首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. The coffee berry borer Hypothenemus hampei (Coleoptera, Curculionidae) (Ferrari) is the most important pest of coffee production worldwide. 2. The hypothesis that the tropical fire ant, Solenopsis geminata Westwood, indirectly protects the coffee berry borer by suppressing other ant species that are the coffee berry borer's primary predators was tested. 3. It was found that removing S. geminata from coffee plots significantly increased the disappearance of adult coffee berry borer beetles from coffee berries compared with control plots. An average of 6% of beetles disappeared from plots with S. geminata whereas 23% of beetles disappeared from plots from which S. geminata was removed. This pattern was observed on two shade coffee farms with marked differences in ant species composition, one in the rainforest in central Costa Rica and one in the cloudforest in northwest Costa Rica. 4. If the results of this small‐scale study can be replicated on the farm level, then S. geminata suppression may represent a new management technique for the coffee berry borer throughout Central and South America.  相似文献   

2.
Retracing introduction routes is crucial for understanding the evolutionary processes involved in an invasion, as well as for highlighting the invasion history of a species at the global scale. The Asian long‐horned beetle (ALB) Anoplophora glabripennis is a xylophagous pest native to Asia and invasive in North America and Europe. It is responsible for severe losses of urban trees, in both its native and invaded ranges. Based on historical and genetic data, several hypotheses have been formulated concerning its invasion history, including the possibility of multiple introductions from the native zone and secondary dispersal within the invaded areas, but none have been formally tested. In this study, we characterized the genetic structure of ALB in both its native and invaded ranges using microsatellites. In order to test different invasion scenarios, we used an approximate Bayesian “random forest” algorithm together with traditional population genetics approaches. The strong population differentiation observed in the native area was not geographically structured, suggesting complex migration events that were probably human‐mediated. Both native and invasive populations had low genetic diversity, but this characteristic did not prevent the success of the ALB invasions. Our results highlight the complexity of invasion pathways for insect pests. Specifically, our findings indicate that invasive species might be repeatedly introduced from their native range, and they emphasize the importance of multiple, human‐mediated introductions in successful invasions. Finally, our results demonstrate that invasive species can spread across continents following a bridgehead path, in which an invasive population may have acted as a source for another invasion.  相似文献   

3.
We characterized patterns of genetic variation in populations of the fire ant Solenopsis invicta in China using mitochondrial DNA sequences and nuclear microsatellite loci to test predictions as to how propagule pressure and subsequent dispersal following establishment jointly shape the invasion success of this ant in this recently invaded area. Fire ants in Wuchuan (Guangdong Province) are genetically differentiated from those found in other large infested areas of China. The immediate source of ants in Wuchuan appears to be somewhere near Texas, which ranks first among the southern USA infested states in the exportation of goods to China. Most colonies from spatially distant, outlying areas in China are genetically similar to one another and appear to share a common source (Wuchuan, Guangdong Province), suggesting that long‐distance jump dispersal has been a prevalent means of recent spread of fire ants in China. Furthermore, most colonies at outlier sites are of the polygyne social form (featuring multiple egg‐laying queens per nest), reinforcing the important role of this social form in the successful invasion of new areas and subsequent range expansion following invasion. Several analyses consistently revealed characteristic signatures of genetic bottlenecks for S. invicta populations in China. The results of this study highlight the invasive potential of this pest ant, suggest that the magnitude of international trade may serve as a predictor of propagule pressure and indicate that rates and patterns of subsequent range expansion are partly determined by the interplay between species traits and the trade and transportation networks.  相似文献   

4.
Although anthropogenic impacts are often considered harmful to species, human modifications to the landscape can actually create novel niches to which other species can adapt. These “domestication” processes are especially important in the context of arthropod disease vectors, where ecological overlap of vector and human populations may lead to epidemics. Here, we present results of a global genetic study of one such species, the dengue and yellow fever mosquito, Aedes aegypti, whose evolutionary history and current distribution have been profoundly shaped by humans. We used DNA sequences of four nuclear genes and 1504 single nucleotide polymorphism (SNP) markers developed with restriction‐site associated DNA (RAD) sequencing to test the hypothesis that Ae. aegypti originated in Africa, where a domestic form arose and spread throughout the tropical and subtropical world with human trade and movement. Results confirmed African ancestry of the species, and supported a single subspeciation event leading to the pantropical domestic form. In addition, genetic data strongly supported the hypothesis that human trade routes first moved domestic Ae. aegypti out of Africa into the New World, followed by a later invasion from the New World into Southeast Asia and the Pacific. These patterns of domestication and invasion are relevant to many species worldwide, as anthropogenic forces increasingly impact evolutionary processes.  相似文献   

