首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The impact of logging and subsequent recovery after logging is predicted to vary depending on specific life history traits of the logged species. The Eco-gene simulation model was used to evaluate the long-term impacts of selective logging over 300 years on two contrasting Brazilian Amazon tree species, Dipteryx odorata and Jacaranda copaia. D. odorata (Leguminosae), a slow growing climax tree, occurs at very low densities, whereas J. copaia (Bignoniaceae) is a fast growing pioneer tree that occurs at high densities. Microsatellite multilocus genotypes of the pre-logging populations were used as data inputs for the Eco-gene model and post-logging genetic data was used to verify the output from the simulations. Overall, under current Brazilian forest management regulations, there were neither short nor long-term impacts on J. copaia. By contrast, D. odorata cannot be sustainably logged under current regulations, a sustainable scenario was achieved by increasing the minimum cutting diameter at breast height from 50 to 100 cm over 30-year logging cycles. Genetic parameters were only slightly affected by selective logging, with reductions in the numbers of alleles and single genotypes. In the short term, the loss of alleles seen in J. copaia simulations was the same as in real data, whereas fewer alleles were lost in D. odorata simulations than in the field. The different impacts and periods of recovery for each species support the idea that ecological and genetic information are essential at species, ecological guild or reproductive group levels to help derive sustainable management scenarios for tropical forests.  相似文献   

2.
The effects of reduced‐impact logging (RIL) on the regeneration of commercial tree species were investigated, as long‐term timber yields depend partly on the availability of seedlings in a managed forest. On four occasions during a 20‐month period in the Tapajós National Forest (Eastern Amazon, Brazil), seven commercial tree species were assessed as follows: the long‐lived pioneers Bagassa guianensis and Jacaranda copaia; the partially shade‐tolerant Hymenaea courbaril, Dipteryx odorata, and Carapa guianensis; and the totally shade‐tolerant Symphonia globulifera and Manilkara huberi. In 2439 10 × 10 m plots, all individuals < 20 cm diameter at breast height (dbh) were assessed over three intervals, before, during, and after the forest being logged. Before logging, the density of seedlings and saplings of the seven species did not change. Logged trees were spatially aggregated, with 9.2 percent of the plots being heavily impacted by logging. After logging, the recruitment rate increased more than the mortality rate, so that post‐harvesting densities of seedlings and saplings increased. The increase in density was concentrated in logged plots with more disturbances. It is concluded that post‐harvesting heterogeneity of micro‐environments created by RIL may be an important component to be taken into account for sustainable forest management and conservation of commercial species.  相似文献   

3.
Owing to the reduction of population density and/or the environmental changes it induces, selective logging could affect the demography, reproductive biology and evolutionary potential of forest trees. This is particularly relevant in tropical forests where natural population densities can be low and isolated trees may be subject to outcross pollen limitation and/or produce low-quality selfed seeds that exhibit inbreeding depression. Comparing reproductive biology processes and genetic diversity of populations at different densities can provide indirect evidence of the potential impacts of logging. Here, we analysed patterns of genetic diversity, mating system and gene flow in three Central African populations of the self-compatible legume timber species Erythrophleum suaveolens with contrasting densities (0.11, 0.68 and 1.72 adults per ha). The comparison of inbreeding levels among cohorts suggests that selfing is detrimental as inbred individuals are eliminated between seedling and adult stages. Levels of genetic diversity, selfing rates (∼16%) and patterns of spatial genetic structure (Sp ∼0.006) were similar in all three populations. However, the extent of gene dispersal differed markedly among populations: the average distance of pollen dispersal increased with decreasing density (from 200 m in the high-density population to 1000 m in the low-density one). Overall, our results suggest that the reproductive biology and genetic diversity of the species are not affected by current logging practices. However, further investigations need to be conducted in low-density populations to evaluate (1) whether pollen limitation may reduce seed production and (2) the regeneration potential of the species.  相似文献   

4.
Polymorphic allozyme loci were used to estimate outcrossing rates for three tree species from a disturbed dry forest in southern Costa Rica. Estimates of the multilocus outcrossing rates of Cedrela odorata and Jacaranda copaia were 0.969 and 0.982, respectively, and suggest that these species may be self-incompatible. The subcanopy tree Stemmadenia donnell-smithii also demonstrated little self-fertilization based on an estimated outcrossing rate of 0.896. Significant heterogeneity in pollen allele frequencies among maternal trees was detected for at least two enzyme loci for each species. A test of correlated mating between progeny of S. donnell-smithii revealed that all seeds within a fruit were singly sired. In addition, the low estimates of biparental inbreeding and significant differences in pollen and ovule allele frequencies for this species suggest that gene flow into the sampled forest fragment may occur. The implications of deforestation on the mating systems of these tropical tree taxa are discussed.  相似文献   

