首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Protection and restoration of species in the wild may require conservation breeding programs under genetic management to minimize deleterious effects of genetic changes that occur in captivity, while preserving populations' genetic diversity and evolutionary resilience. Here, through interannual pedigree analyses, we first assessed the efficiency of a 21-year genetic management, including minimization of mean kinship, inbreeding avoidance, and regular addition of founders, of a conservation breeding program targeting on Houbara bustard (Chlamydotis undulata undulata) in Morocco. Secondly, we compared pedigree analyses, the classical way of assessing and managing genetic diversity in captivity, to molecular analyses based on seven microsatellites. Pedigree-based results indicated an efficient maintenance of the genetic diversity (99% of the initial genetic diversity retained) while molecular-based results indicated an increase in allelic richness and an increase in unbiased expected heterozygosity across time. The pedigree-based average inbreeding coefficient F remained low (between 0.0004 and 0.003 in 2017) while the proportion of highly inbred individuals (F > .1) decreased over time and reached 0.2% in 2017. Furthermore, pedigree-based F and molecular-based individual multilocus heterozygosity were weakly negatively correlated, (Pearson's r = −.061 when considering all genotyped individuals), suggesting that they cannot be considered as alternatives, but rather as complementary sources of information. These findings suggest that a strict genetic monitoring and management, based on both pedigree and molecular tools can help mitigate genetic changes and allow to preserve genetic diversity and evolutionary resilience in conservation breeding programs.  相似文献   

2.
The primary goal of captive breeding programmes for endangered species is to prevent extinction, a component of which includes the preservation of genetic diversity and avoidance of inbreeding. This is typically accomplished by minimizing mean kinship in the population, thereby maintaining equal representation of the genetic founders used to initiate the captive population. If errors in the pedigree do exist, such an approach becomes less effective for minimizing inbreeding depression. In this study, both pedigree‐ and DNA‐based methods were used to assess whether inbreeding depression existed in the captive population of the critically endangered Attwater's Prairie‐chicken (Tympanuchus cupido attwateri), a subspecies of prairie grouse that has experienced a significant decline in abundance and concurrent reduction in neutral genetic diversity. When examining the captive population for signs of inbreeding, variation in pedigree‐based inbreeding coefficients (fpedigree) was less than that obtained from DNA‐based methods (fDNA). Mortality of chicks and adults in captivity were also positively correlated with parental relatedness (rDNA) and fDNA, respectively, while no correlation was observed with pedigree‐based measures when controlling for additional variables such as age, breeding facility, gender and captive/release status. Further, individual homozygosity by loci (HL) and parental rDNA values were positively correlated with adult mortality in captivity and the occurrence of a lethal congenital defect in chicks, respectively, suggesting that inbreeding may be a contributing factor increasing the frequency of this condition among Attwater's Prairie‐chickens. This study highlights the importance of using DNA‐based methods to better inform management decisions when pedigrees are incomplete or errors may exist due to uncertainty in pairings.  相似文献   

3.
Estimates of inbreeding and relatedness are commonly calculated using molecular markers, although the accuracy of such estimates has been questioned. As a further complication, in many situations, such estimates are required in populations with reduced genetic diversity, which is likely to affect their accuracy. We investigated the correlation between microsatellite‐ and pedigree‐based coefficients of inbreeding and relatedness in laboratory populations of Drosophila melanogaster that had passed through bottlenecks to manipulate their genetic diversity. We also used simulations to predict expected correlations between marker‐ and pedigree‐based estimates and to investigate the influence of linkage between loci and null alleles. Our empirical data showed lower correlations between marker‐ and pedigree‐based estimates in our control (nonbottleneck) population than were predicted by our simulations or those found in similar studies. Correlations were weaker in bottleneck populations, confirming that extreme reductions in diversity can compromise the ability of molecular estimates to detect recent inbreeding events. However, this result was highly dependent on the strength of the bottleneck and we did not observe or predict any reduction in correlations in our population that went through a relatively severe bottleneck of N = 10 for one generation. Our results are therefore encouraging, as molecular estimates appeared robust to quite severe reductions in genetic diversity. It should also be remembered that pedigree‐based estimates may not capture realized identity‐by‐decent and that marker‐based estimates may actually be more useful in certain situations.  相似文献   

