首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Hybridization can profoundly affect the genomic composition and phenotypes of closely related species, and provides an opportunity to identify mechanisms that maintain reproductive isolation between species. Recent evidence suggests that hybridization outcomes within a species pair can vary across locations. However, we still do not know how variable outcomes of hybridization are across geographic replicates, and what mechanisms drive that variation. In this study, we described hybridization outcomes across 27 locations in the North Fork Shoshone River basin (Wyoming, USA) where native Yellowstone cutthroat trout and introduced rainbow trout co‐occur. We used genomic data and hierarchical Bayesian models to precisely identify ancestry of hybrid individuals. Hybridization outcomes varied across locations. In some locations, only rainbow trout and advanced backcrossed hybrids towards rainbow trout were present, while trout in other locations had a broader range of ancestry, including both parental species and first‐generation hybrids. Later‐generation intermediate hybrids were rare relative to backcrossed hybrids and rainbow trout individuals. Using an individual‐based simulation, we found that outcomes of hybridization in the North Fork Shoshone River basin deviate substantially from what we would expect under null expectations of random mating and no selection against hybrids. Since this deviation implies that some mechanisms of reproductive isolation function to maintain parental taxa and a diversity of hybrid types, we then modelled hybridization outcomes as a function of environmental variables and stocking history that are likely to affect prezygotic barriers to hybridization. Variables associated with history of fish stocking were the strongest predictors of hybridization outcomes, followed by environmental variables that might affect overlap in spawning time and location.  相似文献   

2.
The delimitation of species boundaries, particularly those obscured by reticulation, is a critical step in contemporary biodiversity assessment. It is especially relevant for conservation and management of indigenous fishes in western North America, represented herein by two species with dissimilar life histories codistributed in the highly modified Colorado River (i.e., flannelmouth sucker, Catostomus latipinnis; bluehead sucker, C. (Pantosteus) discobolus). To quantify phylogenomic patterns and examine proposed taxonomic revisions, we first employed double‐digest restriction site‐associated DNA sequencing (ddRAD), yielding 39,755 unlinked SNPs across 139 samples. These were subsequently evaluated with multiple analytical approaches and by contrasting life history data. Three phylogenetic methods and a Bayesian assignment test highlighted similar phylogenomic patterns in each, but with considerable difference in presumed times of divergence. Three lineages were detected in bluehead sucker, supporting elevation of C. (P.) virescens to species status and recognizing C. (P.) discobolus yarrowi (Zuni bluehead sucker) as a discrete entity. Admixture in the latter necessitated a reevaluation of its contemporary and historic distributions, underscoring how biodiversity identification can be confounded by complex evolutionary histories. In addition, we defined three separate flannelmouth sucker lineages as ESUs (evolutionarily significant units), given limited phenotypic and genetic differentiation, contemporary isolation, and lack of concordance (per the genealogical concordance component of the phylogenetic species concept). Introgression was diagnosed in both species, with the Little Colorado and Virgin rivers in particular. Our diagnostic methods, and the agreement of our SNPs with previous morphological, enzymatic, and mitochondrial work, allowed us to partition complex evolutionary histories into requisite components, such as isolation versus secondary contact.  相似文献   

