首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of platinum(II) complexes with 2,9-disubstituted-6-benzylaminopurines has been prepared. The complexes have the following composition: cis-[Pt(Boh)(2)Cl(2)] (1), cis-[Pt(Oc)(2)Cl(2)] (2), cis-[Pt(Ros)(2)Cl(2)] (3), cis-[Pt(i-PrOc)(2)Cl(2)] (4), cis-[Pt(BohH(+))(2)Cl(2)]Cl(2) (5), cis-[Pt(OcH(+))(2)Cl(2)]Cl(2) (6), cis-[Pt(RosH(+))(2)Cl(2)]Cl(2) (7) and cis-[Pt(i-PrOcH(+))(2)Cl(2)]Cl(2) (8), where Boh=2-(3-hydroxypropylamino)-6-benzylamino-9-isopropylpurine, Oc=2-(2-hydroxyethylamino)-6-benzylamino-9-methylpurine, Ros=2-(R)-(1-ethyl-2-hydroxyethylamino)-6-benzylamino-9-isopropylpurine and i-PrOc=2-(2-hydroxyethylamino)-6-benzylamino-9-isopropylpurine. The complexes have been characterized by elemental analyses, conductivity measurements and their infrared, ES+mass (electrospray mass spectra in the positive ion mode) and NMR ((1)H, (13)C, (15)N and (195)Pt) spectra. The results obtained from the physical studies, particularly from multinuclear NMR spectroscopy, show that in all the investigated complexes (1-8), two molecules of purine derivative are coordinated to platinum via the N(7) atom of the imidazole ring in a cis-configuration. The prepared compounds have been screened for their in vitro cytotoxicity against G-361 (human malignant melanoma), HOS (human osteogenic sarcoma), K-562 (human chronic myelogenous leukemia) and MCF-7 (human breast adenocarcinoma) cell lines. All complexes are significantly more active than the initial 2,9-disubstituted-6-benzylaminopurine derivatives. In the case of some tumour cell lines, IC(50) values for the complexes (1, 3, 4, 5, 8) are significantly lower than those obtained for cisplatin and oxaliplatin. The best cytotoxicity was achieved for the complex (3) for which IC(50) values range from 1 to 2 microM.  相似文献   

2.
The reactions of Pt(II) complexes, cis-[Pt(NH3)2Cl2], [Pt(terpy)Cl]+, [Pt(terpy)(S-cys)]2+, and [Pt(terpy)(N7-guo)]2+, where terpy=2,2':6',2'-terpyridine, S-cys=L-cysteine, and N7-guo=guanosine, with some biologically relevant ligands such as guanosine-5'-monophosphate (5'-GMP), L-cysteine, glutathione (GSH) and some strong sulfur-containing nucleophiles such as diethyldithiocarbamate (dedtc), thiosulfate (sts), and thiourea (tu), were studied in aqueous 0.1 M Hepes at pH of 7.4 using UV-vis, stopped-flow spectrophotometry, and 1H NMR spectroscopy.  相似文献   

3.
Various Pt(II)-glycine coordination compounds were characterized by 1H and 13C NMR spectroscopy, some of them also by electrophoretic and chromatographic behavior. The results were applied to the analysis of the reaction mixtures of cis-[Pt(NH3)2Cl2] and glycine obtained under various conditions. Cis-[Pt(NH3)2Cl2] reacts with glycine to give cis-diammine-(glycine-N,O)-Pt(II) and cis-diammine-bis(glycine-N-)Pt(II). Their ratio depends primarily on the pH of the reaction medium. Conformation of these compounds is discussed based on the observed Pt-C and Pt-H NMR coupling constants.  相似文献   