4.
We used genotype data from the caprine 50k Illumina BeadChip for the assessment of genetic diversity within and between 10 local Swiss goat breeds. Three different cluster methods allowed the goat samples to be assigned to the respective breed groups, whilst the samples of Nera Verzasca and Tessin Grey goats could not be differentiated from each other. The results of the different genetic diversity measures show that Appenzell, Toggenburg, Valais and Booted goats should be prioritized in future conservation activities. Furthermore, we examined runs of homozygosity (ROH) and compared genomic inbreeding coefficients based on ROH (FROH) with pedigree‐based inbreeding coefficients (FPED). The linear relationship between FROH and FPED was confirmed for goats by including samples from the three main breeds (Saanen, Chamois and Toggenburg goats). FROH appears to be a suitable measure for describing levels of inbreeding in goat breeds with missing pedigree information. Finally, we derived selection signatures between the breeds. We report a total of 384 putative selection signals. The 25 most significant windows contained genes known for traits such as: coat color variation (MITF, KIT, ASIP), growth (IGF2, IGF2R, HRAS, FGFR3) and milk composition (PITX2). Several other putative genes involved in the formation of populations, which might have been selected for adaptation to the alpine environment, are highlighted. The results provide a contemporary background for the management of genetic diversity in local Swiss goat breeds.  相似文献   

5.
Sexual selection theory suggests that choice for partners carrying dissimilar genes at the major histocompatibility complex (MHC) may play a role in maintaining genetic variation in animal populations by limiting inbreeding or improving the immunity of future offspring. However, it is often difficult to establish whether the observed MHC dissimilarity among mates drives mate choice or represents a by‐product of inbreeding avoidance based on MHC‐independent cues. Here, we used 454‐sequencing and a 10‐year study of wild grey mouse lemurs (Microcebus murinus), small, solitary primates from western Madagascar, to compare the relative importance on the mate choice of two MHC class II genes, DRB and DQB, that are equally variable but display contrasting patterns of selection at the molecular level, with DRB under stronger diversifying selection. We further assessed the effect of the genetic relatedness and of the spatial distance among candidate mates on the detection of MHC‐dependent mate choice. Our results reveal inbreeding avoidance, along with disassortative mate choice at DRB, but not at DQB. DRB‐disassortative mate choice remains detectable after excluding all related dyads (characterized by a relatedness coefficient r > 0), but varies slightly with the spatial distance among candidate mates. These findings suggest that the observed deviations from random mate choice at MHC are driven by functionally important MHC genes (like DRB) rather than passively resulting from inbreeding avoidance and further emphasize the need for taking into account the spatial and genetic structure of the population in correlative tests of MHC‐dependent mate choice.  相似文献   

6.
Genetic diversity is positively linked to the viability and evolutionary potential of species but is often compromised in threatened taxa. Genetic rescue by gene flow from a more diverse or differentiated source population of the same species can be an effective strategy for alleviating inbreeding depression and boosting evolutionary potential. The helmeted honeyeater Lichenostomus melanops cassidix is a critically endangered subspecies of the common yellow‐tufted honeyeater. Cassidix has declined to a single wild population of ~130 birds, despite being subject to intensive population management over recent decades. We assessed changes in microsatellite diversity in cassidix over the last four decades and used population viability analysis to explore whether genetic rescue through hybridization with the neighbouring Lichenostomus melanops gippslandicus subspecies constitutes a viable conservation strategy. The contemporary cassidix population is characterized by low genetic diversity and effective population size (Ne < 50), suggesting it is vulnerable to inbreeding depression and will have limited capacity to evolve to changing environments. We find that gene flow from gippslandicus to cassidix has declined substantially relative to pre‐1990 levels and argue that natural levels of gene flow between the two subspecies should be restored. Allowing gene flow (~4 migrants per generation) from gippslandicus into cassidix (i.e. genetic rescue), in combination with continued annual release of captive‐bred cassidix (i.e. demographic rescue), should lead to positive demographic and genetic outcomes. Although we consider the risk of outbreeding depression to be low, we recommend that genetic rescue be managed within the context of the captive breeding programme, with monitoring of outcomes.  相似文献   

7.
Conservation genetics studies of populations bottlenecks are commonly framed under the detrimental paradigm of inbreeding depression. This conceptual paradigm presupposes a direct and unambiguous relationship between population size, genetic diversity, fitness, and extinction. Here, I review a series of studies that emphasize the role of chance, selection, and history in determining the genetic consequences of population bottlenecks. The variable responses of bottlenecks to fitness, phenotypic variation, and heritable variation emphasize the necessity to explore the relationship between molecular genetic diversity, fitness, adaptive genetic diversity, and extinction beyond the detrimental paradigm of inbreeding depression. Implications for conservation and management are presented as guidelines and testable predictions regarding the potential effects of bottlenecks on population viability and extinction.  相似文献   

