首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Although the grey seal Halichoerus grypus is one of the most familiar and intensively studied of all pinniped species, its global population structure remains to be elucidated. Little is also known about how the species as a whole may have historically responded to climate‐driven changes in habitat availability and anthropogenic exploitation. We therefore analysed samples from over 1500 individuals collected from 22 colonies spanning the Western and Eastern Atlantic and the Baltic Sea regions, represented by 350 bp of the mitochondrial hypervariable region and up to nine microsatellites. Strong population structure was observed at both types of marker, and highly asymmetrical patterns of gene flow were also inferred, with the Orkney Islands being identified as a source of emigrants to other areas in the Eastern Atlantic. The Baltic and Eastern Atlantic regions were estimated to have diverged a little over 10 000 years ago, consistent with the last proposed isolation of the Baltic Sea. Approximate Bayesian computation also identified genetic signals consistent with postglacial population expansion across much of the species range, suggesting that grey seals are highly responsive to changes in habitat availability.  相似文献   

2.
Inferring the history of isolation and gene flow during species differentiation can inform us on the processes underlying their formation. Following their recent expansion in Europe, two subspecies of the house mouse (Mus musculus domesticus and Mus musculus musculus) have formed a hybrid zone maintained by hybrid incompatibilities and possibly behavioural reinforcement, offering a good model of incipient speciation. We reconstruct the history of their divergence using an approximate Bayesian computation framework and sequence variation at 57 autosomal loci. We find support for a long isolation period preceding the advent of gene flow around 200,000 generations ago, much before the formation of the European hybrid zone a few thousand years ago. The duration of the allopatric episode appears long enough (74% of divergence time) to explain the accumulation of many post-zygotic incompatibilities expressed in the present hybrid zone. The ancient contact inferred could have played a role in mating behaviour divergence and laid the ground for further reinforcement. We suggest that both subspecies originally colonized the Middle East from the northern Indian subcontinent, domesticus settling on the shores of the Persian Gulf and musculus on those of the Caspian Sea. Range expansions during interglacials would have induced secondary contacts, presumably in Iran, where they must have also interacted with Mus musculus castaneus. Future studies should incorporate this possibility, and we point to Iran and its surroundings as a hot spot for house mouse diversity and speciation studies.  相似文献   

3.
The Tasmanian devil (Sarcophilus harrisii) was widespread in Australia during the Late Pleistocene but is now endemic to the island of Tasmania. Low genetic diversity combined with the spread of devil facial tumour disease have raised concerns for the species’ long-term survival. Here, we investigate the origin of low genetic diversity by inferring the species'' demographic history using temporal sampling with summary statistics, full-likelihood and approximate Bayesian computation methods. Our results show extensive population declines across Tasmania correlating with environmental changes around the last glacial maximum and following unstable climate related to increased ‘El Niño–Southern Oscillation’ activity.  相似文献   

4.
Linking demographic and genetic dispersal measures is of fundamental importance for movement ecology and evolution. However, such integration can be difficult, particularly for highly fecund species that are often the target of management decisions guided by an understanding of population movement. Here, we present an example of how the influence of large population sizes can preclude genetic approaches from assessing demographic population structuring, even at a continental scale. The Australian plague locust, Chortoicetes terminifera, is a significant pest, with populations on the eastern and western sides of Australia having been monitored and managed independently to date. We used microsatellites to assess genetic variation in 12 C. terminifera population samples separated by up to 3000 km. Traditional summary statistics indicated high levels of genetic diversity and a surprising lack of population structure across the entire range. An approximate Bayesian computation treatment indicated that levels of genetic diversity in C. terminifera corresponded to effective population sizes conservatively composed of tens of thousands to several million individuals. We used these estimates and computer simulations to estimate the minimum rate of dispersal, m, that could account for the observed range-wide genetic homogeneity. The rate of dispersal between both sides of the Australian continent could be several orders of magnitude lower than that typically considered as required for the demographic connectivity of populations.  相似文献   

5.
    