4.
The reaction of the antitumor active agent cis-[Pt(NH3)2(4-mepy)Cl]Cl (4-mepy stands for 4-methylpyridine) with d(GpG) has been investigated by 1H magnetic resonance spectroscopy. Initially, two mononuclear complexes cis-Pt(NH3)2(4-mepy)[d(GpG)-N7(1)] 1 and cis-Pt(NH3)2(4-mepy)[d(GpG)-N7(2)] 2 are formed in an unexpected ratio 65:35, as determined by 1H NMR and enzymatic digestion techniques. Both products react further with a second equivalent of cis-[Pt(NH3)2(4-mepy)Cl]Cl forming the dinuclear platinum complex [cis-Pt(NH3)2(4-mepy)]2[mu-d(GpG)- N7(1),N7(2)] 3. With [Pt(dien)Cl]Cl and [Pt(NH3)3Cl]Cl similar complexes are formed. No evidence was found for the formation of chelates cis-Pt(NH3)(4-mepy) [d(GpG)-N7(1),N7(2)], which would be formed upon ammonia release from the mononuclear complexes 1 and 2. Even addition of strong nucleophiles, like sodium diethyldithiocarbamate, thiourea, cysteine, or methionine, before or after reaction, do not induce the formation of a chelate. Under all conditions the N-donor ligands remain coordinated to Pt in 1,2 and 3. In addition, the results of bacterial survival and mutagenesis experiments with E. coli strains show that the in vivo formation of bifunctional adducts in DNA, comparable to those induced by cis-Pt(NH3)2Cl2, by treatment of cells with cis-[Pt(NH3)2(4-mepy)Cl]Cl is unlikely. Also, a mechanism of binding and intercalation is not supported by experimental data. All experiments suggest that the mechanism of action of this new class of antitumor agents must be different from that of cis-Pt(NH3)2Cl2.  相似文献   

5.
The Pt(II) and Pd(II) complexes of the types cis-[Pt(L(1))(2)Cl(2)].H(2)O (1), cis-[Pt(L(2))(2)Cl(2)].3H(2)O (2), trans-[Pd(L(1))(2)Cl(2)].H(2)O (3), trans-[Pd(L(2))(2)Cl(2)].H(2)O (4), trans-[Pd(L(3))(2)Cl(2)].2DMF (5) and trans-[Pd(L(4))(2)Cl(2)].2DMF (6) (L(1)-L(4)=cyclin-dependent kinase inhibitors derived from 6-benzylamino-9-isopropylpurine) have been prepared and characterized. The complexes have been studied by elemental analyses, conductivity measurements, ES+ MS, FT-IR, (1)H, (13)C and (195)Pt NMR spectra, differential scanning calorimetry and thermogravimetric analysis. The molecular structures of L(1), trans-[Pd(L(3))(2)Cl(2)].2DMF (5) and trans-[Pd(L(4))(2)Cl(2)].2DMF (6) have been determined by single crystal X-ray analysis. The complexes have been tested in vitro due to their presumable anticancer activity against the following human cancer cell lines: K-562, MCF7, G-361 and HOS. Satisfying results were obtained for the complex 1 with IC(50) values of 6 microM acquired against G-361 as well as against HOS cell lines. The lowest values of IC(50) were achieved for the complexes 3 and 4 against MCF 7 cell line with IC(50) 3 microM(for 3) and also 3 microM (for 4).  相似文献   

6.
The preparation of platinum(II) complexes containing L-serine using K(2)[PtCl(4)] and KI as raw materials was undertaken. The cis-trans isomer ratio of the complexes in the reaction mixture differed significantly depending on whether KI was present or absent in the reaction mixture. One of the two [Pt(L-ser-N,O)(2)] complexes (L-ser=L-serinate anion) prepared using KI crystallizes in the monoclinic space group P2(1)2(1)2(1) with unit cell dimensions a=8.710(2) A, b=9.773(3) A, c=11.355(3) A, Z=4. The crystal data revealed that this complex has a cis configuration. The other [Pt(L-ser-N,O)(2)] complex also crystallizes in the monoclinic space group P2(1)2(1)2(1) with unit cell dimensions a=7.0190(9) A, b=7.7445(6) A, c=20.946(2) A, Z=4. The crystal data revealed that this complex has a trans configuration. The 195Pt NMR chemical shifts of trans-[Pt(L-ser-N,O)(2)] and cis-[Pt(L-ser-N,O)(2)] complexes are -1632 and -1832 ppm, respectively. 195Pt NMR and HPLC measurements were conducted to monitor the reactions of the two [Pt(L-ser-N,O)(2)] complexes with HCl. Both 195Pt NMR and HPLC showed that the reactivities of cis- and trans-[Pt(L-ser-N,O)(2)] toward HCl are different: coordinated carboxyl oxygen atoms of trans-[Pt(L-ser-N,O)(2)] were detached faster than those for cis-[Pt(L-ser-N,O)(2)].  相似文献   