8.
The use of genetic information is crucial in conservation programs for the establishment of breeding plans and for the evaluation of restocking success. Short tandem repeats (STRs) have been the most widely used molecular markers in such programs, but next‐generation sequencing approaches have prompted the transition to genome‐wide markers such as single nucleotide polymorphisms (SNPs). Until now, most sturgeon species have been monitored using STRs. The low diversity found in the critically endangered European sturgeon (Acipenser sturio), however, makes its future genetic monitoring challenging, and the current resolution needs to be increased. Here, we describe the discovery of a highly informative set of 79 SNPs using double‐digest restriction‐associated DNA (ddRAD) sequencing and its validation by genotyping using the MassARRAY system. Comparing with STRs, the SNP panel proved to be highly efficient and reproducible, allowing for more accurate parentage and kinship assignments' on 192 juveniles of known pedigree and 40 wild‐born adults. We explore the effectiveness of both markers to estimated relatedness and inbreeding, using simulated and empirical datasets. Interestingly, we found significant correlations between STRs and SNPs at individual heterozygosity and inbreeding that give support to a reasonable representation of whole genome diversity for both markers. These results are useful for the conservation program of A. sturio in building a comprehensive studbook, which will optimize conservation strategies. This approach also proves suitable for other case studies in which highly discriminatory genetic markers are needed to assess parentage and kinship.  相似文献   

9.
Individual‐based estimates of the degree of inbreeding or parental relatedness from pedigrees provide a critical starting point for studies of inbreeding depression, but in practice wild pedigrees are difficult to obtain. Because inbreeding increases the proportion of genomewide loci that are identical by descent, inbreeding variation within populations has the potential to generate observable correlations between heterozygosity measured using molecular markers and a variety of fitness related traits. Termed heterozygosity‐fitness correlations (HFCs), these correlations have been observed in a wide variety of taxa. The difficulty of obtaining wild pedigree data, however, means that empirical investigations of how pedigree inbreeding influences HFCs are rare. Here, we assess evidence for inbreeding depression in three life‐history traits (hatching and fledging success and juvenile survival) in an isolated population of Stewart Island robins using both pedigree‐ and molecular‐derived measures of relatedness. We found results from the two measures were highly correlated and supported evidence for significant but weak inbreeding depression. However, standardized effect sizes for inbreeding depression based on the pedigree‐based kin coefficients (k) were greater and had smaller standard errors than those based on molecular genetic measures of relatedness (RI), particularly for hatching and fledging success. Nevertheless, the results presented here support the use of molecular‐based measures of relatedness in bottlenecked populations when information regarding inbreeding depression is desired but pedigree data on relatedness are unavailable.  相似文献   

10.
Management programmes often have to make decisions based on the analysis of the genetic properties and diversity of populations. Expected heterozygosity (or gene diversity) and population structure parameters are often used to make recommendations for conservation, such as avoidance of inbreeding or migration across subpopulations. Allelic diversity, however, can also provide complementary and useful information for conservation programmes, as it is highly sensitive to population bottlenecks, and is more related to long‐term selection response than heterozygosity. Here we present a completely revised and updated re‐implementation of the software metapop for the analysis of diversity in subdivided populations, as well as a tool for the management and dynamic estimation of optimal contributions in conservation programmes. This new update includes computation of allelic diversity for population analysis and management, as well as a simulation mode to forecast the consequences of taking different management strategies over time. Furthermore, the new implementation in C++ includes code optimization and improved memory usage, allowing for fast analysis of large data sets including single nucleotide polymorphism markers, as well as enhanced cross‐software and cross‐platform compatibility.  相似文献   

11.
Haliotis midae is South Africa's most important aquaculture species. The reproduction cycle is currently not closed as many farms rely on wild‐caught broodstock for seed production. However, there is an increasing interest in genetic improvement in commercial stocks, with a growing number of producers implementing selective breeding strategies. High throughput commercial production and mass spawning make it difficult to maintain breeding records; therefore, mostly mass selection is practised. The high fecundity and unequal parental contributions also often lead to increased levels of inbreeding. This study therefore aimed to assess the genetic effects of such breeding practices on commercial populations of H. midae. Using microsatellite loci, the genetic properties of a wild, an F1 and an F2 population were estimated and compared. Although there was no significant loss of genetic diversity amongst the cultured populations in comparison with the wild progenitor population, there was low‐to‐moderate genetic differentiation between populations. Relatedness amongst the F2 population was significant, and the rate of inbreeding was high. The effective population size for the F2 (±50) was also comparatively small with respect to the wild (∞) and F1 (±470) populations. These results suggest that farms need to give caution to breeding practices beyond the first (F1) generation and aim to increase effective population sizes and minimise inbreeding to ensure long‐term genetic gain and productivity. This study also confirms the usefulness of population genetic analyses for commercial breeding and stock management in the absence of extensive pedigree records.  相似文献   