Interpreting the genetic structure of a metapopulation as the outcome of gene flow over a variety of timescales is essential for the proper understanding of how changes in landscape affect biological connectivity. Here we contrast historical and contemporary connectivity in two metapopulations of the freshwater fish Galaxias platei in northern and southernmost Patagonia where paleolakes existed during the Holocene and Pleistocene, respectively. Contemporary gene flow was mostly high and asymmetrical in the northern system while extremely reduced in the southernmost system. Historical migration patterns were high and symmetric in the northern system and high and largely asymmetric in the southern system. Both systems showed a moderate structure with a clear pattern of isolation by distance (IBD). Effective population sizes were smaller in populations with low contemporary gene flow. An approximate Bayesian computation (ABC) approach suggests a late Holocene colonization of the lakes in the northern system and recent divergence of the populations from refugial populations from east and west of the Andes. For the southern system, the ABC approach reveals that some of the extant G. platei populations most likely derive from an ancestral population inhabiting a large Pleistocene paleolake while the rest derive from a higher‐altitude lake. Our results suggest that neither historical nor contemporary processes individually fully explain the observed structure and geneflow patterns and both are necessary for a proper understanding of the factors that affect diversity and its distribution. Our study highlights the importance of a temporal perspective on connectivity to analyse the diversity of spatially complex metapopulations.  相似文献   

6.
Several approaches have been developed to calculate the relative contributions of parental populations in single admixture event scenarios, including Bayesian methods. In many breeds and populations, it may be more realistic to consider multiple admixture events. However, no approach has been developed to date to estimate admixture in such cases. This report describes a program application, 2BAD (for 2-event Bayesian ADmixture), which allows the consideration of up to two independent admixture events involving two or three parental populations and a single admixed population, depending on the number of populations sampled. For each of these models, it is possible to estimate several parameters (admixture, effective sizes, etc.) using an approximate Bayesian computation approach. In addition, the program allows comparing pairs of admixture models, determining which is the most likely given data. The application was tested through simulations and was found to provide good estimates for the contribution of the populations at the two admixture events. We were also able to determine whether an admixture model was more likely than a simple split model.  相似文献   

7.
Increasing globalization has promoted the spread of exotic species, including disease vectors. Understanding the evolutionary processes involved in such colonizations is both of intrinsic biological interest and important to predict and mitigate future disease risks. The Aedes aegypti mosquito is a major vector of dengue, chikungunya and Zika, the worldwide spread of which has been facilitated by Ae. aegypti's adaption to human‐modified environments. Understanding the evolutionary processes involved in this invasion requires characterization of the genetic make‐up of the source population(s). The application of approximate Bayesian computation (ABC) to sequence data from four nuclear and one mitochondrial marker revealed that African populations of Ae. aegypti best fit a demographic model of lineage diversification, historical admixture and recent population structuring. As ancestral Ae. aegypti were dependent on forests, this population history is consistent with the effects of forest fragmentation and expansion driven by Pleistocene climatic change. Alternatively, or additionally, historical human movement across the continent may have facilitated their recent spread and mixing. ABC analysis and haplotype networks support earlier inferences of a single out‐of‐Africa colonization event, while a cline of decreasing genetic diversity indicates that Ae. aegypti moved first from Africa to the Americas and then to Asia. ABC analysis was unable to verify this colonization route, possibly because the genetic signal of admixture obscures the true colonization pathway. By increasing genetic diversity and forming novel allelic combinations, divergence and historical admixture within Africa could have provided the adaptive potential needed for the successful worldwide spread of Ae. aegypti.  相似文献   

8.
9.
This report describes the construction of integrated genetic maps in pearl millet involving certain purple phenotype and simple sequence repeat (SSR) markers. These maps provide a direct means of implementing DNA marker-assisted selection and of facilitating "map-based cloning" for engineering novel traits. The purple pigmentation of leaf sheath, midrib and leaf margin was inherited together 'en bloc' under the control of a single dominant locus (the 'midrib complex') and was inseparably associated with the locus governing the purple coloration of the internode. The purple panicle was caused by a single dominant locus. Each of the three characters (purple lamina, purple stigma and purple seed) was governed by two complementary loci. One of the two loci governing purple seed was associated with the SSR locus Xpsmp2090 in linkage group 1, with a linkage value of 22 cM, while the other locus was associated with the SSR locus Xpsmp2270 in linkage group 6, with a linkage value of 23 cM. The locus for purple pigmentation of the midrib complex was either responsible for pigmentation of the panicle in a pleiotropic manner or was linked to it very closely and associated with the SSR locus Xpsmp2086 in linkage group 4, with a suggestive linkage value of 21 cM. A dominant allele at this locus seems to be a prerequisite for the development of purple pigmentation in the lamina, stigma and seed. These findings suggest that the locus for pigmentation of the midrib complex might regulate the basic steps in anthocyanin pigment development by acting as a structural gene while other loci regulate the formation of color in specific plant parts.  相似文献   

10.
    