5.
In contrast to the widespread extirpation of native fire ants (Solenopsis geminata) across southern US following the invasion by imported red fire ants (S. invicta), some residential areas of Austin form unexpected refuges for native fire ants. Ironically, these urban environments provide refuges for the native fire ants while adjacent natural habitats have been overrun by invasive fire ants. Resistance to invasive fire ants in these urban areas occurs mainly in older residential properties constructed prior to the S. invicta invasion, while more recent construction has allowed establishment by S. invicta. The invasive ability of S. invicta is often attributed to escape from parasitoids and efficient dispersal of polygyne multiple queen colonies. Here we also show the importance of landscape parameters in the invasion process, where low levels of disturbance and continuous plant cover in older residential areas form possible barriers to colonization. Dense leaf cover (high NDVI) was also found to be associated with native ant refuges. Long term residential land ownership may have resulted in lower recent disturbance levels and increased plant cover that support refuges of native fire ants.  相似文献   

6.
SYNOPSIS. A new species of Microsporida, Burenella dimorpha sp. n., representing a new family, Burenellidae fam. n. and genus, is described on the basis of light- and electron-microscope observations. The family is characterized by 2 sequences of sporogony, each sequence having morphologically different sporonts and spores. The parasite infects the tropical fire ant, Solenopsis geminata (Fabricius), producing distinct pathologic manifestations (clearing of the cuticle and eye malformation) and death in the pupal stage of development. Transmission of the infection per os to healthy S. geminata, to the Southern fire ant, Solenopsis xyloni McCook, and to the red and black imported fire ants, Solenopsis invicta Buren and Solenopsis richteri Forel, is reported.  相似文献   

7.
The fall armyworm, Spodoptera frugiperda (J.E. Smith), is an invasive pest species in the Old World. This species is originally native to the Americas. Since 2016, S. frugiperda has spread widely and rapidly throughout Africa, the Middle East, India, Southeast Asia and, most recently, to southern China. By May 2019, S. frugiperda had appeared in 13 provinces in southern China and will spread further into northern China. It is highly likely that S. frugiperda will enter Japan and Korea via overseas migrations as have many other migratory pests. To evaluate the risk of S. frugiperda invasion in Japan and the Korean Peninsula, we modelled the rate of expansion and future potential migratory range of the insect by a trajectory analytical approach using the flight behaviour of S. frugiperda and meteorological data of the past five years (2014–2018). If S. frugiperda can fly for up to 36 continuous hours over water, then our results predict migration from southern and eastern China into Japan and Korea. Most likely, Japan would be invaded from Fujian and Zhejiang in 1 June–15 July, and Kyushu, Shikoku and southwestern Honshu could face the highest risk of S. frugiperda invasion. Korea would most likely be reached by S. frugiperda from northern Zhejiang, Jiangsu, Anhui and Shandong in 1 June–15 July and later. Our results indicated a very high risk that S. frugiperda would annually invade Japan and the Korean Peninsula and cause a possible significant decrease in agricultural productivity.  相似文献   

8.
Since the start of the 20th century, many invasive alien species (IAS) have spread rapidly around the world, causing serious threats to economies, societies and the environment. Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) is an important quarantine insect species in many countries that spread around the world over the last century. This review collected information on the distribution of B. dorsalis to explore the patterns of its invasion expansion. We found B. dorsalis to be distributed in 75 countries (comprised of 124 geographical distribution regions: provinces or states) in Asia, Africa, North America, South America and Oceania up to 2017. Asia and Africa were the most represented regions, accounting for 86.3% of the total number of countries. From 1910 to 1990, B. dorsalis was only found in five countries, but in the last three decades, it has experienced a sharp increase in its rate of spread, invading 70 more countries. Global temperature anomaly has significantly positive correlation with the spread of B. dorsalis. The results of this review provide a theoretical basis for understanding and predicting the continued spread of B. dorsalis under global changes.  相似文献   

