首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We measured the frequency characteristics (at 10-40 Hz) of airway (Za) and tissue (Zt) impedances in cases of chronic obstructive pulmonary disease [asthmatic bronchitis (AB), chronic pulmonary emphysema (CPE)] and interstitial pneumonitis (IP) by use of an improved random noise oscillation and body box method. The results were then compared with those obtained for normal subjects. The real part of Za was markedly elevated in patients with AB but only slightly elevated in those with CPE. To interpret these data we used an electromechanical analogue including serial inhomogeneity with shunt impedance. From this model we concluded that AB causes both the central and peripheral airway resistances to increase, while CPE brings about a rise mainly in peripheral resistance. In IP patients, only the imaginary part of Zt decreased, which might reflect the decrease in both lung and chest wall compliance. In CPE patients, but not in AB patients, the real part of Zt fell. These data were consistent with the assumption that the decrease in mass per unit volume of lung tissue and hyperinflation of the chest wall in CPE patients might lower the tissue resistances.  相似文献   

2.
Mechanical parameters of the respiratory system are often estimated from respiratory impedances using lumped-element inverse models. One such six-element model is composed of an airway branch [with a resistance (Raw) and inertance (Iaw)] separated from a tissue branch [with a resistance (Rt), inertance (It), and compliance (Ct)] by a shunt compliance representing alveolar gas compression (Cg). Even though the airways are known to have frequency-dependent resistance and inertance, these inverse models have been composed of linear frequency-independent elements. In this study we investigated the use of inverse models where the airway branch was represented by a frequency-independent Raw and Iaw, a Raw that is linearly related to frequency and an Iaw that is independent of frequency, and a system of identical parallel tubes the impedance of which was computed from the tube radius and length. These inverse models were used to analyze airway and respiratory impedances between 2 and 1,024 Hz that were predicted from an anatomically detailed forward model. The forward model represented the airways by an asymmetrically branched network with a terminal impedance representative of known Cg, Rt, It, and Ct. For respiratory impedances between 2 and 128 Hz, all models fit the data reasonably well, and reasonably accurate estimates of Cg, Rt, It, and Ct were extracted from these data. For data above 200 Hz, however, only the multiple-tube model accurately fitted respiratory impedances (Zrs). This model fitted the Zrs data best when composed of 27 tubes, each having a radius of 0.148 cm and a length of 16.5 cm.  相似文献   

3.
We measured respiratory input impedance (1-25 Hz) in mice and obtained parameters for airway and tissue mechanics by model fitting. Lung volume was varied by inflating to airway opening pressure (Pao) between 0 and 20 cm H2O. The expected pattern of changes in respiratory mechanics with increasing lung volume was seen: a progressive fall in airway resistance and increases in the coefficients of tissue damping and elastance. A surprising pattern was seen in hysteresivity (eta), with a plateau at low lung volumes (Pao < 10 cm H2O), a sharp fall occurring between 10 and 15 cm H2O, and eta approaching a second (lower) plateau at higher lung volumes. Studies designed to elucidate the mechanism(s) behind this behavior revealed that this was not due to chest wall properties, differences in volume history at low lung volume, time dependence of volume recruitment, or surface-acting forces. Our data are consistent with the notion that at low lung volumes the mechanics of the tissue matrix determine eta, whereas at high lung volumes the properties of individual fibers (collagen) become more important.  相似文献   