Characterizing the processes underlying reproductive isolation between diverging lineages is central to understanding speciation. Here, we present RIDGE—Reproductive Isolation Detection using Genomic polymorphisms—a tool tailored for quantifying gene flow barrier proportion and identifying the relevant genomic regions. RIDGE relies on an Approximate Bayesian Computation with a model-averaging approach to accommodate diverse scenarios of lineage divergence. It captures heterogeneity in effective migration rate along the genome while accounting for variation in linked selection and recombination. The barrier detection test relies on numerous summary statistics to compute a Bayes factor, offering a robust statistical framework that facilitates cross-species comparisons. Simulations revealed RIDGE's efficiency in capturing signals of ongoing migration. Model averaging proved particularly valuable in scenarios of high model uncertainty where no migration or migration homogeneity can be wrongly assumed, typically for recent divergence times <0.1 2Ne generations. Applying RIDGE to four published crow data sets, we first validated our tool by identifying a well-known large genomic region associated with mate choice patterns. Second, while we identified a significant overlap of outlier loci using RIDGE and traditional genomic scans, our results suggest that a substantial portion of previously identified outliers are likely false positives. Outlier detection relies on allele differentiation, relative measures of divergence and the count of shared polymorphisms and fixed differences. Our analyses also highlight the value of incorporating multiple summary statistics including our newly developed outlier ones that can be useful in challenging detection conditions.  相似文献   

11.
    
Accounting for historical demographic features, such as the strength and timing of gene flow and divergence times between closely related lineages, is vital for many inferences in evolutionary biology. Approximate Bayesian computation (ABC) is one method commonly used to estimate demographic parameters. However, the DNA sequences used as input for this method, often microsatellites or RADseq loci, usually represent a small fraction of the genome. Whole genome sequencing (WGS) data, on the other hand, have been used less often with ABC, and questions remain about the potential benefit of, and how to best implement, this type of data; we used pseudo‐observed data sets to explore such questions. Specifically, we addressed the potential improvements in parameter estimation accuracy that could be associated with WGS data in multiple contexts; namely, we quantified the effects of (a) more data, (b) haplotype‐based summary statistics, and (c) locus length. Compared with a hypothetical RADseq data set with 2.5 Mbp of data, using a 1 Gbp data set consisting of 100 Kbp sequences led to substantial gains in the accuracy of parameter estimates, which was mostly due to haplotype statistics and increased data. We also quantified the effects of including (a) locus‐specific recombination rates, and (b) background selection information in ABC analyses. Importantly, assuming uniform recombination or ignoring background selection had a negative effect on accuracy in many cases. Software and results from this method validation study should be useful for future demographic history analyses.  相似文献   

12.
    
Paleontological evidence and current patterns of angiosperm species richness suggest that European biota experienced more severe bottlenecks than North American ones during the last glacial maximum. How well this pattern fits other plant species is less clear. Bryophytes offer a unique opportunity to contrast the impact of the last glacial maximum in North America and Europe because about 60% of the European bryoflora is shared with North America. Here, we use population genetic analyses based on approximate Bayesian computation on eight amphi‐Atlantic species to test the hypothesis that North American populations were less impacted by the last glacial maximum, exhibiting higher levels of genetic diversity than European ones and ultimately serving as a refugium for the postglacial recolonization of Europe. In contrast with this hypothesis, the best‐fit demographic model involved similar patterns of population size contractions, comparable levels of genetic diversity and balanced migration rates between European and North American populations. Our results thus suggest that bryophytes have experienced comparable demographic glacial histories on both sides of the Atlantic. Although a weak, but significant genetic structure was systematically recovered between European and North American populations, evidence for migration from and towards both continents suggests that amphi‐Atlantic bryophyte population may function as a metapopulation network. Reconstructing the biogeographic history of either North American or European bryophyte populations therefore requires a large, trans‐Atlantic geographic framework.  相似文献   

13.
    