3.
Effective conservation of freshwater biodiversity requires spatially explicit investigations of how dams and hydroclimatic alterations among climate regions may interact to drive species to extinction. We investigated how dams and hydroclimatic alterations interact with species ecological and life history traits to influence past extirpation probabilities of native freshwater fishes in the Upper and Lower Colorado River (CR), Alabama‐Coosa‐Tallapoosa (ACT), and Apalachicola‐Chattahoochee‐Flint (ACF) basins. Using long‐term discharge data for continuously gaged streams and rivers, we quantified streamflow anomalies (i.e., departure “expected” streamflow) at the sub‐basin scale over the past half‐century. Next, we related extirpation probabilities of native fishes in both regions to streamflow anomalies, river basin characteristics, species traits, and non‐native species richness using binomial logistic regression. Sub‐basin extirpations in the Southwest (= 95 Upper CR,= 130 Lower CR) were highest in lowland mainstem rivers impacted by large dams and in desert springs. Dampened flow seasonality, increased longevity (i.e., delayed reproduction), and decreased fish egg sizes (i.e., lower parental care) were related to elevated fish extirpation probability in the Southwest. Sub‐basin extirpations in the Southeast (ACT = 46, ACF = 22) were most prevalent in upland rivers, with flow dependency, greater age and length at maturity, isolation by dams, and greater distance upstream. Our results confirm that dams are an overriding driver of native fish species losses, irrespective of basin‐wide differences in native or non‐native species richness. Dams and hydrologic alterations interact with species traits to influence community disassembly, and very high extirpation risks in the Southeast are due to interactions between high dam density and species restricted ranges. Given global surges in dam building and retrofitting, increased extirpation risks should be expected unless management strategies that balance flow regulation with ecological outcomes are widely implemented.  相似文献   

4.
Contact zones between species provide a unique opportunity to test whether taxa can hybridize or not. Cross‐breeding or hybridization between closely related taxa can promote gene flow (introgression) between species, adaptation, or even speciation. Though hybridization events may be short‐lived and difficult to detect in the field, genetic data can provide information about the level of introgression between closely related taxa. Hybridization can promote introgression between species, which may be an important evolutionary mechanism for either homogenization (reversing initial divergence between species) or reproductive isolation (potentially leading to speciation). Here, we used thousands of genetic markers from nuclear DNA to detect hybridization between two parapatric frog species (Rana boylii and Rana sierrae) in the Sierra Nevada of California. Based on principal components analysis, admixture, and analysis of heterozygosity at species diagnostic SNPs, we detected two F1 hybrid individuals in the Feather River basin, as well as a weak signal of introgression and gene flow between the frog species compared with frog populations from two other adjacent watersheds. This study provides the first documentation of hybridization and introgression between these two species, which are of conservation concern.  相似文献   

5.
Until complete reproductive isolation is achieved, the extent of differentiation between two diverging lineages is the result of a dynamic equilibrium between genetic isolation and mixing. This is especially true for hybrid taxa, for which the degree of isolation in regard to their parental species is decisive in their capacity to rise as a new and stable entity. In this work, we explored the past and current patterns of hybridization and divergence within a complex of closely related butterflies in the genus Coenonympha in which two alpine species, C. darwiniana and C. macromma, have been shown to result from hybridization between the also alpine C. gardetta and the lowland C. arcania. By testing alternative scenarios of divergence among species, we show that gene flow has been uninterrupted throughout the speciation process, although leading to different degrees of current genetic isolation between species in contact zones depending on the pair considered. Nonetheless, at broader geographic scale, analyses reveal a clear genetic differentiation between hybrid lineages and their parental species, pointing out to an advanced stage of the hybrid speciation process. Finally, the positive correlation observed between ecological divergence and genetic isolation among these butterflies suggests a potential role for ecological drivers during their speciation processes.  相似文献   

6.
Morphological responses of a stream fish to water impoundment   总被引:1,自引:0,他引:1  
Water impoundment imposes fundamental changes on natural landscapes by transforming rivers into reservoirs. The dramatic shift in physical conditions accompanying the loss of flow creates novel ecological and evolutionary challenges for native species. In this study, we compared the body shape of Cyprinella venusta collected from eight pairs of river and reservoir sites across the Mobile River Basin (USA). Geometric morphometric analysis of the body shape showed that river populations differ from reservoir populations. Individuals inhabiting reservoirs are deep-bodied and have a smaller head, a more anterior dorsal fin, a shorter dorsal fin base and a more ventral position of the eye than C. venusta in streams. The direction of shape divergence within reservoir–river pairs was consistent among pairs of sites, and the shape of C. venusta in reservoirs is strongly correlated with reservoir size. These findings show that physical characteristics of reservoirs drive changes in the morphological attributes of native fish populations, indicating that water impoundment may be an important, yet largely unrecognized, evolutionary driver acting on aquatic biodiversity.  相似文献   

