首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The chromosome passenger complex (CPC) is a master regulator of mitosis. Inner centromere protein (INCENP) acts as a scaffold regulating CPC localization and activity. During early mitosis, the N-terminal region of INCENP forms a three-helix bundle with Survivin and Borealin, directing the CPC to the inner centromere where it plays essential roles in chromosome alignment and the spindle assembly checkpoint. The C-terminal IN box region of INCENP is responsible for binding and activating Aurora B kinase. The central region of INCENP has been proposed to comprise a coiled coil domain acting as a spacer between the N- and C-terminal domains that is involved in microtubule binding and regulation of the spindle checkpoint. Here we show that the central region (213 residues) of chicken INCENP is not a coiled coil but a ∼32-nm-long single α-helix (SAH) domain. The N-terminal half of this domain directly binds to microtubules in vitro. By analogy with previous studies of myosin 10, our data suggest that the INCENP SAH might stretch up to ∼80 nm under physiological forces. Thus, the INCENP SAH could act as a flexible “dog leash,” allowing Aurora B to phosphorylate dynamic substrates localized in the outer kinetochore while at the same time being stably anchored to the heterochromatin of the inner centromere. Furthermore, by achieving this flexibility via an SAH domain, the CPC avoids a need for dimerization (required for coiled coil formation), which would greatly complicate regulation of the proximity-induced trans-phosphorylation that is critical for Aurora B activation.  相似文献   

2.
We have screened for the presence of two centromere autoantigens, CENP-B (80 kDa) and CENP-C (140 kDa) at the inactive centromere of a naturally occurring stable dicentric chromosome using specific antibodies that do not cross-react with any other chromosomal proteins. In order to discriminate between the active and inactive centromeres on this chromosome we have developed a modification of the standard methanol/acetic acid fixation procedure that allows us to obtain high-quality cytological spreads that retain antigenicity with the anti-centromere antibodies. We have noted three differences in the immunostaining patterns with specific anti-CENP-B and CENP-C antibodies. (1) The amount of detectable CENP-B varies from chromosome to chromosome. The amount of CENPC appears to be more or less the same on all chromosomes. (2) CENP-B is present at both active and inactive centromeres of stable dicentric autosomes. CENP-C is not detectable at the inactive centromeres. (3) While immunofluorescence with anti-CENP-C antibodies typically gives two discrete spots, staining with anti-CENP-B often appears as a single bright bar connecting both sister centromeres. This suggests that while CENP-C may be confined to the outer centromere in the kinetochore region, CENP-B may be distributed throughout the entire centromere. Our data suggest that CENP-C is likely to be a component of some invariant chromosomal substructure, such as the kinetochore. CENPB may be involved in some other aspect of centromere function, such as chromosome movement or DNA packaging.Abbreviations CENP centromere protein  相似文献   

3.
We describe a novel set of polypeptide antigens that shows a dramatic change in structural localization during mitosis. Through metaphase these antigens define a new chromosomal substructure that is located between the sister chromatids. Because the antigens are concentrated in the pericentromeric region, we have provisionally termed them the INCENPs (inner centromere proteins). The INCENPs (two polypeptides of 155 and 135 kD) were identified with a monoclonal antibody that was raised against the bulk proteins of the mitotic chromosome scaffold fraction. These two polypeptides are the most tightly bound chromosomal proteins known. When scaffolds are prepared, 100% of the detectable INCENPs remain scaffold associated. We were therefore unprepared for the fate of the INCENPs at anaphase. As the sister chromatids separate, the INCENPs dissociate fully from them, remaining behind at the metaphase plate as the chromatids migrate to the spindle poles. During anaphase the INCENPs are found on coarse fibers in the central spindle, and also in close apposition to the cell membrane in the region of the forming contractile ring. During telophase, the INCENPs gradually become focused onto the forming midbody, together with which they are ultimately discarded. Several possible in vivo roles for the INCENPs are suggested by these data: regulation of sister chromatid pairing, stabilization of the plane of cleavage, and separation of spindle poles at anaphase.  相似文献   

4.
Inactive centromeres of stable dicentric chromosomes provide a unique opportunity to examine the resolution of sister chromatid cohesion in mitosis. Here we show for the first time that inactive centromeres are composed of heterochromatin, as defined by the presence of heterochromatin protein HP1(Hs alpha). We then show that both the inner centromere protein (INCENP) and its binding partner Aurora-B/AIM-1 kinase can also be detected at the inactive centromere. Thus, targeting of the chromosomal passengers is not dependent upon the presence of an active centromere/kinetochore. Furthermore, we show that the association of INCENP with the inactive centromere correlates strictly with the state of cohesion between sister chromatids: loss of cohesion is accompanied by loss of detectable INCENP. These results are consistent with recent suggestions that one function of the chromosomal passenger proteins may be to regulate sister chromatid separation in mitosis.  相似文献   

