首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Host–parasite interactions are ubiquitous in nature. However, how parasite population genetic structure is shaped by the interaction between host and parasite life history remains understudied. Studies comparing multiple parasites infecting a single host can be used to investigate how different parasite life history traits interplay with host behaviour and life history. In this study, we used 10 newly developed microsatellite loci to investigate the genetic structure of a parasitic bat fly (Basilia nana). Its host, the Bechstein's bat (Myotis bechsteinii), has a social system and roosting behaviour that restrict opportunities for parasite transmission. We compared fly genetic structure to that of the host and another parasite, the wing‐mite, Spinturnix bechsteini. We found little spatial or temporal genetic structure in B. nana, suggesting a large, stable population with frequent genetic exchange between fly populations from different bat colonies. This contrasts sharply with the genetic structure of the wing‐mite, which is highly substructured between the same bat colonies as well as temporally unstable. Our results suggest that although host and parasite life history interact to yield similar transmission patterns in both parasite species, the level of gene flow and eventual spatiotemporal genetic stability is differentially affected. This can be explained by the differences in generation time and winter survival between the flies and wing‐mites. Our study thus exemplifies that the population genetic structure of parasites on a single host can vary strongly as a result of how their individual life history characteristics interact with host behaviour and life history traits.  相似文献   

2.
Parasites are among the most diverse groups of life on Earth, yet complex natural histories often preclude studies of their speciation processes. The biology of parasitic plants facilitates in situ collection of data on both genetic structure and the mechanisms responsible for that structure. Here, we studied the role of mating, dispersal and establishment in host race formation of a parasitic plant. We investigated the population genetics of a vector‐borne desert mistletoe (Phoradendron californicum) across two legume host tree species (Senegalia greggii and Prosopis velutina) in the Sonoran desert using microsatellites. Consistent with host race formation, we found strong host‐associated genetic structure in sympatry, little genetic variation due to geographic site and weak isolation by distance. We hypothesize that genetic differentiation results from differences in the timing of mistletoe flowering by host species, as we found initial flowering date of individual mistletoes correlated with genetic ancestry. Hybrids with intermediate ancestry were detected genetically. Individuals likely resulting from recent, successful establishment events following dispersal between the host species were detected at frequencies similar to hybrids between host races. Therefore, barriers to gene flow between the host races may have been stronger at mating than at dispersal. We also found higher inbreeding and within‐host individual relatedness values for mistletoes on the more rare and isolated host species (S. greggii). Our study spanned spatial scales to address how interactions with both vectors and hosts influence parasitic plant structure with implications for parasite virulence evolution and speciation.  相似文献   

3.
Aim We evaluate, for the first time, the decay of similarity over distance in four species of marine fishes with different vagility: Trachurus murphyi (pelagic, highly vagile), Merluccius gayi (demersal, highly vagile), Sebastes capensis (demersal, low vagility) and Hippoglossina macrops (benthic, non‐vagile). Location We use our own data of the species composition of parasite communities in four host species: T. murphyi (Perciformes), M. gayi (Gadiformes), H. macrops (Pleuronectiformes) and S. capensis (Scorpaeniformes), from the coast of Chile and southern Argentina. Trachurus murphyi, M. gayi and H. macrops in the area studied live closely associated with the cold waters of the Humboldt Current System, while S. capensis in southern Chile is associated with the fjord areas south of c. 43° S, and in Argentina this species lives in close association with the cold water of the Malvinas Current, which mixes with the warm water of the Brazilian Current in the sampled area. Thus, for all four host species there are no known geographical (oceanographic) barriers that interrupt their continuous distributions. Methods Fish were collected and frozen (?18 °C) until examination in the laboratory. After thawing, each visceral organ was dissected separately, washed in running water, filtered using a mesh of 0.25 mm, and examined under a stereomicroscope (20×). For S. capensis, only ectoparasites were included in this study because data on endoparasites for some locations are not available. The approach of Poulin [Journal of Biogeography 30 (2003) 1609] was used. For each host species, we computed similarity in parasite composition using the Bray–Curtis distance on a presence/absence matrix. Similarity between each pair of localities was correlated (linear regression on raw and transformed data) with the distance (in nautical miles) among those sites. Results Among conspecific populations of host fish, there was no correlation between sample size and parasite species richness. The same pattern was evident when all host populations were pooled and treated as a single sample. Except for H. macrops, an important proportion of the geographical ranges of the host species was covered. The decay in similarity of parasite communities over distance was recorded in three of the four hosts analysed. For H. macrops, no relationship between distances and decay of similarity was evident. A linear regression on non‐transformed data provided a good fit, and the regression on log(n + 1) does not change significantly for both r2 and probability, but slopes are smaller for log‐transformed than for non‐transformed data. Main conclusions Three of the four fish parasite systems studied fit well with the expected decay of similarity over distance. The slopes of the relationship between distance and similarity in the marine fishes studied are lower, but significant (three orders of magnitude) than those recorded in freshwater fishes by Poulin (2003) . In our case, Hippoglossina macrops (benthic, non‐vagile host) does not show any relationship, suggesting homogeneity over the geographical area studied for this species.  相似文献   