7.
Hybridization is common among freshwater fishes, particular among the Cyprinidae. We used two mitochondrial genes and one nuclear gene to characterize hybridization among two species pairs of Cyprinella in southwestern North America. Genalogical patterns revealed that C. lutrensis and C. venusta are currently hybridizing in several localities producing apparent F1, F2 and backcross generations, yet there was no evidence for introgression outside of local hybrid zones. Alternatively, mitochondrial haplotypes from C. lutrensis appear to have introgressed into a C. lepida population in the Nueces River completely replacing the native C. lepida haplotype. There was no evidence of introgression of nuclear DNA and there does not appear to be ongoing hybridization. The population of C. lepida from the nearby Frio River exhibits no evidence of hybridization with C. lutrensis. Thus, contact between C. lutrensis and C. venusta results in the formation of localized hybrid swarms, while contact between C. lutrensis and C. lepida has resulted in complete mitochondrial introgression in the Nueces River or no apparent hybridization in the Frio River. The three different outcomes of contact between these species illustrate the variable nature of interspecific reproductive interactions and provide an excellent system in which to better understand the factors influencing hybridization among freshwater fishes.  相似文献   

8.
9.
The genetic structure of small semiaquatic animals may be influenced by dispersal across both rivers and land. The relative importance of these two modes of dispersal may vary across different species and with ecological conditions and evolutionary periods. The Pyrenean desman (Galemys pyrenaicus) is an endemic mammal of the Iberian Peninsula with a strong phylogeographic structure and semiaquatic habits, thus making it an ideal model to study the effects of river and overland dispersal on its genetic structure. Thanks to different types of noninvasive samples, we obtained an extensive sampling of the Pyrenean desman from the northwestern region of the Iberian Peninsula and sequenced two mitochondrial DNA fragments. We then analyzed, using an isolation‐by‐distance approach, the correlation between phylogenetic distances and geographical distances measured along both river networks and land to infer the relative importance of river and overland dispersal. We found that the correlations in the whole area and in a large basin were consistent with an effect of overland dispersal, which may be due to the postglacial colonization of new territories using terrestrial corridors and, possibly, a more extensive fluvial network that may have been present during the Holocene. However, in a small basin, likely to be less influenced by the impact of ancient postglacial dispersal, the correlations suggested significant overall effects of both overland and river dispersal, as expected for a semiaquatic mammal. Therefore, different scales and geographical regions reflect different aspects of the evolutionary history and ecology of this semiaquatic species using this isolation‐by‐distance method. The results we obtained may have crucial implications for the conservation of the Pyrenean desman because they reinforce the importance of interbasin dispersal for this species in the studied area and the need to protect the whole riverine ecosystem, including rivers, upland streams and terrestrial corridors between basins.  相似文献   

10.
Alfred Russel Wallace proposed classifying Amazon rivers based on their colour and clarity: white, black and clear water. Wallace also proposed that black waters could mediate diversification and yield distinct fish species. Here, we bring evidence of speciation mediated by water type in the sailfin tetra (Crenuchus spilurus), a fish whose range encompasses rivers of very distinct hydrochemical conditions. Distribution of the two main lineages concords with Wallace's water types: one restricted to the acidic and nutrient‐poor waters of the Negro River (herein Rio Negro lineage) and a second widespread throughout the remaining of the species’ distribution (herein Amazonas lineage). These lineages occur over a very broad geographical range, suggesting that despite occurring in regions separated by thousands of kilometres, individuals of the distinct lineages fail to occupy each other's habitats, hundreds of metres apart and not separated by physical barrier. Reproductive isolation was assessed in isolated pairs exposed to black‐water conditions. All pairs with at least one individual of the lineage not native to black waters showed significantly lower spawning success, suggesting that the water type affected the fitness and contributed to reproductive isolation. Our results endorse Wallace's intuition and highlight the importance of ecological factors in shaping diversity of the Amazon fish fauna.  相似文献   