5.
We have performed a biochemical and double-stranded RNA-mediated interference (RNAi) analysis of the role of two chromosomal passenger proteins, inner centromere protein (INCENP) and aurora B kinase, in cultured cells of Drosophila melanogaster. INCENP and aurora B function is tightly interlinked. The two proteins bind to each other in vitro, and DmINCENP is required for DmAurora B to localize properly in mitosis and function as a histone H3 kinase. DmAurora B is required for DmINCENP accumulation at centromeres and transfer to the spindle at anaphase. RNAi for either protein dramatically inhibited the ability of cells to achieve a normal metaphase chromosome alignment. Cells were not blocked in mitosis, however, and entered an aberrant anaphase characterized by defects in sister kinetochore disjunction and the presence of large amounts of amorphous lagging chromatin. Anaphase A chromosome movement appeared to be normal, however cytokinesis often failed. DmINCENP and DmAurora B are not required for the correct localization of the kinesin-like protein Pavarotti (ZEN-4/CHO1/MKLP1) to the midbody at telophase. These experiments reveal that INCENP is required for aurora B kinase function and confirm that the chromosomal passengers have essential roles in mitosis.  相似文献   

6.
After the separation of sister chromatids in anaphase, it is essential that the cell position a cleavage furrow so that it partitions the chromatids into two daughter cells of roughly equal size. The mechanism by which cells position this cleavage furrow remains unknown, although the best current model is that furrows always assemble midway between asters. We used micromanipulation of human cultured cells to produce mitotic heterokaryons with two spindles fused in a V conformation. The majority (15/19) of these cells cleaved along a single plane that transected the two arms of the V at the position where the metaphase plate had been, a result at odds with current views of furrow positioning. However, four cells did form an additional ectopic furrow between the spindle poles at the open end of the V, consistent with the established view. To begin to address the mechanism of furrow assembly, we have begun a detailed study of the properties of the chromosome passenger inner centromere protein (INCENP) in anaphase and telophase cells. We found that INCENP is a very early component of the cleavage furrow, accumulating at the equatorial cortex before any noticeable cortical shape change and before any local accumulation of myosin heavy chain. In mitotic heterokaryons, INCENP was detected in association with spindle midzone microtubules beneath sites of furrowing and was not detected when furrows were absent. A functional role for INCENP in cytokinesis was suggested in experiments where a nearly full-length INCENP was tethered to the centromere. Many cells expressing the chimeric INCENP failed to complete cytokinesis and entered the next cell cycle with daughter cells connected by a large intercellular bridge with a prominent midbody. Together, these results suggest that INCENP has a role in either the assembly or function of the cleavage furrow.  相似文献   

7.
The function of the Aurora B kinase at centromeres and the central spindle is crucial for chromosome segregation and cytokinesis, respectively. Herein, we have investigated the regulation of human Aurora B by its complex partners inner centromere protein (INCENP) and survivin. We found that overexpression of a catalytically inactive, dominant-negative mutant of Aurora B impaired the localization of the entire Aurora B/INCENP/survivin complex to centromeres and the central spindle and severely disturbed mitotic progression. Similar results were also observed after depletion, by RNA interference, of either Aurora B, INCENP, or survivin. These data suggest that Aurora B kinase activity and the formation of the Aurora B/INCENP/survivin complex both contribute to its proper localization. Using recombinant proteins, we found that Aurora B kinase activity was stimulated by INCENP and that the C-terminal region of INCENP was sufficient for activation. Under identical assay conditions, survivin did not detectably influence kinase activity. Human INCENP was a substrate of Aurora B and mass spectrometry identified three consecutive residues (threonine 893, serine 894, and serine 895) containing at least two phosphorylation sites. A nonphosphorylatable mutant (TSS893-895AAA) was a poor activator of Aurora B, demonstrating that INCENP phosphorylation is important for kinase activation.  相似文献   