The relative effect of past climate fluctuations and anthropogenic activities on current biome distribution is subject to increasing attention, notably in biodiversity hot spots. In Madagascar, where humans arrived in the last ~4 to 5,000 years, the exact causes of the demise of large vertebrates that cohabited with humans are yet unclear. The prevailing narrative holds that Madagascar was covered with forest before human arrival and that the expansion of grasslands was the result of human‐driven deforestation. However, recent studies have shown that vegetation and fauna structure substantially fluctuated during the Holocene. Here, we study the Holocene history of habitat fragmentation in the north of Madagascar using a population genetics approach. To do so, we infer the demographic history of two northern Madagascar neighbouring, congeneric and critically endangered forest dwelling lemur species—Propithecus tattersalli and Propithecus perrieri—using population genetic analyses. Our results highlight the necessity to consider population structure and changes in connectivity in demographic history inferences. We show that both species underwent demographic fluctuations which most likely occurred after the mid‐Holocene transition. While mid‐Holocene climate change probably triggered major demographic changes in the two lemur species range and connectivity, human settlements that expanded over the last four millennia in northern Madagascar likely played a role in the loss and fragmentation of the forest cover.  相似文献   

14.
Many species inhabiting the Peninsular Desert of Baja California demonstrate a phylogeographic break at the mid-peninsula, and previous researchers have attributed this shared pattern to a single vicariant event, a mid-peninsular seaway. However, previous studies have not explicitly considered the inherent stochasticity associated with the gene-tree coalescence for species preceding the time of the putative mid-peninsular divergence. We use a Bayesian analysis of a hierarchical model to test for simultaneous vicariance across co-distributed sister lineages sharing a genealogical break at the mid-peninsula. This Bayesian method is advantageous over traditional phylogenetic interpretations of biogeography because it considers the genetic variance associated with the coalescent and mutational processes, as well as the among-lineage demographic differences that affect gene-tree coalescent patterns. Mitochondrial DNA data from six small mammals and six squamate reptiles do not support the perception of a shared vicariant history among lineages exhibiting a north-south divergence at the mid-peninsula, and instead support two events differentially structuring genetic diversity in this region.  相似文献   

15.
    
In allopatric species, reproductive isolation evolves through the accumulation of genetic incompatibilities. The degree of divergence required for complete reproductive isolation is highly variable across taxa, which makes the outcome of secondary contact between allopatric species unpredictable. Since before the Pliocene, two species of Anolis lizards, Anolis carolinensis and Anolis porcatus, have been allopatric, yet this period of independent evolution has not led to substantial species‐specific morphological differentiation, and therefore, they might not be reproductively isolated. In this study, we determined the genetic consequences of localized, secondary contact between the native green anole, A. carolinensis, and the introduced Cuban green anole, A. porcatus, in South Miami. Using 18 microsatellite markers, we found that the South Miami population formed a genetic cluster distinct from both parental species. Mitochondrial DNA revealed maternal A. porcatus ancestry for 35% of the individuals sampled from this population, indicating a high degree of cytonuclear discordance. Thus, hybridization with A. porcatus, not just population structure within A. carolinensis, may be responsible for the genetic distinctiveness of this population. Using tree‐based maximum‐likelihood analysis, we found support for a more recent, secondary introduction of A. porcatus to Florida. Evidence that ~33% of the nuclear DNA resulted from a secondary introduction supports the hybrid origin of the green anole population in South Miami. We used multiple lines of evidence and multiple genetic markers to reconstruct otherwise cryptic patterns of species introduction and hybridization. Genetic evidence for a lack of reproductive isolation, as well as morphological similarities between the two species, supports revising the taxonomy of A. carolinensis to include A. porcatus from western Cuba. Future studies should target the current geographic extent of introgression originating from the past injection of genetic material from Cuban green anoles and determine the consequences for the evolutionary trajectory of green anole populations in southern Florida.  相似文献   

16.
In the present study we evaluate the population structure and potential colonization routes of the silverside Chirostoma humboldtianum through approximate Bayesian computations. Six microsatellite loci were amplified in a total of 288 individuals from six different locations covering the complete geographic distribution of the species. Additionally, two mitochondrial DNA markers, a D loop control region and cytochrome b were amplified in a subset of 107 individuals. The results found with microsatellites allow recovering well-structured populations that have experienced a drastic reduction in the effective population size. On the other hand, mtDNA sequences showed a moderate phylogeographic structure with shared haplotypes between geographic localities and signalsof a slight increase in the effective population size. Finally, the approximate Bayesian computation analysis performed with both datasets suggested a west-to-east colonization route for the species in Central Mexico.  相似文献   

17.
    
