves.Diversity of pines are abundant at nucleus DNA level but are poor at plastid DNA level,such as ctDNA.There are many factors that will affect genetic diversity of pines,in which mating system and environment are two main factors.Finally,we reviewed the research on origin of Pinus and conservation strategy of genetic diversity,etc.  相似文献   

6.
The random amplified mirosatellite polymorphism method was performed in a set of Tunisian fig landraces using eighteen primer combinations. A total of sixty three random amplified microsatellite polymorphism (RAMPO) markers were scored and used either to assess the genetic diversity in these cultivars or to detect cases of mislabeling. Opportunely, data proved that the designed procedure constitutes an attractive and fast method with low costs and prevents radio exposure. As a result, we have identified the primer combinations that are the most efficient to detect genetic polymorphism in this crop. Therefore, the derived unweighted pair-group method with arithmetic averages (UPGMA) dendrogram illustrates the genetic divergence among the landraces studied and exhibits a typically continuous variation. Moreover, no evident correlation between the sexes of trees was observed. In addition, using these markers, discrimination between landraces has been achieved. Thus, random amplified mirosatellite polymor- phism is proved to be powerful for characterizing the local fig germplasm.  相似文献   

7.
正Dear Editor,Roots,as a major organ of plants,are involved in nutrient and water acquisition,and might play a vital role in yield increase and efficient N absorption with genetic improvement.Because of the great differences in growth period and pattern between the old and new rice cultivars,it is difficult to clarify how genetic improvements contribute to root growth in rice.For example,for a solution culture system,Wu et al.suggested that total root length increased with increasing year of release for maize hybrids,while shoot dry weight,  相似文献   

8.
DNA methylation is an important epigenetic marker, yet its diversity and consequences in tomato breeding at the population level are largely unknown. We performed whole-genome bisulfite sequencing(WGBS), RNA sequencing, and metabolic profiling on a population comprising wild tomatoes, landraces, and cultivars. A total of 8,375 differentially methylated regions(DMRs) were identified, with methylation levels progressively decreasing from domestication to improvement. We found that over 20% of DMRs...  相似文献   

9.
栓皮栎天然群体SSR遗传多样性研究   总被引:14,自引:0,他引:14  
徐小林  徐立安  黄敏仁  王章荣 《遗传》2004,26(5):683-688
利用微卫星(SSR)标记对我国4个省内的5个栓皮栎(Quercus variabilis Bl.)天然群体的遗传多样性进行了研究。16对SSR标记揭示了栓皮栎丰富的遗传多样性:等位基因数(A)平均8.4375个,有效等位基因数(Ne)平均为5.9512个,平均期望杂合度(He)0.8059,Nei多样性指数(h)为0.8041。栓皮栎自然分布区中心地带的群体具有较高的遗传多样性,而人为对森林的破坏将降低林木群体的遗传多样性。栓皮栎群体的变异主要来源于群体内,群体间分化较小,遗传分化系数仅为0.0455。此外,栓皮栎群体间的遗传距离与地理距离之间存在显著的正相关。这些遗传信息为栓皮栎遗传多样性的保护和利用提供了一定依据。Abstract: Genetic diversity of five Quercus variabilis natural populations in four provinces of China was studied with microsatellite (SSR) markers. A relatively high level of genetic diversity was detected in Q. variabilis species with 16 polymorphic microsatellite loci. Average number of alleles (A) and effective number of alleles (Ne) were 8.4375 and 5.9512 respectively. The mean expected heterozygosity (He) was 0.8059 and Nei diversity index (h) was 0.8041. Higher diversity was found with the populations from the central range of the species in contrast to those from peripheral areas and human activities might decrease the genetic diversity of populations. The majority of genetic variation occurred within populations, which could be concluded from the low coefficient of genetic differentiation (Fst=0.0455). In addition, significant correlation was found between geographical distance and genetic distance. All these results present a basis to the conservation and utilization of genetic diversity of Quercus variabilis.  相似文献   