7.
A series of platinum(II) tri-n-butylphosphine complexes having the formulas cis-[PtCl2L2], NEt4[PtCl3L], [PtCl(en)L]Cl, [Pt(en)L2](ClO4)2, sym-trans-[Pt2Cl4L2], [Pt2Cl2L4](ClO4)2, trans,trans-[PtCl2L(mu-N2H4)PtCl2L] trans,trans-[PtCl2L(mu-en)PtCl2L], and cis,cis-[PtClL2(mu-N2H4)PtClL2](ClO4)2 (L = tri-n-butylphosphine; en = ethylenediamine) have been synthesized and their cytotoxic activity in vitro and in vivo has been studied. The solution behavior of the novel dinuclear diamine-bridged platinum(II) complexes has been investigated by means of UV and 31P NMR spectroscopy. For the ionic hydrazine compound cis,cis-[PtClL2(mu-N2H4)PtClL2](ClO4)2, an x-ray structure determination is reported. Crystal data: space group P2(1)/a, a = 17.803(1), b = 18.888(3), c = 12.506(3) A, beta = 107.97(2) degrees, Z = 2, R = 0.052, RW = 0.058. The platinum coordination is approximately square-planar, with the bond lengths Pt-Cl = 2.358(5), Pt-N = 2.15(1), Pt-P(trans to Cl) = 2.260(5), and Pt-P(trans to N) = 2.262(6) A. All investigated compounds were cytotoxic in vitro against L1210 cells and showed no cross-resistance to cisplatin. On the other hand, no antitumor activity was observed vs L1210 leucemia in DBA2 mice.  相似文献   

8.
5-Fluorouracil-cisplatin adducts with potential antitumor activity   总被引:1,自引:0,他引:1  
Using 5-fluorouracil (5-FU) and cis-diamminedichloroplatinum(II) (cisplatin, CDDP) as starting compounds, 5-FU-cisplatin adducts cis-[Pt(NH(3))(2)(HFU)Cl] (1) and cis-[Pt(NH(3))(2)(HFU)(2)] (2) were prepared. The obtained complexes were characterized by IR, ES-MS and 1H NMR spectroscopy. Complex 1 reacted with guanosine-5'-monophosphate (5'-GMP) and gave rise to a stable mixed-ligand complex cis-[Pt(NH(3))(2)(HFU)(GMP)] (3), whereas 2 did not undergo a similar reaction. In vitro cell growth inhibition tests of complexes 1 and 2 exhibited moderate antitumor activities against the melanoma B16-BL6 cell line. This work provides the basis for a potential alternative for the combinational use of 5-FU and CDDP in cancer therapy.  相似文献   

9.
Various His-Pt(II) coordination compounds were prepared by reaction of K2PtCl4 or cis-[Pt(NH3)2Cl2](cis-DDP) with His and analyzed by 1H and 13C NMR spectroscopy, electrophoresis, and ion-exchange chromatography. His may be coordinated to Pt by the imidazol iminogroup and/or the alpha-aminogroup; the carboxygroup remains always free. Both bidentate as well as monodentate ligands were identified. Cis-DDP reacts with His to give a mixture of compounds where all these possibilities are present: cis-diamine-(histidine-N,N-)Pt(II) and three different types of cis-diammine-bis(histidine). HCl trans cleavage of compounds with bidentate His ligands leads to a mixture of two compounds having His ligated to Pt by an amino or imin group. The methods applied are suitable for analyzing reactions of His with cis-DDP under model conditions similar to physiological conditions.  相似文献   

10.
The complexes [Pt(dapo)2Cl2], [PtNH3(dapo)Cl2], [Pt(py)(dapo)Cl2], [Pt(mbpo)Cl2].H2O, [Pt(mbpo)(OH)2Cl2].H2O, [Pd(dapo)2Cl2], and [Pd(mbpo)Cl2], where dapo is dimethyl aminomethylphosphine oxide and mbpo is methyl bis(aminomethyl)phosphite oxide have been synthesized and characterized by elemental analyses, electric conductivity, infrared, 1H NMR and electronic spectra. The ligands are found to be coordinated only via the amino groups. The complexes are of cis-square planar configuration with the exception of [Pt(mbpo)(OH)2Cl2].H2O which is pseudo-octahedral. An in vivo antitumor screening of the complexes against Leukemia L1210 was performed. A considerable activity (T/C = 233%) was observed for [PtNH3(dapo)Cl2]. The activity of the remaining complexes was below the accepted criterion.  相似文献   