4.
5.
6.
Suki, Béla, Huichin Yuan, Qin Zhang, and Kenneth R. Lutchen. Partitioning of lung tissue response and inhomogeneous airway constriction at the airway opening. J. Appl.Physiol. 82(4): 1349-1359, 1997.During abronchial challenge, much of the observed response of lung tissues isan artifactual consequence of inhomogeneous airway constriction.Inhomogeneities, in the sense of time constant inequalities, are aninherently linear phenomenon. Conversely, if lung tissues respond to abronchoagonist, they become more nonlinear. On the basis of thesedistinct responses, we present an approach to separate real tissuechanges from airway inhomogeneities. We developed a lung model thatincludes airway inhomogeneities in the form of a continuousdistribution of airway resistances and nonlinear viscoelastic tissues.Because time domain data are dominated by nonlinearities, whereasfrequency domain data are most sensitive to inhomogeneities, we apply acombined time-frequency domain identification scheme. This model wastested with simulated data from a morphometrically based airway modelmimicking gross peripheral airway inhomogeneities and shown capable ofrecovering all tissue parameters to within 15% error. Application toour previously measured data suggests that in dogs during histamine infusion 1) the distribution ofairway resistances increases widely and2) lung tissues do respond but lessso than previously reported. This approach, then, is unique in itsability to differentiate between airway and tissue responses to anagonist from a single broadband measurement made at the airway opening.

  相似文献   

7.
8.
Methods of estimation of the airway resistance by flow-pressure curve obtained in whole-body plethysmography are investigated. The analysis of the physical processes controlling the flow-limitation during expiration shows that these methods are useful only for healthy subjects for the estimation of the airway resistance. The way for estimation of the airway resistance by flow-pressure curve is proposed.  相似文献   

9.
Kaczka, David W., Edward P. Ingenito, Bela Suki, and KennethR. Lutchen. Partitioning airway and lung tissue resistances inhumans: effects of bronchoconstriction. J. Appl.Physiol. 82(5): 1531-1541, 1997.The contributionof airway resistance(Raw) and tissue resistance(Rti) to totallung resistance(RL)during breathing in humans is poorly understood. We have recentlydeveloped a method for separating Rawand Rti from measurements ofRLand lung elastance (EL)alone. In nine healthy, awake subjects, we applied a broad-band optimalventilator waveform (OVW) with energy between 0.156 and 8.1 Hz thatsimultaneously provides tidal ventilation. In four of the subjects,data were acquired before and during a methacholine (MCh)-bronchoconstricted challenge. TheRLandELdata were first analyzed by using a model with a homogeneous airwaycompartment leading to a viscoelastic tissue compartment consisting oftissue damping and elastance parameters. Our OVW-based estimates ofRaw correlated well with estimatesobtained by using standard plethysmography and were responsive toMCh-induced bronchoconstriction. Our data suggest thatRti comprises ~40% of totalRLat typical breathing frequencies, which corresponds to ~60% ofintrathoracic RL. During mildMCh-induced bronchoconstriction, Rawaccounts for most of the increase inRL. At high doses of MCh, therewas a substantial increase in RLat all frequencies and inEL athigher frequencies. Our analysis showed that bothRaw andRti increase, but most of the increaseis due to Raw. The data also suggestthat widespread peripheral constriction causes airway wall shunting toproduce additional frequency dependence inEL.

  相似文献   

10.
The barometric method has recently been employed to detect airway constriction in small animals. This study was designed to evaluate the barometric method to detect mediator-induced central and peripheral airway constriction in BALB/c mice. First, the central airway constrictor carbachol and the peripheral airway constrictor histamine were employed to induce airway constriction, which was detected by both the conventional body plethysmography and the barometric method in anesthetized mice. Second, bronchoconstriction induced by aerosolized carbachol or other mediators was detected with the barometric plethysmography in conscious, unrestrained mice. Carbachol inhalation caused about four-fold increase in pulmonary resistance (RL) and about two-fold increase in enhanced pause (Penh) in anesthetized mice. In contrast, in the same preparation, histamine aerosol induced a decrease in dynamic compliance (Cdyn), with no alteration in RL or Penh. In awake mice, carbachol and methacholine caused increases in Penh, frequency, and tidal volume (VT). On the other hand, histamine, histamine + bradykinin, and prostaglandin-D2 did not alter Penh but decreased VT in conscious mice. These data suggest that there was no sufficient evidence to indicate that Penh could be a good indicator of bronchoconstriction for the whole airways.  相似文献   