9.
Invasive ants are a significant conservation concern and can have far-reaching effects in ecosystems they invade. We used the experimental control of ant numbers on two pairs of small (<5 ha) offshore islets dominated by either the big-headed ant, Pheidole megacephala or the tropical fire ant, Solenopsis geminata to investigate the influence of these species on seabird hatching success, fledging success and weight. Limited unpublished observations of both ant species attacking nesting seabirds exist, but the frequency of attacks or how they affect seabird growth and survival are unknown. Island-wide treatments with hydramethylnon resulted in the eradication of P. megacephala and the temporary reduction of S. geminata densities. No difference in hatching success, growth, or fledging success of Wedge-tailed Shearwaters (Puffinus pacificus), a common colonial nesting seabird in the Hawaiian Islands was observed on the pair of islets dominated by P. megacephala. On islets dominated by S. geminata, ant control resulted in a temporary increase in fledging success. Injury frequency increased dramatically on the untreated islet (8.3–100%) while remaining the same on the treated islet (27–38%). Severely injured chicks (i.e., chicks that lost >20% of tissue on their feet) weighed significantly less than uninjured chicks and did not fledge. It is unclear if the chicks were being preyed upon or stung in defense of nearby ant colonies. Radical changes in invasive ant populations have been noted, and booming ant populations could cause short-term, but widespread damage to seabird colonies. The negative effects of invasive ants on seabirds may be difficult to detect, and therefore unknown or underestimated throughout the world where the two groups overlap.  相似文献   

10.
The invasive Spotted Wing Drosophila – a significant pest The Spotted Wing Drosophila (Drosophila suzukii), native in South-East Asia, is an invasive pest belonging to the small fruit fly family of Drosophilidae, also named vinegar flies. Apparently displaced by global trade to the USA and Europe, this pest was able to disperse enormously over the continents since 2008. Ideal preconditions for this spread were suitable climatic conditions, the availability of a wide variety of host plants and the use of an ecological niche, namely healthy ripening and ripe fruits. In addition, D. suzukii is highly reproductive and owns excellent overwintering strategies. The Spotted Wing Drosophila is difficult to control and causes enormous damage.  相似文献   

11.
1. We investigated ant communities in all main vegetation zones of the model island of Santa Cruz in the Galápagos archipelago (155 collection points, spread over 21 sites; 28 ant species collected), and evaluated the distribution, coexistence, and effect of environmental factors in a community composed of endemic, probably endemic, and introduced ants of the New World and exotic origin. 2. Introduced species were the most frequent, occurring in 98% of the samples, yet endemic and probably endemic species still occurred in 54% of the samples, and constituted one of three most common species. The present study revealed that the habitat type along with altitude and the tree cover are the primary factors shaping ant community composition. Little evidence was found for a competitively structured assemblage of ant species. 3. The present study confirmed the predominance of two dominant invasive species, Solenopsis geminata Fabricius and Wasmannia auropunctata Roger, whose abundances are negatively correlated. The abundance of S. geminata is positively correlated with the overall species richness, and with the proportion of other introduced species. The presence of both invasive ants is associated with a low evenness of ant communities. 4. The present study (i) stresses the dominance of introduced species and the relative resistance of endemic species, (ii) highlights the on‐going processes of species introductions and (iii) points out the need for adequate monitoring and conservation of the pristine and threatened environments that constitute the Galápagos Islands.  相似文献   

12.
The red imported fire ant, Solenopsis invicta Buren, is an invasive pest from South America that currently occupies much of the south‐eastern USA. Global warming is likely to allow range expansion of many invasive species, including S. invicta. We used a dynamic, ecophysiological model of fire ant colony growth coupled with models simulating climate change to predict the potential range expansion of S. invicta in the eastern USA over the next century. The climate change scenario predicted by the Vegetation–Ecosystem Modelling and Analysis Project (VEMAP) was used in our analyses. Our predictions indicate that the habitable area for S. invicta may increase by c. 5% over the next 40–50 years (a northward expansion of 33 ± 35 km). As the pace of global warming is expected to quicken in the latter half of the century, however, the habitable area for S. invicta in 2100 is predicted to be > 21% greater than it currently is (a northward expansion of 133 ± 68 km). Because the black imported fire ant, S. richteri Forel, occupies higher latitudes than S. invicta, the overall area of the eastern USA infested with invasive Solenopsis species could be greater than that estimated here.  相似文献   