11.
A comparative study of the binding of square planar cis- and trans-[Pt(NH3)2Cl2] complexes and the octahedral [Ru(NH3)5(H2O)]3+ complex to tRNAphe from yeast was carried out by X-ray crystallography. Both of the carcinostatic compounds, cis-[Pt(NH3)2Cl2] and [Ru(NH3)5(H2O)]3+ show similarities in their mode of binding to tRNA. These complexes bind specifically to the N(7) positions of guanines G15 and G18 in the dihydrouridine loop. [Ru(NH3)5(H2O)]3+ has an additional binding site at N(7) of residue G1 after extensive soaking times (58 days). A noncovalent binding site for ruthenium is also observed in the deep groove of the acceptor stem helix with shorter (25 days) soaking time. The major binding site for the inactive trans-[Pt(NH3)Cl2] complex is at the N(1) position of residue A73, with minor trans-Pt binding sites at the N(7) positions of residues Gm34, G18 and G43. The similarities in the binding modes of cis-[Pt(NH3)2Cl2] and [Ru(NH3)5(H2O)]3+ are expected to be related to their carcinostatic properties.  相似文献   

12.
The reactions of chloroauric acid (HAuCl4) with inosine=ino, guanosine=guo, triacetylinosine=trino, triacetylguanosine=trguo, and cytidine=cyd were studied. Complexes of Au(III) and Au(I) with these nucleosides have been isolated from reactions at different pH values in aqueous and in methanolic solutions. The Au(I) complexes were obtained by reducing Au(III) with 1-ascorbic acid in aqueous solutions. All the isolated complexes were characterized by elemental analyses, conductivity measurements, IR, 1H nmr, and esr spectra. The Au(III) complexes correspond to the general formulae [Au(nucl)2Cl2] Cl, Au(nucl)Cl3, and Au(nucl-H+)Cl2, while the Au(I) complexes are of the Au(nucl)2Cl type, where nucl represents the above nucleosides. In the complex with the composition [AucydCl2]2 that was isolated from aqueous solutions, the Au atom is believed to be in the (II) oxidation state.Possible structures for all the isolated complexes based on the experimental data are proposed and discussed.  相似文献   

13.
The complex trans-bis(dimethylsulfoxide)chloromethylplatinum(II) (1) is fairly soluble in water, where it undergoes multiple equilibria involving the formation of geometrically distinct [Pt(H(2)O)(DMSO)Cl(CH(3))] aqua-species. On reacting an aqueous solution of 1 with monodentate nitrogen donor ligands L, such as pyridines or amines, two well distinct patterns of behavior can be recognized: (i) a single stage fast substitution of one DMSO by the entering ligand, yielding a complex of the type trans(C,N)-[Pt(DMSO)(L)Cl(CH(3))] which contains four different groups coordinated to the metal and which undergoes a slow conversion into its cis-isomer, (ii) a double substitution affording cationic complex ions of the type cis-[Pt(L)(2)(DMSO)(CH(3))](+). When this latter reaction is carried out using sterically hindered ligands, slow rotation of the bulk ligand around the Pt[bond]N bond allows for the identification of head-to-head and head-to-tail rotamers in solution, through (1)H NMR spectrometry. The addition of chloride anion to 1 leads to the anionic species cis-[Pt(DMSO)Cl(2)(CH(3))](-), where a molecule of DMSO still remains coordinated to the metal center, despite its quite fast rate of ligand exchange (k(exch) with free DMSO=12+/-1 s(-1)). The reaction of complex 1 with bidentate ligands, such as ethylenediamine (en) or simple amino acids, leads to the cationic species [Pt(en)(DMSO)(CH(3))](+) or to the neutral [Pt(DMSO)(N[bond]O)(CH(3))], (where N[bond]-O[double bond]GlyO(-), AlaO(-)).  相似文献   