8.
The coordinated activities at centromeres of two key cell cycle kinases, Polo and Aurora B, are critical for ensuring that the two sister kinetochores of each chromosome are attached to microtubules from opposite spindle poles prior to chromosome segregation at anaphase. Initial attachments of chromosomes to the spindle involve random interactions between kinetochores and dynamic microtubules, and errors occur frequently during early stages of the process. The balance between microtubule binding and error correction (e.g., release of bound microtubules) requires the activities of Polo and Aurora B kinases, with Polo promoting stable attachments and Aurora B promoting detachment. Our study concerns the coordination of the activities of these two kinases in vivo. We show that INCENP, a key scaffolding subunit of the chromosomal passenger complex (CPC), which consists of Aurora B kinase, INCENP, Survivin, and Borealin/Dasra B, also interacts with Polo kinase in Drosophila cells. It was known that Aurora A/Bora activates Polo at centrosomes during late G2. However, the kinase that activates Polo on chromosomes for its critical functions at kinetochores was not known. We show here that Aurora B kinase phosphorylates Polo on its activation loop at the centromere in early mitosis. This phosphorylation requires both INCENP and Aurora B activity (but not Aurora A activity) and is critical for Polo function at kinetochores. Our results demonstrate clearly that Polo kinase is regulated differently at centrosomes and centromeres and suggest that INCENP acts as a platform for kinase crosstalk at the centromere. This crosstalk may enable Polo and Aurora B to achieve a balance wherein microtubule mis-attachments are corrected, but proper attachments are stabilized allowing proper chromosome segregation.  相似文献   

9.
Chromosomal passengers and the (aurora) ABCs of mitosis   总被引:28,自引:0,他引:28  
Chromosomal passengers are proteins that move from centromeres to the spindle midzone during mitosis. Recent experiments show that the passengers inner centromere protein (INCENP) and aurora-B kinase are in a macromolecular complex that might also contain a third passenger, survivin. The chromosomal passenger complex functions throughout mitosis in chromosome condensation and segregation, and at the end of mitosis, in the completion of cytokinesis.  相似文献   

10.
Mitosis requires precise control of microtubule dynamics. The KinI kinesin MCAK, a microtubule depolymerase, is critical for this regulation. In a screen to discover previously uncharacterized microtubule-associated proteins, we identified ICIS, a protein that stimulates MCAK activity in vitro. Consistent with this biochemical property, blocking ICIS function in Xenopus extracts with antibodies caused excessive microtubule growth and inhibited spindle formation. Prior to anaphase, ICIS localized in an MCAK-dependent manner to inner centromeres, the chromosomal region located in between sister kinetochores. From Xenopus extracts, ICIS coimmunoprecipitated MCAK and the inner centromere proteins INCENP and Aurora B, which are thought to promote chromosome biorientation. By immunoelectron microscopy, we found that ICIS is present on the surface of inner centromeres, placing it in an ideal location to depolymerize microtubules associated laterally with inner centromeres. At inner centromeres, MCAK-ICIS may destabilize these microtubules and provide a mechanism that prevents kinetochore-microtubule attachment errors.  相似文献   

11.
The inner centromere protein (INCENP) has a modular organization, with domains required for chromosomal and cytoskeletal functions concentrated near the amino and carboxyl termini, respectively. In this study we have identified an autonomous centromere- and midbody-targeting module in the amino-terminal 68 amino acids of INCENP. Within this module, we have identified two evolutionarily conserved amino acid sequence motifs: a 13–amino acid motif that is required for targeting to centromeres and transfer to the spindle, and an 11–amino acid motif that is required for transfer to the spindle by molecules that have targeted previously to the centromere. To begin to understand the mechanisms of INCENP function in mitosis, we have performed a yeast two-hybrid screen for interacting proteins. These and subsequent in vitro binding experiments identify a physical interaction between INCENP and heterochromatin protein HP1Hsα. Surprisingly, this interaction does not appear to be involved in targeting INCENP to the centromeric heterochromatin, but may instead have a role in its transfer from the chromosomes to the anaphase spindle.  相似文献   

12.
Chromosome segregation requires sister chromatid resolution. Condensins are essential for this process since they organize an axial structure where topoisomerase II can work. How sister chromatid separation is coordinated with chromosome condensation and decatenation activity remains unknown. We combined four-dimensional (4D) microscopy, RNA interference (RNAi), and biochemical analyses to show that topoisomerase II plays an essential role in this process. Either depletion of topoisomerase II or exposure to specific anti-topoisomerase II inhibitors causes centromere nondisjunction, associated with syntelic chromosome attachments. However, cells degrade cohesins and timely exit mitosis after satisfying the spindle assembly checkpoint. Moreover, in topoisomerase II–depleted cells, Aurora B and INCENP fail to transfer to the central spindle in late mitosis and remain tightly associated with centromeres of nondisjoined sister chromatids. Also, in topoisomerase II–depleted cells, Aurora B shows significantly reduced kinase activity both in S2 and HeLa cells. Codepletion of BubR1 in S2 cells restores Aurora B kinase activity, and consequently, most syntelic attachments are released. Taken together, our results support that topoisomerase II ensures proper sister chromatid separation through a direct role in centromere resolution and prevents incorrect microtubule–kinetochore attachments by allowing proper activation of Aurora B kinase.  相似文献   