11.
River connections via artificial canals will bring about secondary contacts between previously isolated fish species. Here, we present a genetic consequence of such a secondary contact between Cobitis fish species, C. lutheri in the Dongjin River, and C. tetralineata in the Seomjin River in Korea. The construction of water canals about 80 years ago has unidirectionally introduced C. tetralineata into the native habitat of C. lutheri, and then these species have hybridized in the main stream section of the Dongjin River. According to the divergence population genetic analyses of DNA sequence data, the two species diverged about 3.3 million years ago, which is interestingly coincident with the unprecedented paleoceanographic change that caused isolations of the paleo‐river systems in northeast Asia due to sea‐level changes around the late Pliocene. Multilocus genotypic data of nine microsatellites and three nuclear loci revealed an extensively admixed structure in the hybrid zone with a high proportion of various post‐F1 hybrids. Surprisingly, pure native C. lutheri was absent in the hybrid zone in contrast to the 7% of pure C. tetralineata. Such a biased proportion must have resulted from the dominant influence of continually introducing C. tetralineata on the native C. lutheri which has no supply of natives from other tributaries to the hybrid zone due to numerous low‐head dams. In addition, mating experiments indicated that there is no discernible reproductive isolation between them. All the results suggest that the gene pool of native C. lutheri is being rapidly replaced by that of continually introducing C. tetralineata through a hybrid swarm for the last 80 years, which will ultimately lead to the genomic extinction of natives in this hybrid zone.  相似文献   

12.
Understanding the factors that contribute to the generation of reproductively isolated forms is a fundamental goal of evolutionary biology. Cryptic species are an especially interesting challenge to study in this context since they lack obvious morphological differentiation that provides clues to adaptive divergence that may drive reproductive isolation. Geographical isolation in refugial areas during glacial cycling is known to be important for generating genetically divergent populations, but its role in the origination of new species is still not fully understood and likely to be situation dependent. We combine analysis of 35,434 single‐nucleotide polymorphisms (SNPs) with environmental niche modeling (ENM) to investigate genomic and ecological divergence in three cryptic species formerly classified as the field vole (Microtus agrestis). The SNPs demonstrate high genomic divergence (pairwise FST values of 0.45–0.72) and little evidence of gene flow among the three field vole cryptic species, and we argue that genetic drift may have been a particularly important mechanism for divergence in the group. The ENM reveals three areas as potential glacial refugia for the cryptic species and differing climatic niches, although with spatial overlap between species pairs. This evidence underscores the role that glacial cycling has in promoting genetic differentiation and reproductive isolation by subdivision into disjunct distributions at glacial maxima in areas relatively close to ice sheets. Future investigation of the intrinsic barriers to gene flow between the field vole cryptic species is required to fully assess the mechanisms that contribute to reproductive isolation. In addition, the Portuguese field vole (M. rozianus) shows a high inbreeding coefficient and a restricted climatic niche, and warrants investigation into its conservation status.  相似文献   

13.
Understanding the earliest events in speciation remains a major challenge in evolutionary biology. Thus identifying species whose populations are beginning to diverge can provide useful systems to study the process of speciation. Drosophila aldrichi, a cactophilic fruit fly species with a broad distribution in North America, has long been assumed to be a single species owing to its morphological uniformity. While previous reports either of genetic divergence or reproductive isolation among different D. aldrichi strains have hinted at the existence of cryptic species, the evolutionary relationships of this species across its range have not been thoroughly investigated. Here we show that D. aldrichi actually is paraphyletic with respect to its closest relative, Drosophila wheeleri, and that divergent D. aldrichi lineages show complete hybrid male sterility when crossed. Our data support the interpretation that there are at least two species of D. aldrichi, making these flies particularly attractive for studies of speciation in an ecological and geographical context.  相似文献   