10.
野生与笼养绿孔雀种群的随机扩增多态DNA研究   总被引:5,自引:1,他引:4  
常弘  柯亚永  苏应娟  张国萍  朱世杰 《遗传》2002,24(3):271-274
利用随机扩增多态DNA(RAPD)技术对野生14只和笼养18只绿孔雀(Pavo muticus)个体进行了种群遗传多样性分析。用23个随机引物,野生与笼养绿孔雀分别获得161和166个扩增片段,计算发现野生与笼养绿孔雀的种群内平均相对遗传距离分别是0.0555和0.1355,两种群间的为0.1635;两种群的Shannon多样性指数平均分别是0.4348和1.0163,有显著性差异。以上分析都显示野生绿孔雀的遗传多样性很低。用UPGMA法聚类显示两个种群都是分别来源于两个家系,可据此进行繁育管理。 Abstract:Random-amplified polymorphic DNA(RAPD) was used to investigate the genetic diversity of the population of 14 wild green peafowl and 18 captive green peafowl(pavo muticus).Total of 161 and 166 bands were obtained respectively,and 23 random primers were used to amplify the genomic DNA of the wild and captive green peafowls.The average relative hereditary distance of the wild and captive green peafowls is 0.0555 and 0.1355 respectively;and the Shannon diversity index is 0.4348 and 1.0163 respectively.There is a prominent differentia between the two populations by T-Test of HO.All the analyses above show that the genetic diversity is very low in wild green peafowl.It tells us that the two populations come from two families by using UPGMA,which can be useful in the breeding management in the future.  相似文献   

11.
Genetic diversity among 49 Indian accessions of rice (Oryza sativa subsp. indica), including 29 landraces from Jeypore, 12 modern cultivars, and 8 traditional cultivars from Tamil Nadu, was investigated using AFLP markers. In total, nine primer combinations revealed 664 AFLPs, 408 of which were found to be polymorphic. The percentage of polymorphic AFLPs was approximately the same within the cultivars and landraces. Similar results were obtained when genetic diversity values were estimated using the Shannon-Weiner index of diversity. Genetic diversity was slightly higher in the modern cultivars than in the traditional cultivars from Tamil Nadu. Among the landraces from Jeypore, the lowland landraces showed the highest diversity. The present study showed that the process of breeding modern cultivars did not appear to cause significant genetic erosion in rice. Cluster analysis and the first component of principle component analysis (PCA) both showed a clear demarcation between the cultivars and landraces as separate groups, although the genetic distance between them was narrow. The modern cultivars were positioned between the landraces from Jeypore and the traditional cultivars from Tamil Nadu. The second component of PCA further separated medium and upland landraces from lowland landraces, with the lowland landraces found closest to the traditional and modern cultivars.  相似文献   

12.
During the last 90 years, the breeding of rice has delivered cultivars with improved agronomic and economic characteristics. Crossing of different lines and successive artificial selection of progeny based on their phenotypes have changed the chromosomal constitution of the ancestors of modern rice; however, the nature of these changes is unclear. The recent accumulation of data for genome-wide single-nucleotide polymorphisms (SNPs) in rice has allowed us to investigate the change in haplotype structure and composition. To assess the impact of these changes during modern breeding, we studied 177 Japanese rice accessions, which were categorized into three groups: landraces, improved cultivars developed from 1931 to 1974 (the early breeding phase), and improved cultivars developed from 1975 to 2005 (the late breeding phase). Phylogenetic tree and structure analysis indicated genetic differentiation between non-irrigated (upland) and irrigated (lowland) rice groups as well as genetic structuring within the irrigated rice group that corresponded to the existence of three subgroups. Pedigree analysis revealed that a limited number of landraces and cultivars was used for breeding at the beginning of the period of systematic breeding and that 11 landraces accounted for 70% of the ancestors of the modern improved cultivars. The values for linkage disequilibrium estimated from SNP alleles and the haplotype diversity determined from consecutive alleles in five-SNP windows indicated that haplotype blocks became less diverse over time as a result of the breeding process. A decrease in haplotype diversity, caused by a reduced number of polymorphisms in the haplotype blocks, was observed in several chromosomal regions. However, our results also indicate that new haplotype polymorphisms have been generated across the genome during the breeding process. These findings will facilitate our understanding of the association between particular haplotypes and desirable phenotypes in modern Japanese rice cultivars.  相似文献   

13.
Genetic diversity among 35 rice accessions, which included 19 landraces, 9 cultivars and 7 wild relatives, was investigated by using microsatellite (SSR) markers distributed across the rice genome. The mean number of alleles per locus was 4.86, showing 95.2% polymorphism and an average polymorphism information content of 0.707. Cluster analysis based on microsatellite allelic diversity clearly demarcated the landraces, cultivars and wild relatives into different groups. The allelic richness computed for the clusters indicated that genetic diversity was the highest among wild relatives (0.436), followed by landraces (0.356), and the lowest for cultivars. Allelic variability among the SSR markers was high enough to categorize cultivars, landraces and wild relatives of the rice germplasm, and to catalogue the genetic variability observed for future use. The results also suggested the necessity to introgress genes from landraces and wild relatives into cultivars, for cultivar improvement.  相似文献   