13.
Dynamic microtubules facilitate chromosome arrangement before anaphase, whereas during anaphase microtubule stability assists chromosome separation. Changes in microtubule dynamics at the metaphase-anaphase transition are regulated by Cdk1. Cdk1-mediated phosphorylation of Sli15/INCENP promotes preanaphase microtubule dynamics by preventing chromosomal passenger complex (CPC; Sli15/INCENP, Bir1/Survivin, Nbl1/Borealin, Ipl1/Aurora) association with spindles. However, whether Cdk1 has sole control over microtubule dynamics, and how CPC-microtubule association influences microtubule behavior, are unclear. Here, we show that Ipl1/Aurora-dependent phosphorylation of Sli15/INCENP modulates microtubule dynamics by preventing CPC binding to the preanaphase spindle and to the central spindle until late anaphase, facilitating spatiotemporal control of microtubule dynamics required for proper metaphase centromere positioning and anaphase spindle elongation. Decreased Ipl1-dependent Sli15 phosphorylation drives direct CPC binding to microtubules, revealing how the CPC influences microtubule dynamics. We propose that Cdk1 and Ipl1/Aurora cooperatively modulate microtubule dynamics and that Ipl1/Aurora-dependent phosphorylation of Sli15 controls spindle function by excluding the CPC from spindle regions engaged in microtubule polymerization.  相似文献   

14.
We describe the generation of 11 monoclonal antibodies that bind to the centromere/kinetochore region of human mitotic chromosomes. These antibodies were raised against mitotic chromosome scaffolds and screened for centromere/kinetochore binding by indirect immunofluorescence against purified chromosomes. Immunoblot analyses with these antibodies revealed that all of the antigens are greater than 200 kD and are components of nuclei, chromosomes, and/or chromosome scaffolds. Comparison of the immunolocalization of the antigens with that observed for the centromere-associated protein CENP-B revealed that each of these centromere/kinetochore proteins lies more peripherally to the DNA than does CENP-B. In cells normally progressing through the cell cycle, these antigens displayed four distinct patterns of centromere/kinetochore association, corresponding to a minimum of four novel centromere/kinetochore-associated proteins.  相似文献   

15.
Cytoskeletal rearrangements during mitosis must be co-ordinated with chromosome movements. The 'chromosomal passenger' proteins [1], which include the inner centromere protein (INCENP [2]), the Aurora-related serine-threonine protein kinase AIRK2 [3,4] and the unidentified human autoantigen TD-60 [5], have been suggested to integrate mitotic events. These proteins are chromosomal until metaphase but subsequently transfer to the midzone microtubule array and the equatorial cortex during anaphase. Disruption of INCENP function affects both chromosome segregation and completion of cytokinesis [6,7], whereas interference with AIRK2 function primarily affects cytokinesis [3,8]. Here, we report that INCENP is stockpiled in Xenopus eggs in a complex with Xenopus AIRK2 (XAIRK2), and that INCENP and AIRK2 kinase bind one another in vitro. This association was found to be evolutionarily conserved. Sli15p, the binding partner of yeast Aurora kinase Ipl1p, can be recognized as an INCENP family member because of the presence of a conserved carboxy-terminal sequence region, which we term the IN box. This interaction between INCENP and Aurora kinase was found to be biologically relevant. INCENP and AIRK2 colocalized exactly in human cells, and INCENP was required to target AIRK2 correctly to centromeres and the central spindle.  相似文献   

16.
CENP-B controls centromere formation depending on the chromatin context   总被引:4,自引:0,他引:4  
Okada T  Ohzeki J  Nakano M  Yoda K  Brinkley WR  Larionov V  Masumoto H 《Cell》2007,131(7):1287-1300
The centromere is a chromatin region that serves as the spindle attachment point and directs accurate inheritance of eukaryotic chromosomes during cell divisions. However, the mechanism by which the centromere assembles and stabilizes at a specific genomic region is not clear. The de novo formation of a human/mammalian artificial chromosome (HAC/MAC) with a functional centromere assembly requires the presence of alpha-satellite DNA containing binding motifs for the centromeric CENP-B protein. We demonstrate here that de novo centromere assembly on HAC/MAC is dependent on CENP-B. In contrast, centromere formation is suppressed in cells expressing CENP-B when alpha-satellite DNA was integrated into a chromosomal site. Remarkably, on those integration sites CENP-B enhances histone H3-K9 trimethylation and DNA methylation, thereby stimulating heterochromatin formation. Thus, we propose that CENP-B plays a dual role in centromere formation, ensuring de novo formation on DNA lacking a functional centromere but preventing the formation of excess centromeres on chromosomes.  相似文献   