4.
Evolution and population genetic structure of marine species across the Caribbean Sea are shaped by two complex factors: the geological history and the present pattern of marine currents. Characterizing and comparing the genetic structures of codistributed species, such as host–parasite associations, allow discriminating the relative importance of environmental factors and life history traits that influenced gene flow and demographic events. Using microsatellite and Cytochrome Oxidase I markers, we investigated if a host–parasite pair (the heart urchin Meoma ventricosa and its parasitic pea crab Dissodactylus primitivus) exhibits comparable population genetic structures in the Caribbean Sea and how the observed patterns match connectivity regions from predictive models and other taxa. Highly contrasting patterns were found: the host showed genetic homogeneity across the whole studied area, whereas the parasite displayed significant differentiation at regional and local scales. The genetic diversity of the parasitic crabs (both in microsatellites and COI) was distributed in two main groups, Panama–Jamaica–St Croix on the one hand, and the South‐Eastern Caribbean on the other. At a smaller geographical scale, Panamanian and Jamaican parasite populations were genetically more similar, while more genetic differentiation was found within the Lesser Antilles. Both species showed a signature of population expansion during the Quaternary. Some results match predictive models or data from previous studies (e.g., the Western‐Eastern dichotomy in the parasite) while others do not (e.g., genetic differentiation within the Lesser Antilles). The sharp dissimilarity of genetic structure of these codistributed species outlines the importance of population expansion events and/or contrasted patterns of gene flow. This might be linked to differences in several life history traits such as fecundity (higher for the host), swimming capacity of larval stages (higher for the parasite), and habitat availability (higher for the host).  相似文献   

5.
Understanding what processes drive community structure is fundamental to ecology. Many wild animals are simultaneously infected by multiple parasite species, so host–parasite communities can be valuable tools for investigating connections between community structures at multiple scales, as each host can be considered a replicate parasite community. Like free‐living communities, within‐host–parasite communities are hierarchical; ecological interactions between hosts and parasites can occur at multiple scales (e.g., host community, host population, parasite community within the host), therefore, both extrinsic and intrinsic processes can determine parasite community structure. We combine analyses of community structure and assembly at both the host population and individual scales using extensive datasets on wild wood mice (Apodemus sylvaticus) and their parasite community. An analysis of parasite community nestedness at the host population scale provided predictions about the order of infection at the individual scale, which were then tested using parasite community assembly data from individual hosts from the same populations. Nestedness analyses revealed parasite communities were significantly more structured than random. However, observed nestedness did not differ from null models in which parasite species abundance was kept constant. We did not find consistency between observed community structure at the host population scale and within‐host order of infection. Multi‐state Markov models of parasite community assembly showed that a host's likelihood of infection with one parasite did not consistently follow previous infection by a different parasite species, suggesting there is not a deterministic order of infection among the species we investigated in wild wood mice. Our results demonstrate that patterns at one scale (i.e., host population) do not reliably predict processes at another scale (i.e., individual host), and that neutral or stochastic processes may be driving the patterns of nestedness observed in these communities. We suggest that experimental approaches that manipulate parasite communities are needed to better link processes at multiple ecological scales.  相似文献   