5.
Selective logging is one of several silvicultural practices used in sustainable forest management in the lowland dipterocarp forest in Indonesia. Selecting only trees with diameters >50 cm for logging can reduce the density of reproductive trees, thereby affecting pollen dispersal and influencing the mating system among remaining trees. We evaluated the effect of logging rotations on the mating system, gene flow and genetic diversity in populations of Shorea parvifolia in primary forest, and in first and second rotation forest. Our results revealed that multiple (or at least two) selective logging events with a 30-year logging rotation had a significant impact on the genetic diversity of pollen clouds. However, the average pollen dispersal distance did not differ significantly among the multiple selective logging rotations. The multiple rotations reduced the outcrossing rate and the number effective of pollen donors in the logged forest. Moreover, the number of pollen donors in a plot was affected by the basal area of reproductive trees present. These results suggest that reducing the number of reproductive trees by logging with multiple rotations might increase the bi-parental inbreeding rate due to the reduction in density of reproductive trees in a selectively logged forest. We conclude that multiple rotations with a 30-year cycle of selective logging as currently practiced would reduce the density of reproductive trees, and would not be sustainable in terms of maintaining genetic diversity in tropical forests of Southeast Asia.  相似文献   

6.
Forest degradation accounts for ~70% of total carbon losses from tropical forests. Substantial emissions are from selective logging, a land‐use activity that decreases forest carbon density. To maintain carbon values in selectively logged forests, climate change mitigation policies and government agencies promote the adoption of reduced‐impact logging (RIL) practices. However, whether RIL will maintain both carbon and timber values in managed tropical forests over time remains uncertain. In this study, we quantify the recovery of timber stocks and aboveground carbon at an experimental site where forests were subjected to different intensities of RIL (4, 8, and 16 trees/ha). Our census data span 20 years postlogging and 17 years after the liberation of future crop trees from competition in a tropical forest on the Guiana Shield, a globally important forest carbon reservoir. We model recovery of timber and carbon with a breakpoint regression that allowed us to capture elevated tree mortality immediately after logging. Recovery rates of timber and carbon were governed by the presence of residual trees (i.e., trees that persisted through the first harvest). The liberation treatment stimulated faster recovery of timber albeit at a carbon cost. Model results suggest a threshold logging intensity beyond which forests managed for timber and carbon derive few benefits from RIL, with recruitment and residual growth not sufficient to offset losses. Inclusion of the breakpoint at which carbon and timber gains outpaced postlogging mortality led to high predictive accuracy, including out‐of‐sample R2 values >90%, and enabled inference on demographic changes postlogging. Our modeling framework is broadly applicable to studies that aim to quantify impacts of logging on forest recovery. Overall, we demonstrate that initial mortality drives variation in recovery rates, that the second harvest depends on old growth wood, and that timber intensification lowers carbon stocks.  相似文献   

7.
Tropical trees often display long‐distance pollen dispersal, even in highly fragmented landscapes. Understanding how patterns of spatial isolation influence pollen dispersal and interact with background patterns of fine‐scale spatial genetic structure (FSGS) is critical for evaluating the genetic consequences of habitat fragmentation. In the endangered tropical timber tree Dysoxylum malabaricum (Meliaceae), we apply eleven microsatellite markers with paternity and parentage analysis to directly estimate historic gene flow and contemporary pollen dispersal across a large area (216 km2) in a highly fragmented agro‐forest landscape. A comparison of genetic diversity and genetic structure in adult and juvenile life stages indicates an increase in differentiation and FSGS over time. Paternity analysis and parentage analysis demonstrate high genetic connectivity across the landscape by pollen dispersal. A comparison between mother trees in forest patches with low and high densities of adult trees shows that the frequency of short‐distance mating increases, as does average kinship among mates in low‐density stands. This indicates that there are potentially negative genetic consequences of low population density associated with forest fragmentation. Single isolated trees, in contrast, frequently receive heterogeneous pollen from distances exceeding 5 km. We discuss the processes leading to the observed patterns of pollen dispersal and the implications of this for conservation management of D. malabaricum and tropical trees more generally.  相似文献   