17.
Two closely connected mechanisms safeguard the fidelity of chromosome segregation in eukaryotic cells. The mitotic checkpoint monitors the attachment of kinetochores to microtubules and delays anaphase onset until all sister kinetochores have become attached to opposite poles. In addition, an error correction mechanism destabilizes erroneous attachments that do not lead to tension at sister kinetochores. Aurora B kinase, the catalytic subunit of the CPC (chromosomal passenger complex), acts as a sensor and effector in both pathways. In this review we focus on a poorly understood but important aspect of mitotic control: what prevents the mitotic checkpoint from springing into action when sister centromeres are split and tension is suddenly lost at anaphase onset? Recent work has shown that disjunction of sister chromatids, in principle, engages the mitotic checkpoint, and probably also the error correction mechanism, with potentially catastrophic consequences for cell division. Eukaryotic cells have solved this 'anaphase problem' by disabling the mitotic checkpoint at the metaphase-to-anaphase transition. Checkpoint inactivation is in part due to the reversal of Cdk1 (cyclin-dependent kinase 1) phosphorylation of the CPC component INCENP (inner centromere protein; Sli15 in budding yeast), which causes the relocation of the CPC from centromeres to the spindle midzone. These findings highlight principles of mitotic checkpoint control: when bipolar chromosome attachment is reached in mitosis, the checkpoint is satisfied, but still active and responsive to loss of tension. Mitotic checkpoint inactivation at anaphase onset is required to prevent checkpoint re-engagement when sister chromatids split.  相似文献   

18.
《The Journal of cell biology》1994,127(5):1159-1171
The molecular mechanism involved in packaging centromeric heterochromatin is still poorly understood. CENP-B, a centromeric protein present in human cells, is though to be involved in this process. This is a DNA-binding protein that localizes to the central domain of the centromere of human and mouse chromosomes due to its association with the 17-bp CENP-B box sequence. We have designed a biochemical approach to search for functional homologues of CENP-B in Drosophila melanogaster. This strategy relies upon the use of DNA fragments containing the CENP-B box to identify proteins that specifically bind this sequence. Three polypeptides were isolated by nuclear protein extraction, followed by sequential ion exchange columns and DNA affinity chromatography. All three proteins are present in the complex formed after gel retardation with the human alphoid satellite DNA that contains the CENP-B box. Footprinting analysis reveals that the complex occupies both strands of the CENP-B box, although it is still unclear which of the polypeptides actually makes contact with the DNA. Localization of fluorescein-labeled proteins after microinjection into early Drosophila embryos shows that they associate with condensed chromosomes. Immunostaining of embryos with a polyclonal serum made against all three polypeptides also shows chromosomal localization throughout mitosis. During metaphase and anaphase the antigens appear to localize preferentially to centromeric heterochromatin. Immunostaining of neuroblasts chromosome spreads confirmed these results, though some staining of chromosomal arms is also observed. The data strongly suggests that the polypeptides we have identified are chromosomal binding proteins that accumulate mainly at the centromeric heterochromatin. Furthermore, DNA binding assays clearly indicate that they have a high specific affinity for the human CENP-B box. This would suggest that at least one of the three proteins isolated might be a functional homologue of the human CENP-B.  相似文献   

19.
INCENP, Borealin, Survivin, and Aurora B kinase comprise the chromosomal passenger complex, an essential regulator of mitotic events. INCENP (inner centromere protein) binds and activates Aurora B through a feedback loop involving phosphorylation of a Thr-Ser-Ser (TSS) motif near the INCENP C terminus. Here, we have examined the role of the TSS motif in vertebrate cells using an DT40 INCENP(ON/OFF) conditional knock-out cell line in which mutants are expressed in the absence of wild-type INCENP. Our analysis confirms that regulated phosphorylation of the two serine residues (presumably by Aurora B) is critical for full activation of the kinase and is essential for cell viability. Cells expressing INCENP mutants bearing either phospho-null (TAA) or phospho-mimetic (TEE) mutations exhibit significant levels of Aurora B kinase activity but fail to undergo normal spindle elongation or complete cytokinesis. This work confirms previous suggestions that INCENP can act as a rheostat, with different INCENP mutants promoting differing degrees of kinase activation. Our results also reveal that mitotic progression is accompanied by a requirement for progressively higher levels of Aurora B kinase activity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号