6.
Increasing community dissimilarity across geographic distance has been described for a wide variety of organisms and understanding its underlying causes is key to understanding mechanisms driving patterns of biodiversity. Both niche‐based and neutral processes may produce a distance decay relationship; however, disentangling their relative influence requires simultaneous examination of multiple potential drivers. Parasites represent a unique opportunity in which to study distance decay because community dissimilarity may depend on environmental requirements and dispersal capability of parasites as well also those of their hosts. We used big brown bats Eptesicus fuscus and their intestinal helminths to investigate: 1) independent contributions of geographic and environmental distances on dissimilarity of intestinal helminth component communities between populations of big brown bats; 2) which environmental variables best explained variation in community dissimilarity; and 3) whether similar patterns of decay with geographic or environmental distance were observed for within‐host population and within‐individual host parasite communities. We used compositional measures of community dissimilarity to examine how parasite communities may change with geographic distance and varying environmental conditions. Non‐spatial variables strongly influenced compositional parasite community dissimilarity over multiple community scales, and we observed little evidence for spatial processes such as distance decay. Environment surrounding roost sites better predicted helminth community dissimilarity than any other class of variables and landcover classes representing anthropogenic modification consistently explained variation in community structure. Our results indicate that human disturbance drives significant patterns of parasite community dissimilarity, most likely by changing the presence or abundance of intermediate hosts in an area.  相似文献   

7.
Parasites exert a major impact on the eco‐evolutionary dynamics of their hosts and the associated biotic environment. Migration constitutes an effective means for long‐distance invasions of vector‐borne parasites and promotes their rapid spread. Yet, ecological and spatial information on population‐specific host–parasite connectivity is essentially lacking. Here, we address this question in a system consisting of a transcontinental migrant species, the European barn swallow (Hirundo rustica) which serves as a vector for avian endoparasites in the genera Plasmodium, Haemoproteus and Leucocytozoon. Using feather stable isotope ratios as geographically informative markers, we first assessed migratory connectivity in the host: Northern European breeding populations predominantly overwintered in dry, savannah‐like habitats in Southern Africa, whereas Southern European populations were associated with wetland habitats in Western Central Africa. Wintering areas of swallows breeding in Central Europe indicated a migratory divide with both migratory programmes occurring within the same breeding population. Subsequent genetic screens of parasites in the breeding populations revealed a link between the host's migratory programme and its parasitic repertoire: controlling for effects of local breeding location, prevalence of Africa‐transmitted Plasmodium lineages was significantly higher in individuals overwintering in the moist habitats of Western Central Africa, even among sympatrically breeding individuals with different overwintering locations. For the rarer Haemoproteus parasites, prevalence was best explained by breeding location alone, whereas no clear pattern emerged for the least abundant parasite Leucocytozoon. These results have implications for our understanding of spatio‐temporal host–parasite dynamics in migratory species and the spread of avian borne diseases.  相似文献   

8.
Aim We test the similarity–distance decay hypothesis on a marine host–parasite system, inferring the relationships from abundance data gathered at the lowest scale of parasite community organization (i.e. that of the individual host). Location Twenty‐two seasonal samples of the bogue Boops boops (Teleostei: Sparidae) were collected at seven localities along a coastal positional gradient from the northern North‐East Atlantic to the northern Mediterranean coast of Spain. Methods We used our own, taxonomically consistent, data on parasite communities. The variations in parasite composition and structure with geographical and regional distance were examined at two spatial scales, namely local parasite faunas and component communities, using both presence–absence (neighbour joining distance) and abundance (Mahalanobis distance) data. The influence of geographical and regional distance on faunal/community divergence was assessed through the permutation of distance matrices. Results Our results revealed that: (1) geographical and regional distances do not affect the species composition in the system under study at the higher scales; (2) geographical distance between localities contributes significantly to the decay of similarity estimated from parasite abundance at the lowest scale (i.e. the individual host); (3) the structured spatial patterns are consistent in time but not across seasons; and (4) a restricted clade of species (the ‘core’ species of the bogue parasite fauna) contributes substantially to the observed patterns of both community homogenization and differentiation owing to the strong relationship between local abundance and regional distribution of species. Main conclusions The main factors that tend to homogenize the composition of parasite communities of bogue at higher regional scales are related to the dispersal of parasite colonizers across host populations, which we denote as horizontal neighbourhood colonization. In contrast, the spatial structure detectable in quantitative comparisons only, is related to a vertical neighbourhood colonization associated with larval dispersal on a local level. The stronger decline with distance in the spatial synchrony of the assemblages of the ‘core’ species indicates a close‐echoing environmental synchrony that declines with distance. Our results emphasize the importance of the parasite supracommunity (i.e. parasites that exploit all hosts in the ecosystem) to the decay of similarity with distance.  相似文献   