14.
The new square-planar Pt(II) and Pd(II) complexes with cytokinin-derived compounds Bohemine and Olomoucine, having the formulae [Pt(BohH(+))Cl(3)].H(2)O (1), [Pt(Boh)(2)Cl(2)].3H(2)O (2), [Pt(Boh-H)Cl(H(2)O)(2)].H(2)O (3), [Pt(OloH(+))Cl(3)].H(2)O (4), [Pd(BohH(+))Cl(3)].H(2)O (5), [Pd(Boh)Cl(2)(H(2)O)] (6), [Pd(Boh-H)Cl(H(2)O)].EtOH (7) and [Pd(OloH(+))Cl(3)].H(2)O (8), where Boh=6-(benzylamino)-2-[(3-(hydroxypropyl)amino]-9-isopropylpurine and Olo=6-(benzylamino)-2-[(2-(hydroxyethyl)amino]-9-methylpurine, have been synthesized. The complexes have been characterized by elemental analyses, IR, FAB+ mass, 1H, 13C and 195Pt NMR spectra, and conductivity data. The molecular structure of the complex [Pt(BohH(+)-N7)Cl(3)].9/5H(2)O has been determined by an X-ray diffraction study. Results from physical studies show that both Bohemine and Olomoucine are coordinated to transition metals through the N(7) atom of purine ring in all the complexes. The prepared compounds have been tested in vitro for their possible cytotoxic activity against G-361 (human malignant melanoma), HOS (human osteogenic sarcoma), K-562 (human chronic myelogenous leukemia) and MCF-7 (human breast adenocarcinoma) cell lines and IC(50) values have been also determined for all the complexes. IC(50) values estimated for the Pt(II)-Bohemine complexes (2.1-16 microM) allow us to conclude that they could find utilization in antineoplastic therapy. Thus, from a pharmacological point of view, Pt(II) complexes of Bohemine may represent compounds for a new class of antitumor drugs.  相似文献   

15.
The reactions of cis-[PtCl(NH3)2(H2O)]+ with L-methionine have been studied by 1D 195Pt and 15N NMR, and by 2D[1H, 15N] NMR. When the platinum complex is in excess, the initial product, cis-[PtCl(NH3)2(Hmet-S)]+ undergoes slow ring closure to [Pt(NH3)2(Hmet-N,S)]2+. Slow ammine loss then occurs to give the isomer of [PtCl(NH3)(Hmet-N,S)]+ with chloride trans to sulfur. When methionine is in excess, a reaction sequence is proposed in which trans-[PtCl(NH3)(Hmet-S)2]+ isomerises to the cis-isomer, with subsequent ring closure reactions leading to cis-[Pt(Hmet-N,S)2]2+. Near pH 7, methionine is unreactive toward cis-[PtCl(OH)(NH3)2]. By contrast, L-cysteine reacts readily with cis-[PtCl(OH)(NH3)2] at pH 7, but there were many reaction products, including bridged species. Cis-[PtCl(OH)(NH3)2] reacts with reduced thiols in ultrafiltered plasma but these are oxidized if the plasma is not fresh or appropriately stored. With very low concentrations of the platinum complexes (35.5 microM), HPLC experiments (UV detection at 305 nm) indicate that the thiolate (probably cysteine) reactions become simpler as bridging becomes less important.  相似文献   

16.
Three dipeptide complexes of the form K[Pt(IV) (dipep) Cl(OH)2] and four dipeptide complexes of the form K[Pt(IV)-(Hdipep)Cl2(OH)2] were newly prepared. The 195 Pt NMR peak of the K[Pt(IV) (dipep)Cl(OH)2] complexes appeared at about 1200 ppm and these chemical shifts were about 3150 ppm downfield compared with those of the K[Pt(II) (dipep) Cl] complexes. The chemical shifts of the K[Pt(IV) (Hdipep) Cl2 (OH)2] complexes were at about 900 ppm, i.e., about 3050 ppm downfield compared with those of the K[Pt(II) (Hdipep)Cl] complexes. The H[Pt(IV) (Hdigly) Cl2(OH)2] and K[Pt(IV) (Hdigly) Cl2(OH)2] complexes inhibited the growth of C. albicans at a more diluted concentration than cisplatin at 1 microgram/ml, but the platinum complexes only weakly inhibited the growth of these cells compared with the cisplatin-inhibited growth of Meth-A and Hep-2 cells at 10 micrograms/ml. These results suggested that the platinum complexes selectively inhibited the growth of fungal cells.  相似文献   