8.
Pollen and seed dispersal are key processes affecting the demographic and evolutionary dynamics of plant species and are also important considerations for the sustainable management of timber trees. Through direct and indirect genetic analyses, we studied the mating system and the extent of pollen and seed dispersal in an economically important timber species, Entandrophragma cylindricum (Meliaceae). We genotyped adult trees, seeds and saplings from a 400‐ha study plot in a natural forest from East Cameroon using eight nuclear microsatellite markers. The species is mainly outcrossed (= 0.92), but seeds from the same fruit are often pollinated by the same father (correlated paternity, rp = 0.77). An average of 4.76 effective pollen donors (Nep) per seed tree contributes to the pollination. Seed dispersal was as extensive as pollen dispersal, with a mean dispersal distance in the study plot approaching 600 m, and immigration rates from outside the plot to the central part of the plot reaching 40% for both pollen and seeds. Extensive pollen‐ and seed‐mediated gene flow is further supported by the weak, fine‐scale spatial genetic structure (Sp statistic = 0.0058), corresponding to historical gene dispersal distances (σg) reaching approximately 1,500 m. Using an original approach, we showed that the relatedness between mating individuals (Fij = 0.06) was higher than expected by chance, given the extent of pollen dispersal distances (expected Fij = 0.02 according to simulations). This remarkable pattern of assortative mating could be a phenomenon of potentially consequential evolutionary and management significance that deserves to be studied in other plant populations.  相似文献   

9.
Forestry managers have been searching for ways to reduce the impacts of logging on Amazonian biodiversity, but some basic factors are still not considered in native forestry operations, among them the diversity of epiphytes associated with the logged trees. Our goals in this study were to determine the floristic composition, quantify the species richness, and characterize the species diversity of the vascular epiphytic community present in three timber tree species in Acre State, Brazil. We collected and identified all epiphytes in 30 randomly selected trees ≥35 cm DBH of each of three important timber species, Tabebuia serratifolia, Manilkara inundata and Couratari macrosperma. We also documented the epiphyte diversity in 120 randomly selected trees ≥35 cm DBH of 56 other species to determine whether the three timber species have different epiphyte diversity than the tree community at large. The epiphyte samples in the three timber species showed 77 species, 13 of which were new records for the flora of Acre state. The epiphyte community in the randomly selected trees presented a total of 56 species. The timber species phorophytes hosted on average three times more epiphyte species per tree than the other 120 randomly selected trees. These results show that a substantial portion of local floristic richness can be lost during logging activity due if not properly managed by rescuing epiphytes after felling the trees. Although these epiphytes could contribute positively to forestry sustainability due to their ornamental value, increasing the economic yield per hectare, there are no local initiatives for economic use of epiphytes.  相似文献   

10.
Amazonian white-water (várzea) floodplains harbor many commercially important timber species which in Brazil are harvested following regulations of the Federal Environmental Agency (IBAMA). Although it is well-known that tree physiology, growth, and species distribution of Amazonian floodplain trees is linked to the heights and durations of the periodical inundations, information about timber stocks and population dynamics is lacking for most tree species. We investigated timber stocks and the population structure of four intensely logged tree species in a western Brazilian várzea forest on an area totaling 7.5 ha. Spatial distribution was investigated in all trees as a function of inundation height and duration and the distance to the river channel, and additionally for saplings (trees <10 cm diameter at breast height––DBH) as a function of the relative photosynthetically active radiation (rPAR). The diameter-class distribution in Hura crepitans and Ocotea cymbarum indicated that populations are subject to density variations that possibly are traced to small-scale flood variability. In all species, saplings concentrated at higher topographic elevations than the mature tree populations, which suggest that the physical ‘escape’ from a flooded environment is an important acclimation to flooding. While Ocotea cymbarum and Guarea guidonia were high-density wood species characterized by random dispersion and a pronounced shade-tolerance, Hura crepitans and Sterculia apetala presented lower wood density, aggregated dispersion, and were more light-demanding. All species presented exploitable stems according to the current harvest regulations, with elevated abundances in comparison to other Amazonian forest types. However, stem densities are below the harvest rates indicating that the harvest regulations are not sustainable. We recommend that the forest management in várzea forests should include specific establishment rates of timber species in dependence of the peculiar site conditions to achieve sustainability.  相似文献   