12.
Captive breeding programs are an important tool for the conservation of endangered species. These programs are commonly managed using pedigrees containing information about the history of each individual's family, such as breeding pairs and parentage. However, there are some species that are kept in groups where it is hard to distinguish between particular individuals within the group, making it very difficult to record any information at an individual level. Currently, software and methods commonly used for registering and analyzing pedigrees to help manage populations at an individual level are not adequate for managing these group‐living species. Therefore, there is a need to further develop these tools and methodologies for pedigree analysis to better manage group‐living species. PMx is a program used for the management of ex situ populations in zoos and aquariums. We adapted the pedigree analysis method implemented in PMx to analyze pedigrees (records of descendant lineages) of group‐living species. In addition, we developed a group pedigree data entry sheet and group2PMx, a converter program that enables group datasets to be imported into PMx. We show how pedigree analysis of a group‐living species can be used for population management using the studbook of the endangered Texas blind cave salamander Eurycea rathbuni. Such analyses of the pedigree of groups can improve the management of group‐living species in ex situ breeding programs. Firstly, it enables better management decisions based on more accurate genetic measures between groups, allowing for greater control of inbreeding. Secondly, it can improve the conditions in which group‐living species are held by adapting husbandry practices to better reflect conditions of these species living in the wild. The use of the spreadsheet and group2PMx extends the application of PMx, allowing conservation managers and other institutions outside the zoo and aquarium community to easily import and analyze their pedigree data.  相似文献   

13.

Background

Long-term benefits in animal breeding programs require that increases in genetic merit be balanced with the need to maintain diversity (lost due to inbreeding). This can be achieved by using optimal contribution selection. The availability of high-density DNA marker information enables the incorporation of genomic data into optimal contribution selection but this raises the question about how this information affects the balance between genetic merit and diversity.

Methods

The effect of using genomic information in optimal contribution selection was examined based on simulated and real data on dairy bulls. We compared the genetic merit of selected animals at various levels of co-ancestry restrictions when using estimated breeding values based on parent average, genomic or progeny test information. Furthermore, we estimated the proportion of variation in estimated breeding values that is due to within-family differences.

Results

Optimal selection on genomic estimated breeding values increased genetic gain. Genetic merit was further increased using genomic rather than pedigree-based measures of co-ancestry under an inbreeding restriction policy. Using genomic instead of pedigree relationships to restrict inbreeding had a significant effect only when the population consisted of many large full-sib families; with a half-sib family structure, no difference was observed. In real data from dairy bulls, optimal contribution selection based on genomic estimated breeding values allowed for additional improvements in genetic merit at low to moderate inbreeding levels. Genomic estimated breeding values were more accurate and showed more within-family variation than parent average breeding values; for genomic estimated breeding values, 30 to 40% of the variation was due to within-family differences. Finally, there was no difference between constraining inbreeding via pedigree or genomic relationships in the real data.

Conclusions

The use of genomic estimated breeding values increased genetic gain in optimal contribution selection. Genomic estimated breeding values were more accurate and showed more within-family variation, which led to higher genetic gains for the same restriction on inbreeding. Using genomic relationships to restrict inbreeding provided no additional gain, except in the case of very large full-sib families.  相似文献   

14.
During population establishment, genetic drift can be the key driver of changes in genetic diversity, particularly while the population is small. However, natural selection can also play a role in shaping diversity at functionally important loci. We used a well‐studied, re‐introduced population of the threatened Stewart Island robin (= 722 pedigreed individuals) to determine whether selection shaped genetic diversity at innate immunity toll‐like receptor (TLR) genes, over a 9‐year period of population growth following establishment with 12 genetic founders. We found no evidence for selection operating with respect to TLR diversity on first‐year overwinter survival for the majority of loci, genotypes and alleles studied. However, survival of individuals with TLR4BE genotype was significantly improved: these birds were less than half as likely to die prior to maturity compared with all other TLR4 genotypes. Furthermore, the population frequency of this genotype, at a two‐fold excess over Hardy–Weinberg expectation, was increased by nonrandom mating. Near‐complete sampling and full pedigree and reproductive data enabled us to eliminate other potential causes of these patterns including inbreeding, year effects, density dependence, selection on animals at earlier life history stages or genome‐level association of the TLR4E allele with ‘good genes’. However, comparison of observed levels of gene diversity to predictions under simulated genetic drift revealed results consistent with neutral expectations for all loci, including TLR4. Although selection favoured TLR4BE heterozygotes in this population, these effects were insufficient to outweigh genetic drift. This is the first empirical study to show that genetic drift can overwhelm natural selection in a wild population immediately following establishment.  相似文献   