14.
Synopsis The Colorado squawfish, Ptychocheilus lucius, the principal native piscivore of the Colorado River basin, was once widespread and abundant in large rivers and their major tributaries. It occurs today only in the upstream regions of its historic range and is threatened with extinction. Growth rate of the species there is much slower than its potential rate and the rate that might once have been typical in lower-basin rivers. We develop the hypothesis that the interaction of slow growth and increased early-life mortality is an important cause of the decline of Colorado squawfish in the upper basin. We use a growth-rate versus temperature relation for Colorado squawfish to compare temperature regimes of historic and present habitats, and we describe the strong, positive relation between our measure of temperature-regime suitability and first-year growth of Colorado squawfish in upper-basin rivers. The unusually small size of the age-0 fish going into winter might be an important factor affecting recruitment to the adult stock. Simulations showed how the effect of increased early-life mortality can be especially significant on populations of slow-growing fishes. Predation by introduced fishes, as well as other man-induced causes of increased early-life mortality, probably contributed importantly to the decline of Colorado squawfish in the remaining habitat. Management efforts that might help this endangered species to recover include water management to enhance temperatures for growth, and the control of important introduced fishes.  相似文献   

15.
When ecologically divergent taxa encounter one another, hybrid zones can form when reproductive isolation is incomplete. The location of such hybrid zones can be influenced by environmental variables, and an ecological context can provide unique insights into the mechanisms by which species diverge and are maintained. Two ecologically differentiated species of small benthic fishes, the endemic and imperiled prairie chub, Macrhybopsis australis, and the shoal chub, Macrhybopsis hyostoma, are locally sympatric within the upper Red River Basin of Texas. We integrated population genomic data and environmental data to investigate species divergence and the maintenance of species boundaries in these two species. We found evidence of advanced‐generation asymmetric hybridization and introgression, with shoal chub alleles introgressing more frequently into prairie chubs than the reciprocal. Using a Bayesian Genomic Cline framework, patterns of genomic introgression were revealed to be quite heterogeneous, yet shoal chub alleles were found to have likely selectively introgressed across species boundaries significantly more often than prairie chub alleles, potentially explaining some of the observed asymmetry in hybridization. These patterns were remarkably consistent across two sampled geographic regions of hybridization. Several environmental variables were found to significantly predict individual admixture, suggesting ecological isolation might maintain species boundaries.  相似文献   

16.
Abstract The extent and impact of introgressive hybridization was examined in the Gila robusta complex of cyprinid fishes using mitochondrial DNA (mtDNA) sequence variation. Lower Colorado River basin populations of G. robusta, G. elegans, and G. cypha exhibited distinct mtDNAs, with only limited introgression of G. elegans into G. cypha. The impact of hybridization was significant in upper Colorado River basin populations; most upper basin fishes sampled exhibited only G. cypha mtDNA haplotypes, with some individuals exhibiting mtDNA from G. elegans. The complete absence of G. robusta mtDNA, even in populations of morphologically pure G. robusta, indicates extensive introgression that predates human influence. Analysis of the geographic distribution of variation identified two distinctive G. elegans lineages; however, the small number of individuals and localities sampled precluded a comprehensive analysis. Analysis of haplotype and population networks for G. cypha mtDNAs from 15 localities revealed low divergence among haplotypes; however, significant frequency differences among populations within and among drainages were found, largely attributable to samples in the Little Colorado River region. This structure was not associated with G. cypha and G. robusta, as morphotypes from the same location are more similar than conspecific forms in other locations. This indicates that morphological and mtDNA variation are affected by different evolutionary forces in Colorado River Gila and illustrates how both hybridization and local adaptation can play important roles in evolution.  相似文献   