13.
Bemisia tabaci is one of the most important global agricultural insect pests, being a vector of emerging plant viruses such as begomoviruses and criniviruses that cause serious problems in many countries. Although knowledge of the genetic diversity of B. tabaci populations is important for controlling this pest and understanding viral epidemics, limited information is available on this pest in Brazil. A survey was conducted in different locations of São Paulo and Mato Grosso states, and the phylogenetic relationships of B. tabaci individuals from 43 populations sampled from different hosts were analysed based on partial mitochondrial cytochrome oxidase 1 gene (mtCOI) sequences. According to the recently proposed classification of the B. tabaci complex, which employs the 3.5% mtCOI sequence divergence threshold for species demarcation, most of the specimens collected were found to belong to the Middle East‐Asia Minor 1 species, which includes the invasive populations of the commonly known B biotype, within the Africa/Middle East/Asia Minor high‐level group. Three specimens collected from Solanun gilo and Ipomoea sp. were grouped together and could be classified in the New World species that includes the commonly known A biotype. However, six specimens collected from Euphorbia heterophylla, Xanthium cavanillesii and Glycine maxima could not be classified into any of the 28 previously proposed species, although according to the 11% mtCOI sequence divergence threshold, they belong to the New World high‐level group. These specimens were classified into a new recently proposed species named New World 2 that includes populations from Argentina. Middle East‐Asia Minor 1, New World and New World 2 were differentiated by RFLP analysis of the mtCOI gene using TaqI enzyme. Taq I analysis in silico also differentiates these from Mediterranean species, thus making this method a convenient tool to determine population dynamics, especially critical for monitoring the presence of this exotic pest in Brazil.  相似文献   

14.
The abundance of many invasive species can vary substantially over time, with dramatic population declines and local extinctions frequently observed in a wide range of taxa. We highlight population crashes of invasive ants, which are some of the most widespread and damaging invasive animals. Population collapse or substantial declines have been observed in nearly all of the major invasive ant species including the yellow crazy ant (Anoplolepis gracilipes), Argentine ants (Linepithema humile), big-headed or coastal brown ant (Pheidole megacephala), the tropical fire ant (Solenopsis geminata), red imported fire ants (Solenopsis invicta), and the little fire ant or electric ant (Wasmannia auropunctata). These declines frequently attract little attention, especially compared with their initial invasion phase. Suggested mechanisms for population collapse include pathogens or parasites, changes in the food availability, or even long-term effects of the reproductive biology of invasive ants. A critical component of the collapses may be a reduction in the densities of the invasive ant species, which are often competitively weak in low abundance. We propose that mechanisms causing a reduction in invasive ant abundance may initiate a local extinction vortex. Declines in abundance likely reduce the invasive ant’s competitive ability, resource acquisition and defense capability. These reductions could further reduce the abundance of an invasive ant species, and so on. Management of invasive ants through the use of pesticides is expensive, potentially ecologically harmful, and can be ineffective. We argue that pesticide use may even have the potential to forestall natural population declines and collapses. We propose that in order to better manage these invasive ants, we need to understand and capitalize on features of their population dynamics that promote population collapse.  相似文献   

15.
The impacts of Wasmannia auropunctata (the little fire ant) on the native biota and subsistence agriculture in the Solomon Islands are poorly understood. This species was originally introduced as a biological control against nut‐fall bugs (Amblypelta sp.) around 30 years ago and in the intervening time has spread throughout the Solomon Islands, aided movement of produce and planting material. It is now itself a major pest of coconut, cocoa and subsistence agriculture. In this study, we show the negative effects of this invasive ant on subsistence agriculture in the Solomon Islands. We do this by (i) assessing the presence of insect pests that develop a mutual relationship with W. auropunctata on four common subsistence crops; and (ii) measuring the impact of a significant pest (Tarophagus sp.) and its natural predator the bug Cyrtohinus fulvus, in the presence and absence of W. auropunctata on taro crops. The existence of insect pests that form a mutual relationship with W. auropunctata was measured in a total of 36 gardens of the four subsistence crops. This was conducted through standardized visual searches, plus identification and collecting from randomly selected plants within the gardens. A number of additional insect pests causing major problems to subsistence crops have also developed mutual relationships with W. auropunctata. Infested taro gardens have more Tarophagus sp. compared with taro plants that are free of the little fire ant. The presence and abundance of Wasmannia therefore has the potential to inflict considerable crop loss in rural subsistence gardens in the Solomon Islands.  相似文献   