14.
Genetic polymorphisms of ten microsatellite DNA loci were examined among 238 accessions of landraces and cultivars that represent a significant portion of the distribution range for both indica and japonica groups of cultivated rice. In all, 93 alleles were identified with these ten markers. The number of alleles varied from a low of 3 or 4 at each of four loci, to an intermediate value of 9–14 at five loci, and to an extra-ordinarily high 25 at one locus. The numbers of alleles per locus are much larger than those detected using other types of markers. The number of alleles detected at a locus is significantly correlated with the number of simple sequence repeats in the targeted microsatellite DNA. Indica rice has about 14% more alleles than japonica rice, and such allele number differences are more pronounced in landraces than in cultivars. The indica-japonica differentiation component accounted for about 10% of the diversity in the total sample, and twice as much differentiation was detected in cultivars as in landraces. About two-thirds as many alleles were observed in cultivars as in landraces; another two-thirds of the alleles in the cultivar group were found in modern elite cultivars or parents of hybrid rice. The majority of the simple sequence repeat (SSR) alleles that were present in high or intermediate frequencies in landraces ultimately survived into modern elite cultivars and hybrids. The greater resolving power and the efficient production of massive amounts of SSR data may be particularly useful for germplasm assessment and evolutionary studies of crop plants.  相似文献   

15.
Extraordinarily polymorphic ribosomal DNA in wild and cultivated rice.   总被引:1,自引:0,他引:1  
K D Liu  Q Zhang  G P Yang  M A Maroof  S H Zhu  X M Wang 《Génome》1996,39(6):1109-1116
A collection of 481 rice accessions was surveyed for ribosomal DNA (rDNA) intergenic spacer length polymorphism to assess the extent of genetic diversity in Chinese and Asian rice germplasm. The materials included 83 accessions of common wild rice, Oryza rufipogon, 75 of which were from China; 348 entries of cultivated rice (Oryza sativa), representing almost all the rice growing areas in China; and 50 cultivars from South and East Asia. A total of 42 spacer length variants (SLVs) were detected. The size differences between adjacent SLVs in the series were very heterogeneous, ranging from ca. 21 to 311 bp. The 42 SLVs formed 80 different rDNA phenotypic combinations. Wild rice displayed a much greater number of rDNA SLVs than cultivated rice, while cultivated rice showed a larger number of rDNA phenotypes. Indica and japonica groups of O. sativa contained about equal numbers of SLVs, but the SLV distribution was significantly differentiated: indica rice was preferentially associated with longer SLVs and japonica rice with shorter ones. The results may have significant implications regarding the origin and evolution of cultivated rice, as well as the inheritance and molecular evolution of rDNA intergenic spacers in rice. Key words : rDNA, Oryza rufipogon, Oryza sativa, germplasm diversity, evolution.  相似文献   

16.
The archipelago of Indonesia has a long history of rice production across a broad range of rice-growing environments resulting in a diverse array of local Indonesian rice varieties. Although some have been incorporated into modern breeding programs, the vast majority of these landraces remain untapped. To better understand this rich source of genetic diversity we have characterized 330 rice accessions, including 246 Indonesian landraces and 63 Indonesian improved cultivars, using 30 fluorescently-labeled microsatellite markers. The landraces were selected across 21 provinces and include representatives of the classical subpopulations of cere, bulu, and gundil rices. A total of 394 alleles were detected at the 30 simple sequence repeat loci, with an average number of 13 alleles per locus across all accessions, and an average polymorphism information content value of 0.66. Genetic diversity analysis characterized the Indonesian landraces as 68% indica and 32% tropical japonica, with an indica gene diversity of 0.53 and a tropical japonica gene diversity of 0.56, and a Fst of 0.38 between the two groups. All of the improved varieties sampled were indica, and had an average gene diversity of 0.46. A set of high quality Indonesian varieties, including Rojolele, formed a separate cluster within the tropical japonicas. This germplasm presents a valuable source of diversity for future breeding and association mapping efforts.  相似文献   

17.
Landraces and old, obsolete cultivars are a rich source of diversity and could become important and easy‐to‐use germplasm resources for breeding. They are characterised by yield stability, broad adaptation, tolerance to diseases and a greater competitiveness in the presence of weeds. The main objective of this study was to estimate and compare the genetic diversity among and within landraces, old cultivars and modern cultivars of common oat. Inter simple sequence repeats were used to study the genetic diversity of 12 modern Polish cultivars, 23 old Polish cultivars, 19 native landraces and 5 contemporary European cultivars. The results indicated a low amount of diversity among Polish modern cultivars, but an even lower diversity among old Polish cultivars, as well as large differences between these two gene pools. As expected, the landraces were the most diverse group and showed the highest internal variation. The landraces and old cultivars might serve as sources of useful alleles that have never been used in breeding. Additionally, it was possible to identify errors and inconsistencies in the passport data of gene‐bank accessions. These results can be applied to the maintenance and management of gene‐bank collections.  相似文献   