17.
Three Acipenseridae species live in the rivers and marine waters of the Khabarovsk Territory, Russia: Sakhalin sturgeon, Acipenser mikadoi, Amur sturgeon, A. schrenckii, and kaluga, Huso dauricus. We review the general biology and life history of each species, including their historic and current distributions, and examine current paleogeographic theories to outline the possible origin and evolution of these three species in the Amur River, Sea of Okhotsk, and Sea of Japan biogeographic province. Apparently, these species have evolved during distinct geologic time periods, which has reinforced the reproductive isolation of these species although hybridization does occur. They have convergently adapted to the unique environmental conditions of the Amur River and Russian Maritime regions, and yet developed behavioral adaptations to reduce competition between species. Sakhalin sturgeon is the least studied species among anadromous sturgeon in the world. This species is highly migratory and spends the majority of its life in the ocean only returning to natal rivers to spawn. Amur sturgeon and kaluga are distributed throughout the Amur River basin and the estuary and share many life history traits. They are both represented by distinct morphs. Additionally, we present size and weight relationships to estimate the growth of Amur sturgeon and kaluga. All three species have suffered declines in abundance due to over fishing and their contemporary distributions have contracted compared to their historic ranges. We identify gaps in knowledge and suggest further research useful for guiding management of each species.  相似文献   

18.
Ecological speciation with gene flow may be an important mode of diversification for phytophagous insects. The recent shift of Rhagoletis pomonella from its native host downy hawthorn (Crataegus mollis) to introduced apple (Malus domestica) in the northeastern United States is a classic example of sympatric host race formation. Here, we test whether R. pomonella has similarly formed host races on four native Crataegus species in the southern United States: western mayhaw (C. opaca), blueberry hawthorn (C. brachyacantha), southern red hawthorn (C. mollis var. texana) and green hawthorn (C. viridis). These four southern hosts differ from each other in their fruiting phenology and in the volatile compounds emitted from the surface of their fruits. These two traits form the basis of ecological reproductive isolation between downy hawthorn and apple flies in the north. We report evidence from microsatellite population surveys and eclosion studies supporting the existence of genetically differentiated and partially reproductively isolated host races of southern hawthorn flies. The results provide an example of host shifting and ecological divergence involving native plants and imply that speciation with gene flow may be commonly initiated in Rhagoletis when ecological opportunity presents itself.  相似文献   

19.
Adaptation to contrasting environments across a heterogeneous landscape favors the formation of ecotypes by promoting ecological divergence. Patterns of fitness variation in the field can show whether natural selection drives local adaptation and ecotype formation. However, to demonstrate a link between ecological divergence and speciation, local adaptation must have consequences for reproductive isolation. Using contrasting ecotypes of an Australian wildflower, Senecio lautus in common garden experiments, hybridization experiments, and reciprocal transplants, we assessed how the environment shapes patterns of adaptation and the consequences of adaptive divergence for reproductive isolation. Local adaptation was strong between ecotypes, but weaker between populations of the same ecotype. F1 hybrids exhibited heterosis, but crosses involving one native parent performed better than those with two foreign parents. In a common garden experiment, F2 hybrids exhibited reduced fitness compared to parentals and F1 hybrids, suggesting that few genetic incompatibilities have accumulated between populations adapted to contrasting environments. Our results show how ecological differences across the landscape have created complex patterns of local adaptation and reproductive isolation, suggesting that divergent natural selection has played a fundamental role in the early stages of species diversification.  相似文献   

20.
Biological invasions and introgressive hybridization are major drivers for the decline of native freshwater fish. However, the magnitude of the problem across a native species range, the mechanisms shaping introgression as well as invader's dispersal and the relative role of biological invasions in the light of multiple environmental stressors are rarely described. Here, we report extensive (N = 665) mtDNA sequence and (N = 692) microsatellite genotypic data of 32 Northern Adriatic sites aimed to unravel the invasion of the European Barbus barbus in Italy and the hybridization and decline of the endemic B. plebejus. We highlight an exceptionally fast breakthrough of B. barbus within the Po River basin, leading to widespread introgressive hybridization with the endemic B. plebejus within few generations. In contrast, adjacent drainage systems are still unaffected from B. barbus invasion. We show that barriers to migration are inefficient to halt the invasion process and that propagule pressure, and not environmental quality, is the major driver responsible for B. barbus success. Both introgressive hybridization and invader's dispersal are facilitated by ongoing fisheries management practices. Therefore, immediate changes in fisheries management (i.e. stocking and translocation measures) and a detailed conservation plan, focussed on remnant purebred B. plebejus populations, are urgently needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号