Cattle have been invaluable for the transition of human society from nomadic hunter‐gatherers to sedentary farming communities throughout much of Europe, Asia and Africa since the earliest domestication of cattle more than 10,000 years ago. Although current understanding of relationships among ancestral populations remains limited, domestication of cattle is thought to have occurred on two or three occasions, giving rise to the taurine (Bos taurus) and indicine (Bos indicus) species that share the aurochs (Bos primigenius) as common ancestor ~250,000 years ago. Indicine and taurine cattle were domesticated in the Indus Valley and Fertile Crescent, respectively; however, an additional domestication event for taurine in the Western Desert of Egypt has also been proposed. We analysed medium density Illumina Bovine SNP array (~54,000 loci) data across 3,196 individuals, representing 180 taurine and indicine populations to investigate population structure within and between populations, and domestication and demographic dynamics using approximate Bayesian computation (ABC). Comparative analyses between scenarios modelling two and three domestication events consistently favour a model with only two episodes and suggest that the additional genetic variation component usually detected in African taurine cattle may be explained by hybridization with local aurochs in Africa after the domestication of taurine cattle in the Fertile Crescent. African indicine cattle exhibit high levels of shared genetic variation with Asian indicine cattle due to their recent divergence and with African taurine cattle through relatively recent gene flow. Scenarios with unidirectional or bidirectional migratory events between European taurine and Asian indicine cattle are also plausible, although further studies are needed to disentangle the complex human‐mediated dispersion patterns of domestic cattle. This study therefore helps to clarify the effect of past demographic history on the genetic variation of modern cattle, providing a basis for further analyses exploring alternative migratory routes for early domestic populations.  相似文献   

18.
The power of genome-wide association studies (GWAS) rests on several foundations: (i) there is a significant amount of additive genetic variation, (ii) individual causal polymorphisms often have sizable effects and (iii) they segregate at moderate-to-intermediate frequencies, or will be effectively ‘tagged'' by polymorphisms that do. Each of these assumptions has recently been questioned. (i) Why should genetic variation appear additive given that the underlying molecular networks are highly nonlinear? (ii) A new generation of relatedness-based analyses directs us back to the nearly infinitesimal model for effect sizes that quantitative genetics was long based upon. (iii) Larger effect causal polymorphisms are often low frequency, as selection might lead us to expect. Here, we review these issues and other findings that appear to question many of the foundations of the optimism GWAS prompted. We then present a roadmap emerging as one possible future for quantitative genetics. We argue that in future GWAS should move beyond purely statistical grounds. One promising approach is to build upon the combination of population genetic models and molecular biological knowledge. This combined treatment, however, requires fitting experimental data to models that are very complex, as well as accurate capturing of the uncertainty of resulting inference. This problem can be resolved through Bayesian analysis and tools such as approximate Bayesian computation—a method growing in popularity in population genetic analysis. We show a case example of anterior–posterior segmentation in Drosophila, and argue that similar approaches will be helpful as a GWAS augmentation, in human and agricultural research.  相似文献   

19.
The concentrations of endogenous gibberellins (GAs) were determined by combined gas chromatography-mass spectrometry in shoots of five non-allelic dwarfs of pearl millet Pennisetum glaucum (L.) R. Br. One mutant (d3), with an extreme dwarf phenotype, was found to be deficient in all GAs measured; the others (d1, d2, d4 and the quantitatively inherited dwarf) had similar levels of GAs to the tall genotype. Only the GA-deficient dwarf recovered the tall phenotype in response to applying GA3 up to the adult stage, while the others showed slight to moderate responses at the seedling stage, depending on the season, and no response at later stages. The d1, d3 and d4 dwarfs had short coleoptiles. A wide range of coleoptile lengths with a normal distribution pattern was observed in the tall, d2 and the quantitatively inherited dwarf, suggesting that there is polygenic control of this trait.  相似文献   

20.
Previous studies have suggested that the presence of sea ice is an important factor in facilitating migration and determining the degree of genetic isolation among contemporary arctic fox populations. Because the extent of sea ice is dependent upon global temperatures, periods of significant cooling would have had a major impact on fox population connectivity and genetic variation. We tested this hypothesis by extracting and sequencing mitochondrial control region sequences from 17 arctic foxes excavated from two late-ninth-century to twelfth-century AD archaeological sites in northeast Iceland, both of which predate the Little Ice Age (approx. sixteenth to nineteenth century). Despite the fact that five haplotypes have been observed in modern Icelandic foxes, a single haplotype was shared among all of the ancient individuals. Results from simulations within an approximate Bayesian computation framework suggest that the rapid increase in Icelandic arctic fox haplotype diversity can only be explained by sea-ice-mediated fox immigration facilitated by the Little Ice Age.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号