9.
The interaction between two species may depend on geographic scale and this in turn can affect co‐evolution among them. The present study comparatively examines population genetic structures of the tephritid gall fly Urophora cardui and its primary ectoparasitoid Eurytoma robusta for inference of relative dispersal patterns and host‐parasitoid specificity. Genetic differentiation patterns indicated two levels of hierarchical structure in both species: locally similar distance‐dependencies but globally differences. Locally, both species showed isolation by distance and a high correlation between host and parasitoid FST for the same population‐pairs was found. At the local level, E. robusta populations were most structured. These findings suggest that locally E. robusta is tracking behind its host, U. cardui, and that colonisation of new patches by both species underlie a stepping‐stone dispersal process. The investigation as a whole showed that U. cardui populations were hierarchically structured across a genetic‐geographical cline. There was no sign of a comparable cline in E. robusta where populations globally became independent of one another and of the host. The different degree of hierarchical genetic structure of the two species suggests that dispersal processes or interactions differ relative to geographical scale and population history.  相似文献   

10.
Host–parasite co‐evolution can lead to genetic differentiation among isolated host–parasite populations and local adaptation between parasites and their hosts. However, tests of local adaptation rarely consider multiple fitness‐related traits although focus on a single component of fitness can be misleading. Here, we concomitantly examined genetic structure and co‐divergence patterns of the trematode Coitocaecum parvum and its crustacean host Paracalliope fluviatilis among isolated populations using the mitochondrial cytochrome oxidase I gene (COI). We then performed experimental cross‐infections between two genetically divergent host–parasite populations. Both hosts and parasites displayed genetic differentiation among populations, although genetic structure was less pronounced in the parasite. Data also supported a co‐divergence scenario between C. parvum and P. fluviatilis potentially related to local co‐adaptation. Results from cross‐infections indicated that some parasite lineages seemed to be locally adapted to their sympatric (home) hosts in which they achieved higher infection and survival rates than in allopatric (away) amphipods. However, local, intrinsic host and parasite characteristics (host behavioural or immunological resistance to infections, parasite infectivity or growth rate) also influenced patterns of host–parasite interactions. For example, overall host vulnerability to C. parvum varied between populations, regardless of parasite origin (local vs. foreign), potentially swamping apparent local co‐adaptation effects. Furthermore, local adaptation effects seemed trait specific; different components of parasite fitness (infection and survival rates, growth) responded differently to cross‐infections. Overall, data show that genetic differentiation is not inevitably coupled with local adaptation, and that the latter must be interpreted with caution in a multi‐trait context.  相似文献   

11.
Knowledge about phylogeographical structuring and genetic diversity is of key importance for the conservation of endangered species. Comparative phylogeography of a host and its parasite has the potential to reveal cryptic dispersal and behaviour in both species, and can thus be used to guide conservation management. In this study, we investigate the phylogeographic structure of the Bechstein’s bat, Myotis bechsteinii, and its ectoparasitic bat fly, Basilia nana, at 12 sites across their entire distribution. For both species, a mitochondrial sequence fragment (ND1 and COI respectively) and nuclear microsatellite genotypes (14 and 10 loci respectively) were generated and used to compare the phylogeography of host and parasite. Our findings confirm the presence of three distinct genetic subpopulations of the Bechstein’s bat in (1) Europe, (2) the Caucasus and (3) Iran, which remain isolated from one another. The genetic distinctiveness of host populations in the Caucasus region and Iran emphasize that these populations must be managed as distinct evolutionarily significant units. This phylogeographical pattern is however not reflected in its parasite, B. nana, which shows evidence for more recent dispersal between host subpopulations. The discordant genetic pattern between host and parasite suggest that despite the long-term genetic isolation of the different host subpopulations, long-range dispersal of the parasite has occurred more recently, either as the result of secondary contact in the primary host or via secondary host species. This indicates that a novel pathogenic threat to one host subpopulation may be able to disperse, and thus have important consequences for all subpopulations.  相似文献   