11.
In the present study, we describe the temporal and spatial variability in recruitment, growth, and mortality rates of seedlings and saplings of two low-density neotropical tree species, Dipteryx odorata and Copaifera reticulata in Eastern Amazonia, Brazil. As both species have important timber and non-timber uses, for each species we compare regeneration parameters among different management scenarios (sites used for timber logging, non-timber product extraction, and undisturbed forests). Results suggest that both species share similar natural regeneration characteristics. These include temporally and spatially asynchronous germination, existence of individuals that have more abundant and frequent fruit production than the average of the population and a positive influence of the mother tree crown on seedling and sapling density. The management activities analyzed did not influence the regeneration parameters of both species, which suggests that timber logging the way it was performed and current rates of D. odorata seed gathering and C. reticulata tapping at the study site are not sufficiently intense to threaten species population. However, some species characteristics, such as their reproductive strategies, light-demanding syndromes, low-dispersal ranges, and high-mortality rates of seedlings make both species vulnerable to exploitation.  相似文献   

12.
Dutch elm disease has severely reduced the number of large trees of U. glabra in Denmark. Consequently, the distance between large trees has increased and the overall density of the species has decreased. Patches of small trees with stem diameters up to 10 cm are, however, relatively frequent. With four microsatellites we studied potential differences in genetic diversity, mating patterns and pollen flow in trees of U. glabra that occur either in a continuous forest (Suserup Forest) or isolated in the open land. We found no indications of selfing in forest or open land but indications of biparental inbreeding in offspring of isolated trees. Estimates of effective pollen donors (N ep) and minimum number of pollen donors (N p) were alike in forest and open land (N ep of 31 and 34 and N p of 4 to >6 and 3 to >6, respectively). The number of alleles was also very similar. With indirect methods we found that average pollen dispersal was 104 m under forest conditions. The average distance between the isolated trees and their potential pollen donors was further, thus suggesting that effective pollen in the open land on average moves further than in a dense forest. Finally, 28% of small trees (diameters up to 10 cm) produced fruits. Reproduction at a young age may be a key stone in the survival of U. glabra as the vectors of the disease prefer older trees.  相似文献   

13.
Tropical forest degradation is a global environmental issue. In degraded forests, seedling recruitment of canopy trees is vital for forest regeneration and recovery. We investigated how selective logging, a pervasive driver of tropical forest degradation, impacts canopy tree seedling recruitment, focusing on an endemic dipterocarp Dryobalanops lanceolata in Sabah, Borneo. During a mast‐fruiting event in intensively logged and nearby unlogged forest, we examined four stages of the seedling recruitment process: seed production, seed predation, and negative density‐dependent germination and seedling survival. Our results suggest that each stage of the seedling recruitment process is altered in logged forest. The seed crop of D. lanceolata trees in logged forest was one‐third smaller than that produced by trees in unlogged forest. The functional role of vertebrates in seed predation increased in logged forest while that of non‐vertebrates declined. Seeds in logged forest were less likely to germinate than those in unlogged forest. Germination increased with local‐scale conspecific seed density in unlogged forest, but seedling survival tended to decline. However, both germination and seedling survival increased with local‐scale conspecific seed density in logged forest. Notably, seed crop size, germination, and seedling survival tended to increase for larger trees in both unlogged and logged forests, suggesting that sustainable timber extraction and silvicultural practices designed to minimize damage to the residual stand are important to prevent seedling recruitment failure. Overall, these impacts sustained by several aspects of seedling recruitment in a mast‐fruiting year suggest that intensive selective logging may affect long‐term population dynamics of D. lanceolata. It is necessary to establish if other dipterocarp species, many of which are threatened by the timber trade, are similarly affected in tropical forests degraded by intensive selective logging.  相似文献   

14.
Studies on the ecological impacts of non‐timber forest products (NTFP) harvest reveal that plants are often more resilient to fruit and seed harvest than to bark and root harvest. Several studies indicate that sustainable fruit harvesting limits can be set very high (>80% fruit harvesting intensity). For species with clonal and sexual reproduction, understanding how fruit harvest affects clonal reproduction can shed light on the genetic risks and sustainability of NTFP harvest. We studied 18 populations of a gallery forest tree, Pentadesma butyracea (Clusiaceae), to test the impact of fruits harvest, climate and habitat size (gallery forest width) on the frequency of sexual or clonal recruitment in Benin, West Africa. We sampled populations in two ecological regions (Sudanian and Sudano‐Guinean) and in each region, we selected sites with low, moderate and high fruit harvesting intensities. These populations were selected in gallery forests with varying width to sample the natural variation in P. butyracea habitat size. Heavily harvested populations produced significantly less seedlings but had the highest density and proportion of clonal offspring. Our study suggests that for plant species with dual reproductive strategy (via seeds and clonal), fruit harvesting and associated disturbances that come with it can lead to an increase in the proportion of clonal offspring. This raises the issue that excessive fruit harvest by increasing the proportion of clonal offspring to the detriment of seed originated offspring may lead to a reduction in genetic diversity with consequence on harvested species capability to withstand environmental stochasticity.  相似文献   