11.
The mouse is the most extensively studied animal species in respiratory research, yet the technologies available to assess airway function in conscious mice are not universally accepted. We hypothesized that whole body plethysmography employing noninvasive restraint (RWBP) could be used to quantify specific airway resistance (sRaw-RWBP) and airway responsiveness in conscious mice. Methacholine responses were compared using sRaw-RWBP vs. airway resistance by the forced oscillation technique (Raw-FOT) in groups of C57, A/J, and BALB/c mice. sRaw-RWBP was also compared with sRaw derived from double chamber plethysmography (sRaw-DCP) in BALB/c. Finally, airway responsiveness following allergen challenge in BALB/c was measured using RWBP. sRaw-RWBP in C57, A/J, and BALB/c mice was 0.51 +/- 0.03, 0.68 +/- 0.03, and 0.63 +/- 0.05 cm/s, respectively. sRaw derived from Raw-FOT and functional residual capacity (Raw*functional residual capacity) was 0.095 cm/s, approximately one-fifth of sRaw-RWBP in C57 mice. The intra- and interanimal coefficients of variations were similar between sRaw-RWBP (6.8 and 20.1%) and Raw-FOT (3.4 and 20.1%, respectively). The order of airway responsiveness employing sRaw-RWBP was AJ > BALBc > C57 and for Raw-FOT was AJ > BALB/c = C57. There was no difference between the airway responsiveness assessed by RWBP vs. DCP; however, baseline sRaw-RWBP was significantly lower than sRaw-DCP. Allergen challenge caused a progressive decrease in the provocative concentration of methacholine that increased sRaw to 175% postsaline values based on sRaw-RWBP. In conclusion, the technique of RWBP was rapid, reproducible, and easy to perform. Airway responsiveness measured using RWBP, DCP, and FOT was equivalent. Allergen responses could be followed longitudinally, which may provide greater insight into the pathogenesis of chronic airway disease.  相似文献   

12.
Modeling of respiratory system impedances in dogs   总被引:1,自引:0,他引:1  
Mechanical impedances between 4 and 64 Hz of the respiratory system in dogs have been reported (A.C. Jackson et al. J. Appl. Physiol. 57: 34-39, 1984) previously by this laboratory. It was observed that resistance (the real part of impedance) decreased slightly with frequency between 4 and 22 Hz then increased considerably with frequency above 22 Hz. In the current study, these impedance data were analyzed using nonlinear regression analysis incorporating several different lumped linear element models. The five-element model of Eyles and Pimmel (IEEE Trans. Biomed. Eng. 28: 313-317, 1981) could only fit data where resistance decreased with frequency. However, when the model was applied to these data the returned parameter estimates were not physiologically realistic. Over the entire frequency range, a significantly improved fit was obtained with the six-element model of DuBois et al. (J. Appl. Physiol. 8: 587-594, 1956), since it could follow the predominate frequency-dependent characteristic that was the increase in resistance. The resulting parameter estimates suggested that the shunt compliance represents alveolar gas compressibility, the central branch represents airways, and the peripheral branch represents lung and chest wall tissues. This six-element model could not fit, with the same set of parameter values, both the frequency-dependent decrease in Rrs and the frequency-dependent increase in resistance. A nine-element model recently proposed by Peslin et al. (J. Appl. Physiol. 39: 523-534, 1975) was capable of fitting both the frequency-dependent decrease and the frequency-dependent increase in resistance. However, the data only between 4 and 64 Hz was not sufficient to consistently determine unique values for all nine parameters.  相似文献   

13.
BACKGROUND: To investigate the effect of body temperature and moisture on body fat (%fat), volume and density by air-displacement plethysmography (BOD POD). METHODS: %fat, body volume and density by the BOD POD before (BOD PODBH) and immediately following hydrostatic weighing (BOD PODFH) were performed in 32 healthy females (age (yr) 33 +/- 11, weight (kg) 64 +/- 14, height (cm) 167 +/- 7). Body temperature and moisture were measured prior to BOD PODBH and prior to BOD PODFH with body moisture defined as the difference in body weight (kg) between the BOD PODBH and BOD PODFH measurements. RESULTS: BOD PODFH %fat (27.1%) and body volume (61.5 L) were significantly lower (P 相似文献   