15.
Empirical support for the genetic management strategies employed by captive breeding and reintroduction programs is scarce. We evaluated the genetic management plan for the highly endangered black‐footed ferret (Mustela nigripes) developed by the American Zoo and Aquarium Associations (AZA) as a part of the species survival plan (SSP). We contrasted data collected from five microsatellite loci to predictions from a pedigree‐based kinship matrix analysis of the captive black‐footed ferret population. We compared genetic diversity among captive populations managed for continued captive breeding or reintroduction, and among wild‐born individuals from two reintroduced populations. Microsatellite data gave an accurate but only moderately precise estimate of heterozygosity. Genetic diversity was similar in captive populations maintained for breeding and release, and it appears that the recovery program will achieve its goal of maintaining 80% of the genetic diversity of the founder population over 25 years. Wild‐born individuals from reintroduced populations maintained genetic diversity and avoided close inbreeding. We detected small but measurable genetic differentiation between the reintroduced populations. The model of random mating predicted only slightly lower levels of heterozygosity retention compared to the SSP strategy. The random mating strategy may be a viable alternative for managing large, stable, captive populations such as that of the black‐footed ferret. Zoo Biol 22:287–298, 2003. © 2003 Wiley‐Liss, Inc.  相似文献   

16.
An important challenge for conservation science is to detect declines in intraspecific diversity so that management action can be guided towards populations or species at risk. The lifespan of Australian lungfish (Neoceratodus forsteri) exceeds 80 years, and human impacts on breeding habitat over the last half century may have impeded recruitment, leaving populations dominated by old postreproductive individuals, potentially resulting in a small and declining breeding population. Here, we conduct a “single‐sample” evaluation of genetic erosion within contemporary populations of the Australian lungfish. Genetic erosion is a temporal decline in intraspecific diversity due to factors such as reduced population size and inbreeding. We examined whether young individuals showed signs of reduced genetic diversity and/or inbreeding using a novel bomb radiocarbon dating method to age lungfish nonlethally, based on 14C ratios of scales. A total of 15,201 single nucleotide polymorphic (SNP) loci were genotyped in 92 individuals ranging in age from 2 to 77 years old. Standardized individual heterozygosity and individual inbreeding coefficients varied widely within and between riverine populations, but neither was associated with age, so perceived problems with recruitment have not translated into genetic erosion that could be considered a proximate threat to lungfish populations. Conservation concern has surrounded Australian lungfish for over a century. However, our results suggest that long‐lived threatened species can maintain stable levels of intraspecific variability when sufficient reproductive opportunities exist over the course of a long lifespan.  相似文献   

17.
Indirect benefits of mate choice result from increased offspring genetic quality and may be important drivers of female behaviour. ‘Good‐genes‐for‐viability’ models predict that females prefer mates of high additive genetic value, such that offspring survival should correlate with male attractiveness. Mate choice may also vary with genetic diversity (e.g. heterozygosity) or compatibility (e.g. relatedness), where the female's genotype influences choice. The relative importance of these nonexclusive hypotheses remains unclear. Leks offer an excellent opportunity to test their predictions, because lekking males provide no material benefits and choice is relatively unconstrained by social limitations. Using 12 years of data on lekking lance‐tailed manakins, Chiroxiphia lanceolata, we tested whether offspring survival correlated with patterns of mate choice. Offspring recruitment weakly increased with father attractiveness (measured as reproductive success, RS), suggesting attractive males provide, if anything, only minor benefits via offspring viability. Both male RS and offspring survival until fledging increased with male heterozygosity. However, despite parent–offspring correlation in heterozygosity, offspring survival was unrelated to its own or maternal heterozygosity or to parental relatedness, suggesting survival was not enhanced by heterozygosity per se. Instead, offspring survival benefits may reflect inheritance of specific alleles or nongenetic effects. Although inbreeding depression in male RS should select for inbreeding avoidance, mates were not less related than expected under random mating. Although mate heterozygosity and relatedness were correlated, selection on mate choice for heterozygosity appeared stronger than that for relatedness and may be the primary mechanism maintaining genetic variation in this system despite directional sexual selection.  相似文献   