15.
Mature tropical forests at agricultural frontiers are of global conservation concern as the leading edge of global deforestation. In the Ituri Forest of DRC, as in other tropical forest areas, road creation associated with selective logging results in spontaneous human colonization, leading to the clearing of mature forest for agricultural purposes. Following 1-3 years of cultivation, farmlands are left fallow for periods that may exceed 20 years, resulting in extensive secondary forest areas impacted by both selective logging and swidden agriculture. In this study, we assessed forest structure, tree species composition and diversity and the regeneration of timber trees in secondary forest stands (5-10 and ~40 years old), selectively logged forest stands, and undisturbed forests at two sites in the Ituri region. Stem density was lower in old secondary forests (~40 years old) than in either young secondary or mature forests. Overall tree diversity did not significantly differ between forest types, but the diversity of trees ≥10 cm dbh was substantially lower in young secondary forest stands than in old secondary or mature forests. The species composition of secondary forests differed from that of mature forests, with the dominant Caesalpinoid legume species of mature forests poorly represented in secondary forests. However, in spite of prior logging, the regeneration of high value timber trees such as African mahoganies (Khaya anthotheca and Entandrophragma spp.) was at least 10 times greater in young secondary forests than in mature forests. We argue that, if properly managed and protected, secondary forests, even those impacted by both selective logging and small-scale shifting agriculture, may have high potential conservation and economic value.  相似文献   

16.
Size at reproduction is a key aspect of species life history that is relatively understudied for long‐lived tropical trees. Here, we quantified reproductive diameter for 31 major timber species across 11 sites in Cameroon, Congo, and Central African Republic. Specifically, we examined whether (1) between‐species variability is correlated with other species traits; (2) reproductive diameter varies within‐species among sites; (3) reproductive status varies with crown exposure; and (4) the minimum cutting diameter limits (MCDL) imposed by national forest regulations enable seed trees to persist after logging operations. Consistent with studies conducted elsewhere in the tropics, we found great variability in diameter at reproduction among species, which correlated with adult stature (maximum diameter and height). For some species, reproductive diameter thresholds substantially varied between sites, and crown exposure had a significant positive effect on reproductive status. Most MCDLs were found to be suitable, with trees having a high probability of being seed trees at MCDL. Our findings have implications for the sustainable management of production forests, and they highlight questionable MCDLs for some species and between‐site variation in reproductive diameter. The study also highlights the need for long‐term phenological monitoring of tree species spanning a large range of ecological strategies to address both theoretical (species life history, allocation trade‐offs) and practical questions (MCDL).  相似文献   

17.
Vochysia ferruginea Mart. (Vochysiaceae) is a gap colonist of Neotropical forest. Because of its high tolerance of low‐nutrient acidic conditions and high aluminium and iron concentrations, and its high potential seed and pollen dispersal, it is a promising timber species for commercial development as reclaimed forest on degraded land. We present here primer sequences for 10 polymorphic simple sequence repeat (SSR) loci for use with V. ferruginea to assess fine scale genetic structure and gene flow dynamics.  相似文献   