18.
Landraces, that is, traditional varieties, have a large diversity that is underexploited in modern breeding. A novel DNA pooling strategy was implemented to identify promising landraces and genomic regions to enlarge the genetic diversity of modern varieties. As proof of concept, DNA pools from 156 American and European maize landraces representing 2340 individuals were genotyped with an SNP array to assess their genome-wide diversity. They were compared to elite cultivars produced across the 20th century, represented by 327 inbred lines. Detection of selective footprints between landraces of different geographic origin identified genes involved in environmental adaptation (flowering times, growth) and tolerance to abiotic and biotic stress (drought, cold, salinity). Promising landraces were identified by developing two novel indicators that estimate their contribution to the genome of inbred lines: (i) a modified Roger's distance standardized by gene diversity and (ii) the assignation of lines to landraces using supervised analysis. It showed that most landraces do not have closely related lines and that only 10 landraces, including famous landraces as Reid's Yellow Dent, Lancaster Surecrop and Lacaune, cumulated half of the total contribution to inbred lines. Comparison of ancestral lines directly derived from landraces with lines from more advanced breeding cycles showed a decrease in the number of landraces with a large contribution. New inbred lines derived from landraces with limited contributions enriched more the haplotype diversity of reference inbred lines than those with a high contribution. Our approach opens an avenue for the identification of promising landraces for pre-breeding.  相似文献   

19.
Molecular‐marker‐aided evaluation of germplasm plays an important role in defining the genetic diversity of plant genotypes for genetic and population improvement studies. A collection of African cassava landraces and elite cultivars was analysed for genetic diversity using 20 amplified fragment length polymorphic (AFLP) DNA primer combinations and 50 simple sequence repeat (SSR) markers. Within‐population diversity estimates obtained with both markers were correlated, showing little variation in their fixation index. The amount of within‐population variation was higher for landraces as illustrated by both markers, allowing discrimination among accessions along their geographical origins, with some overlap indicating the pattern of germplasm movement between countries. Elite cultivars were grouped in most cases in agreement with their pedigree and showed a narrow genetic variation. Both SSR and AFLP markers showed some similarity in results for the landraces, although SSR provided better genetic differentiation estimates. Genetic differentiation (Fst) in the landrace population was 0.746 for SSR and 0.656 for AFLP. The molecular variance among cultivars in both populations accounted for up to 83% of the overall variation, while 17% was found within populations. Gene diversity (He) estimated within each population varied with an average value of 0.607 for the landraces and 0.594 for the elite lines. Analyses of SSR data using ordination techniques identified additional cluster groups not detected by AFLP and also captured maximum variation within and between both populations. Our results indicate the importance of SSR and AFLP as efficient markers for the analysis of genetic diversity and population structure in cassava. Genetic differentiation analysis of the evaluated populations provides high prospects for identifying diverse parental combinations for the development of segregating populations for genetic studies and the introgression of desirable genes from diverse sources into the existing genetic base.  相似文献   

20.
Japanese rice (Oryza sativa L.) cultivars that are strictly used for the brewing of sake (Japanese rice wine) represent a unique and traditional group. These cultivars are characterized by common traits such as large grain size with low protein content and a large, central white-core structure. To understand the genetic diversity and phylogenetic characteristics of sake-brewing rice, we performed amplified fragment length polymorphism and simple sequence repeat analyses, using 95 cultivars of local and modern sake-brewing rice together with 76 cultivars of local and modern cooking rice. Our analysis of both nuclear and chloroplast genome polymorphisms showed that the genetic diversity in sake-brewing rice cultivars was much smaller than the diversity found in cooking rice cultivars. Interestingly, the genetic diversity within the modern sake-brewing cultivars was about twofold higher than the diversity within the local sake-brewing cultivars, which was in contrast to the cooking cultivars. This is most likely due to introgression of the modern cooking cultivars into the modern sake-brewing cultivars through breeding practices. Cluster analysis and chloroplast haplotype analysis suggested that the local sake-brewing cultivars originated monophyletically in the western regions of Japan. Analysis of variance tests showed that several markers were significantly associated with sake-brewing traits, particularly with the large white-core structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号