14.
Total respiratory input and transfer impedances in humans   总被引:2,自引:0,他引:2  
  相似文献   

15.
16.
17.
Double-chamber plethysmography is a well established noninvasive method of assessing airflow obstruction in small lab animals. It allows measurement of the specific airway resistance (sRaw), which unlike enhanced pause (Penh), is a meaningful airway mechanics parameter. Since sRaw is measured in spontaneously breathing mice, a limitation of the method is the inability to exclude nasal resistance changes. We recently showed that mice are not truly obligate nasal breathers and that after nasal occlusion, nasally breathing mice can transition to an oral mode of breathing. We now show that it is experimentally possible to algebraically separate the average nasal and pulmonary (including laryngeal) components of total airway resistance change by a series of measurements made across groups of mice breathing nasally or orally, assuming that oral resistance remains constant. Using this approach, we show that nasal resistance change comprises one-half or more of the total resistance change during methacholine challenge. Inhibition of mucin secretion from airway goblet cells attenuates pulmonary but not nasal airway hyperresponsiveness (AHR), and nasal AHR in a murine model of rhinitis may be related to edema.  相似文献   

18.
19.
Respiratory input impedance (Zrs) from 2.5 to 320 Hz displays a high-frequency resonance, the location of which depends on the density of the resident gas in the lungs (J. Appl. Physiol. 67: 2323-2330, 1989). A previously used six-element model has suggested that the resonance is due to alveolar gas compression (Cg) resonating with tissue inertance (Iti). However, the density dependence of the resonance indicates that is associated with the first airway acoustic resonance. The goal of this study was to determine whether unique properties for tissues and airways can be extracted from Zrs data by use of models that incorporate airway acoustic phenomena. We applied several models incorporating airway acoustics to the 2.5- to 320-Hz data from nine healthy adult humans during room air (RA) and 20% He-80% O2 (HeO2) breathing. A model consisting of a single open-ended rigid tube produced a resonance far sharper than that seen in the data. To dampen the resonance features, we used a model of multiple open-ended rigid tubes in parallel. This model fit the data very well for both RA and HeO2 but required fewer and longer tubes with HeO2. Another way to dampen the resonance was to use a single rigid tube terminated with an alveolar-tissue unit. This model also fit the data well, but the alveolar Cg estimates were far smaller than those expected based on the subject's thoracic gas volume. If Cg was fixed based on the thoracic gas volume, a large number of tubes were again required. These results along with additional simulations show that from input Zrs alone one cannot uniquely identify features indigenous to alveolar Cg or to the respiratory tissues.  相似文献   

20.
Total respiratory input (Zin) and transfer (Ztr) impedances were obtained from 4 to 30 Hz in 10 healthy subjects breathing air and He-O2. Zin was measured by applying pressure oscillations around the head to minimize the upper airway shunt and Ztr by applying pressure oscillations around the chest. Ztr was analyzed with a six-coefficient model featuring airways resistance (Raw) and inertance (Iaw), alveolar gas compressibility, and tissue resistance, inertance, and compliance. Breathing He-O2 significantly decreased Raw (1.35 +/- 0.32 vs. 1.74 +/- 0.49 cmH2O.l-1.s in air, P less than 0.01) and Iaw (0.59 +/- 0.33 vs. 1.90 +/- 0.44 x 10(-2) cmH2O.l-1.s2), but, as expected, it did not change the tissue coefficients significantly. Airways impedance was also separately computed by combining Zin and Ztr data. This approach demonstrated similar variations in Raw and Iaw with the lighter gas mixture. With both analyses, however, the changes in Iaw were more than what was expected from the change in density. This indicates that factors other than gas inertance are included in Iaw and reveals the short-comings of the six-coefficient model to interpret impedance data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号