12.
Does the structure and connectivity of host populations influence the dynamics and evolution of their pathogens? This topical question is the essence of research investigating the ecology of a Pteropus fruit bat and its zoonotic Nipah virus (NiV) published by Olival et al. in this issue of Molecular Ecology. Questioned less overtly, but nonetheless implicit to the study, is “what are the mechanisms underpinning intraspecific host–pathogen congruence (IHPC) of genetic structure?”. Olival et al. investigated the phylogeographical structure of Pteropus medius and NiV isolates across Bangladesh, from areas inside and outside of the Nipah belt—an area where most human spillover events occur. A high degree of host panmixia was discovered, with some population differentiation east of the Nipah belt. NiV genetic structure was congruent with the host. The authors attributed the panmixia and structuring, respectively, to (a) the highly vagile nature of P. medius, and (b) possible differences between bioregions within and outside the Nipah belt. Other potential explanatory mechanisms were acknowledged, including hybridization and transmission mode. This study makes a valuable contribution to a growing body of literature examining IHPC. This has implications not only for pathogen spillover to humans and domestic animals, but more generally for thinking about the mechanisms that underlie patterns of host and pathogen genetic associations.  相似文献   

13.
While anthropogenic impacts on parasitism of wildlife are receiving growing attention, whether these impacts vary in a sex‐specific manner remains little explored. Differences between the sexes in the effect of parasites, linked to anthropogenic activity, could lead to uneven sex ratios and higher population endangerment. We sampled 1108 individual bats in 18 different sites across an agricultural mosaic landscape in southern Costa Rica to investigate the relationships between anthropogenic impacts (deforestation and reductions in host species richness) and bat fly ectoparasitism of 35 species of Neotropical bats. Although female and male bat assemblages were similar across the deforestation gradient, bat fly assemblages tracked their hosts closely only on female bats. We found that in female hosts, parasite abundance per bat decreased with increasing bat species richness, while in male hosts, parasite abundance increased. We hypothesize the differences in the parasite–disturbance relationship are due to differences in roosting behavior between the sexes. We report a sex‐specific parasite–disturbance relationship and argue that sex differences in anthropogenic impacts on wildlife parasitism could impact long‐term population health and survival.  相似文献   

14.
Geographical isolation, habitat variation and trophic specialization have contributed to a large extent to the astonishing diversity of cichlid fishes in the Great East African lakes. Because parasite communities often vary across space and environments, parasites can accompany and potentially enhance cichlid species diversification. However, host dispersal may reduce opportunities for parasite‐driven evolution by homogenizing parasite communities and allele frequencies of immunity genes. To test for the relationships between parasite community variation, host dispersal and parasite‐induced host evolution, we studied two sympatric cichlid species with contrasting dispersal capacities along the shores of southern Lake Tanganyika. Whereas the philopatric Tropheus moorii evolved into several genetically differentiated colour morphs, Simochromis diagramma is phenotypically rather uniform across its distribution range and shows only weak population structure. Populations of both species were infected with divergent parasite communities and harbour differentiated variant pools of an important set of immune genes, the major histocompatibility complex (MHC). The overall extent of geographical variation of parasites and MHC genes was similar between host species. This indicates that immunogenetic divergence among populations of Lake Tanganyika cichlids can occur even in species that are strongly dispersing. However, because this also includes species that are phenotypically uniform, parasite‐induced evolution may not represent a key factor underlying species diversification in this system.  相似文献   

15.
Knowledge of a species’ population genetic structure can provide insight into fundamental ecological and evolutionary processes including gene flow, genetic drift and adaptive evolution. Such inference is of particular importance for parasites, as an understanding of their population structure can illuminate epidemiological and coevolutionary dynamics. Here, we describe the population genetic structure of the bacterium Pasteuria ramosa, a parasite that infects planktonic crustaceans of the genus Daphnia. This system has become a model for investigations of host–parasite interactions and represents an example of coevolution via negative frequency‐dependent selection (aka “Red Queen” dynamics). To sample P. ramosa, we experimentally infected a panel of Daphnia hosts with natural spore banks from the sediments of 25 ponds throughout much of the species range in Europe and western Asia. Using 12 polymorphic variable number tandem repeat loci (VNTR loci), we identified substantial genetic diversity, both within and among localities, that was structured geographically among ponds. Genetic diversity was also structured among host genotypes within ponds, although this pattern varied by locality, with P. ramosa at some localities partitioned into distinct host‐specific lineages, and other localities where recombination had shuffled genetic variation among different infection phenotypes. Across the sample range, there was a pattern of isolation by distance, and principal components analysis coupled with Procrustes rotation identified congruence between patterns of genetic variation and geography. Our findings support the hypothesis that Pasteuria is an endemic parasite coevolving closely with its host. These results provide important context for previous studies of this model system and inform hypotheses for future research.  相似文献   