16.
Determining the spread and potential geographical distribution of invasive species is integral to making invasion biology a predictive science. We assembled a dataset of over 1000 occurrences of the Argentine ant (Linepithema humile), one of the world's worst invasive alien species. Native to central South America, Argentine ants are now found in many Mediterranean and subtropical climates around the world. We used this dataset to assess the species' potential geographical and ecological distribution, and to examine changes in its distributional potential associated with global climate change, using techniques for ecological niche modelling. Models developed were highly predictive of the species' overall range, including both the native distributional area and invaded areas worldwide. Despite its already widespread occurrence, L. humile has potential for further spread, with tropical coastal Africa and southeast Asia apparently vulnerable to invasion. Projecting ecological niche models onto four general circulation model scenarios of future (2050s) climates provided scenarios of the species' potential for distributional expansion with warming climates: generally, the species was predicted to retract its range in tropical regions, but to expand at higher latitude areas.  相似文献   

17.
Oriental fruit fly, Bactrocera dorsalis (Hendel), is a highly polyphagous fruit fly which, in the last 15 years, has invaded (with or without establishment) Africa, Europe and North America. As a direct result of these invasions, there is increasing research interest in the invasion history and spread patterns of this fly. A statement being repeatedly used in the B. dorsalis invasion literature is that the species was first identified from Taiwan in 1912 and that it subsequently spread through South‐East and South Asia during the 20th century. This assumption is incorrect and stems from: (a) an incomplete knowledge of B. dorsalis taxonomic history; and (b) a confounding of first taxonomic record with first invasion record. Rather than being first detected in Taiwan in 1912, the first record of oriental fruit fly was from “East India” (India orientali) under the synonymous name of Musca ferruginea by Fabricius in 1794, and in the 1910s, it was known not only from Taiwan, but widely across tropical Asia with records from India, Burma, Bengal, Sri Lanka (as Ceylon), Singapore and Indonesia (multiple islands). The taxonomic literature is very clear that oriental fruit fly has not invaded the rest of Asia from Taiwan since 1912, and this error should not continue to be repeated in the literature.  相似文献   

18.
SYNOPSIS. A new species of neogregarine, Mattesia geminata sp. n., that infects immature stages of the tropical fire ant, Solenopsis geminata (Fabricius), is described. The parasite, which develops in the hypodermis, causes disruption of the developing eyes, melanization of the cuticle, and death of pupae. lntracolonial infection rates are usually less than 2±, but may exceed 90±. Attempts to transmit the infection were unsuccessful.  相似文献   

19.
红火蚁的危害及其防治   总被引:2,自引:0,他引:2  
谭速进 《四川动物》2005,24(2):230-232,236,F003
一种非常危险的入侵性害虫——红火蚁近年在我国台湾和香港登陆,对中国大陆和亚洲其他地区构成严重威胁。本文介绍了红火蚁的危害以及对红火蚁的防治方法。  相似文献   

20.
Zaprionus indianus, also known as the African fig fly, is an invasive pest of a variety of commercial and native fruit. The species was first reported in Brazil in 1999, but has established itself in much of the New World within the last 10–15 years. We used nucleotide sequences from a segment of the mitochondrial cytochrome c oxidase subunit I (COI) gene to examine haplotype relationships, population structure, and infer the colonization history of Z. indianus in Mexico and Panama. Construction of a haplotype network showed that six COI haplotypes, obtained from flies collected at six localities in Mexico and one in Panama, clustered into three distinct clades. Clade composition was generally consistent in flies from Panama to northwestern Mexico, and analysis of molecular variance indicated no significant structure among populations. Three of the six haplotypes from Mexico and Panama were identical to previously reported haplotypes from Brazil. None of the six haplotypes, however, were shared with previously reported haplotypes from potential source populations in the Old World. The results of our genetic analysis suggest that the invasion of Z. indianus into Central America and Mexico most probably includes a northward migration of individuals from Brazil, with the possibility of at least one additional introduction of Z. indianus to the New World. Additional sequence data from potential source populations in the Old World will be required to confidently determine the number of introductions of Z. indianus into the New World, and to identify the geographic source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号