18.
Inbreeding depression, the reduced fitness of offspring of closely related parents, is commonplace in both captive and wild populations and has important consequences for conservation and mating system evolution. However, because of the difficulty of collecting pedigree and life‐history data from wild populations, relatively few studies have been able to compare inbreeding depression for traits at different points in the life cycle. Moreover, pedigrees give the expected proportion of the genome that is identical by descent (IBDg) whereas in theory with enough molecular markers realized IBDg can be quantified directly. We therefore investigated inbreeding depression for multiple life‐history traits in a wild population of banded mongooses using pedigree‐based inbreeding coefficients (fped) and standardized multilocus heterozygosity (sMLH) measured at 35–43 microsatellites. Within an information theoretic framework, we evaluated support for either fped or sMLH as inbreeding terms and used sequential regression to determine whether the residuals of sMLH on fped explain fitness variation above and beyond fped. We found no evidence of inbreeding depression for survival, either before or after nutritional independence. By contrast, inbreeding was negatively associated with two quality‐related traits, yearling body mass and annual male reproductive success. Yearling body mass was associated with fped but not sMLH, while male annual reproductive success was best explained by both fped and residual sMLH. Thus, our study not only uncovers variation in the extent to which different traits show inbreeding depression, but also reveals trait‐specific differences in the ability of pedigrees and molecular markers to explain fitness variation and suggests that for certain traits, genetic markers may capture variation in realized IBDg above and beyond the pedigree expectation.  相似文献   

19.
The influences of management practices and past demographic history on genetic diversity are of critical relevance to sustainable practices and the conservation of wildlife populations. The red deer (Cervus elaphus) is an interesting model species to address these questions because it has a wide geographical distribution and it has been intensively managed for humans in the last decades. In the present study, we have analyzed the impact of recent management practices on the genetic diversity of Iberian red deer populations and assessed the genetic variation effects on population and individual fitness‐related traits. Four populations subjected to distinct management systems were selected: Cabañeros (CB) and Doñana (DN), not hunted populations; Fraga/Caspe (FG/CP), open hunting area with very low or absent management; and PE, fenced private hunting estate founded 31 years ago through the introduction of deer of different origins. Ten microsatellites were amplified in a total of 172 individuals. Additionally, several fitness‐related traits such as the presence of tuberculosis compatible lesions (TBCL), spleen weight (SW), and body length (BL) were estimated. We found a marked genetic variation and differentiation among populations, suggesting a strong population structure. In the fenced population, the introduction of genetically distinct animals has led to high genetic variability (no evidence of inbreeding) despite intensive management. Lower levels of genetic diversity were observed in two historically isolated natural populations (DN and FG/CP). The past demographic history of Iberian populations appears to be more relevant than the current management policy in shaping the genetic variability of natural populations. Population genetic diversity may correlate with life‐history traits and disease susceptibility, which could compromise the conservation and management of these wildlife populations. Although no significant effects of individual genetic diversity (general and local effect hypotheses) were observed on TBCL, SW and BL, some single‐locus effects had almost significant trends for the TBCL and SW traits. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 209–223.  相似文献   

20.
In this paper, we describe the utility of microsatellite data and genetic pedigree information to guide the genetic management of two long-term conservation programs for endangered populations of salmon: Snake River Sockeye Salmon, Oncorhynchus nerka, and inner Bay of Fundy Atlantic Salmon, Salmo salar. Both programs are captive broodstock (live gene banking) programs for endangered populations of salmon. In order for these programs to be successful for recovery efforts, genetic change, including accumulation of inbreeding, loss of genetic variation, and adaptation to captivity, must be minimized. We provide an overview of each program, describe broodstock selection and pairing for spawning, and discuss how pedigree data are being used to evaluate different management practices. While there are inherent species and programmatic differences, both of these programs use widely accepted genetic conservation strategies (minimize mean kinship, reduce variance in family size, minimize inbreeding in the next generation, maintain large census and effective population size) to potentially mitigate some unintended side-effects associated with the rearing of small populations in captivity. These case studies highlight the benefits and practical limitations of applying these strategies in the genetic management of salmon, and may be used to inform other conservation programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号