17.
Modifications in the structure of a 260 bp DNA (hlyM) fragment from Escherichia coli caused by interaction with Pd(II) and Pt(II) complexes were studied. Cisplatin and transplatin [cis- and trans-PtCl2(NH3)2 respectively], Pt2Cl2(Spym)4 (Spym = 2-mercaptopyrimidine anion), Pd-famotidine and Pt-famotidine were incubated with DNA for 24 h at 37 degrees C and then observed with an atomic force microscope. Atomic force microscopy (AFM) provides the opportunity for nanometer resolution in research on the interaction between nucleic acids and metal complexes. The complexes induced noticeable changes in DNA topography according to their different characteristics and structure. In the case of cisplatin a shortening in DNA strands was observed. Transplatin and Pt2Cl2(Spym)4 caused shortening and compaction, whilst an aggregation of two strands was observed for the Pt-famotidine compound but not for the Pd-famotidine compound or the metal-free famotidine.  相似文献   

18.
The reactions of the platinum(II) complexes, [Pt(dien)(H(2)O)](2+), [PtCl(dien)](+) and [PtBr(dien)](+) (dien is diethylenetriamine) with some biologically relevant ligands such as inosine (INO), inosine-5'-monophosphate (5'-IMP), guanosine-5'-monophosphate (5'-GMP), glutathione (GSH) and l-methionine (S-meth), have been studied by UV-Visible spectrophotometry and (1)H NMR spectroscopy. Kinetic and thermodynamic parameters of these reactions were determined. Competitive reactions of [PtCl(dien)](+) with l-methionine and 5'-GMP demonstrated initially rapid formation of [Pt(dien)(S-meth)](2+) followed by displacement of l-methionine by 5'-GMP. In the later stages the concentration of [Pt(dien)(N7-GMP)](2+) is predominant. The results are analyzed in reference to the anti-tumour activity of Pt(II) complexes.  相似文献   

19.
To study the possibility of DNA platination via platinum-sulfur coordinated intermediates, the reactions of the complexes [Pt(dien)GSMe]2+ (GSMe=S-methylated glutathione) and cis-[Pt(NH3)2(GSMe)2]2+ with the synthetic oligonucleotides d(ATATGCATAT), d(ATTACCGGTAAT), and d(ATCCTATTTTTTTTAGGAT) have been investigated. The reactions were studied using FPLC, NMR, and mass spectrometry. It was found that the sulfur atom of the platinum-thioether adduct is substituted by these oligonucleotides. For the reactions with [Pt(dien)GSMe]2+ at 310 K, half-lives were determined to be t 1/2 =147+/-7 h for d(ATATGCATAT), t 1/2 =84+/-4 h) for d(ATTACCGGTAAT), and t 1/2 = 21+/-1 h for d(ATCCTATTTTTTTTAGGAT. This study clearly shows that it is indeed possible for oligonucleotides to be platinated via Pt-thioether coordinated intermediates. The rates at which such substitutions occur, however, makes it improbable that such a mechanism contributes significantly to the antitumor activity of cisplatin.  相似文献   

20.
Four new binuclear complexes of formula [M2(bipy)2(BAA)]Cl2 (where M is Pt(II) or Pd(II), bipy is 2,2'-bipyridine, and BAA is a dianion of meso-alpha-alpha'-diaminoadipic acid (DAA) or meso-alpha,alpha'-diaminosuberic acid (DSA) have been synthesized. These complexes have been characterized by chemical analysis and ultraviolet-visible, infrared, and 1H NMR spectroscopy. The mode of binding of ligands in these complexes has been ascertained by infrared and detailed 1H NMR spectroscopy. These complexes are 1:2 electrolyte in conductivity water. They have also been tested against P388 lymphocytic leukemia cells and their target is DNA molecules. [Pt2(bipy)2(DSA)]Cl2, [Pd2(bipy)2(DSA)Cl2, and [Pd2(bipy)2(DAA)]Cl2 show I.D.50 values comparable or lower than cis-diamminedichloroplatinum(II) and [Pt(bipy)(Ala)]Cl. In addition, binding studies of [Pt2(bipy)2(DSA)]Cl2 and [Pd2(bipy)2(DAA)]Cl2 to calf thymus DNA have been carried out and the mode of binding seems to be hydrogen bonding, as suggested earlier for analogous mononuclear amino acid-DNA complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号