18.
Understanding the consequences of habitat disturbance on mating patterns although pollen and seed dispersal in forest trees has been a long‐standing theme of forest and conservation genetics. Forest ecosystems face global environmental pressures from timber exploitation to genetic pollution and climate change, and it is therefore essential to comprehend how disturbances may alter the dispersal of genes and their establishment in tree populations in order to formulate relevant recommendations for sustainable resource management practices and realistic predictions of potential adaptation to climate change by means of range shift or expansion (Kremer et al. 2012 ). However, obtaining reliable evidence of disturbance‐induced effects on gene dispersal processes from empirical evaluation of forest tree populations is difficult. Indeed, tree species share characteristics such as high longevity, long generation time and large reproductive population size, which may impede the experimenter's ability to assess parameters at the spatial and time scales at which any change may occur (Petit and Hampe 2006 ). It has been suggested that appropriate study designs should encompass comparison of populations before and after disturbance as well as account for demonstrated variation in conspecific density, that is, the spatial distribution of mates, and forest density, including all species and relating to alteration in landscape openness (Bacles & Jump 2011 ). However, more often than not, empirical studies aiming to assess the consequences of habitat disturbance on genetic processes in tree populations assume rather than quantify a change in tree densities in forests under disturbance and generally fail to account for population history, which may lead to inappropriate interpretation of a causal relationship between population genetic structure and habitat disturbance due to effects of unmonitored confounding variables (Gauzere et al. 2013). In this issue, Shohami and Nathan ( 2014 ) take advantage of the distinctive features of the fire‐adapted wind‐pollinated Aleppo pine Pinus halepensis (Fig. 1) to provide an elegant example of best practice. Thanks to long‐term monitoring of the study site, a natural stand in Israel, Shohami and Nathan witnessed the direct impact of habitat disturbance, here taking the shape of fire, on conspecific and forest densities and compared pre‐ and postdisturbance mating patterns estimated from cones of different ages sampled on the same surviving maternal individuals (Fig. 2). This excellent study design is all the more strong that Shohami and Nathan took further analytical steps to account for confounding variables, such as historical population genetic structure and possible interannual variation in wind conditions, thus giving high credibility to their findings of unequivocal fire‐induced alteration of mating patterns in P. halepensis. Most notably, the authors found, at the pollen pool level, a disruption of local genetic structure which, furthermore, they were able to attribute explicitly to enhanced pollen‐mediated gene immigration into the low‐density fire‐disturbed stand. This cleverly designed research provides a model approach to be followed if we are to advance our understanding of disturbance‐induced dispersal and genetic change in forest trees.  相似文献   

19.
Throughout the world, large trees are increasingly rare. Cariniana legalis is the tallest tree species of the Brazilian Atlantic Forest, reaching up to 60 m in height. Due to extensive deforestation of the Atlantic Forest, remnant C. legalis populations are small and spatially isolated, requiring the development of strategies for their conservation. For in situ and ex situ genetic conservation to be effective, it is important to understand the levels and patterns of spatial genetic structure (SGS), and gene flow. We investigated SGS and pollen flow in three small, physically isolated C. legalis stands using microsatellite loci. We measured, mapped, and sampled all C. legalis trees in the three stands: 65 trees from Ibicatu population, 22 trees from MGI, and 4 trees from MGII. We also collected and genotyped 600 seeds from Ibicatu, 250 seeds from MGI, and 200 seeds from MGII. Significant SGS was detected in Ibicatu up to 150 m, but substantial levels of external pollen flow were also detected in Ibicatu (8%), although not in MGI (0.4%) or MGII (0%). Selfing was highest in MGII (18%), the smallest group of trees, compared to MGI (6.4%) and Ibicatu (6%). In MGI and MGII, there was a strong pattern of mating among near‐neighbors. Seed collection strategies for breeding, in situ and ex situ conservation and ecological restoration, must ensure collection from seed trees located at distances greater than 350 m and from several forest fragments.  相似文献   

20.
Cedrela odorata and C. fissilis are two tropical tree species that have been widely harvested for their timber. In response to this heavy exploitation, the species have been listed in Appendix III of the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES). The aim of this study was to provide important elements necessary for the making of CITES Non-Detriment Findings for Cedrela spp. in Bolivia using a wide variety of sources of information on its distribution, population structure, and management at multiple spatial scales. A national large-scale database of forest inventories was created, including information about trees of certain species with diameter at breast height (dbh) ≥20. These data were used to make non-detriment findings (NDFs) following CITES guidance for timber species. Spatial prediction of Cedrela habitat revealed a consistent pattern of habitat probability across Bolivia. The genus occurs in areas formerly or currently occupied by ten of the twelve forest types described as habitat for Cedrela odorata and C. fissilis, with a density ranging from 0.4 to 159 trees > 60 cm dbh per 100 ha. Based on these data, the annual export quota for Cedrela in Bolivia should be 3513.1 m3 of timber. This country-level case study could provide a roadmap for other studies that may eventually lead to uplisting the genus. Including Cedrela in CITES Appendix II may help to ensure that its harvest to supply international markets is conducted in a sustainable manner, without damaging the target species or their ecosystem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号