16.
Host‐parasite interaction studies across hybrid zones often focus on host genetic variation, treating parasites as homogeneous. ‘Intimately’ associated hosts and parasites might be expected to show similar patterns of genetic structure. In the literature, factors such as no intermediate host and no free‐living stage have been proposed as ‘intimacy’ factors likely constraining parasites to closely follow the evolutionary history of their hosts. To test whether the whipworm, Trichuris muris, is intimately associated with its house mouse host, we studied its population genetics across the European house mouse hybrid zone (HMHZ) which has a strong central barrier to gene flow between mouse taxa. T. muris has a direct life cycle and nonmobile free stage: if these traits constrain the parasite to an intimate association with its host we expect a geographic break in the parasite genetic structure across the HMHZ. We genotyped 205 worms from 56 localities across the HMHZ and additionally T. muris collected from sympatric woodmice (Apodemus spp.) and allopatric murine species, using mt‐COX1, ITS1‐5.8S‐ITS2 rDNA and 10 microsatellites. We show four haplogroups of mt‐COX1 and three clear ITS1‐5.8S‐ITS2 clades in the HMHZ suggesting a complex demographic/phylogeographic history. Microsatellites show strong structure between groups of localities. However, no marker type shows a break across the HMHZ. Whipworms from Apodemus in the HMHZ cluster, and share mitochondrial haplotypes, with those from house mice. We conclude Trichuris should not be regarded as an ‘intimate’ parasite of the house mouse: while its life history might suggest intimacy, passage through alternate hosts is sufficiently common to erase signal of genetic structure associated with any particular host taxon.  相似文献   

17.
Many metacommunities are distributed across habitat patches that are themselves aggregated into groups. Perhaps the clearest example of this nested metacommunity structure comes from multi-species parasite assemblages, which occupy individual hosts that are aggregated into host populations. At both spatial scales, we expect parasite community diversity in a given patch (either individual host or population) to depend on patch characteristics that affect colonization rates and species sorting. But, are these patch effects consistent across spatial scales? Or, do different processes govern the distribution of parasite community diversity among individual hosts, versus among host patches? To answer these questions, we document the distribution of parasite richness among host individuals and among populations in a metapopulation of threespine stickleback Gasterosteus aculeatus. We find some host traits (host size, gape width) are associated with increased parasite richness at both spatial scales. Other patch characteristics affect parasite richness only among individuals (sex), or among populations (lake size, lake area, elevation and population mean heterozygosity). These results demonstrate that some rules governing parasite richness in this metacommunity are shared across scales, while others are scale-specific.  相似文献   

18.
Aim The rate at which similarity in species composition decays with increasing distance was investigated among communities of parasitic helminths in different populations of the same host species. Rates of distance decay in similarity of parasite communities were compared between populations of fish and mammal hosts, which differ with respect to their vagility and potential to disperse parasite species over large distances. Location Data on helminth communities were compiled for several populations of three mammalian host species (Ondatra zibethicus, Procyon lotor and Canis latrans) and three fish host species (Perca flavescens, Catostomus commersoni and Esox lucius) from continental North America. Methods Distances between localities and similarity in the composition of helminth communities, the latter computed using the Jaccard index, were calculated for all possible pairs of host populations within each host species. Similarity values were then regressed against distance to see if they decayed at exponential rates, as reported for plant communities; the significance of the regressions was assessed using randomization tests. Results The number of hosts examined per population did not correlate with the number of helminth species found per population, and thus sampling effort is unlikely to have confounded the results. In four (two mammals and two fish) of the six host species, similarity in helminth communities decayed exponentially with distance. When the log of similarity is plotted against untransformed distance, the slopes obtained for the two fish species are lower than those obtained for the two mammalian host species. Main conclusions Similarity in the composition of parasite communities appears to decay exponentially with increasing distance in some host species, but not in all host species. The rate of decay is not necessarily associated with the vagility of the host. Although distance decay of similarity is generally occurring, it seems that other ecological processes, related either to the host or its habitat, can obscure it.  相似文献   

19.
Aim Parasites with global distributions and wide host spectra provide excellent models for exploring the factors that drive parasite diversification. Here, we tested the relative force of host and geography in shaping population structure of a widely distributed and common ectoparasite of colonial seabirds, the tick Ixodes uriae. Location Two natural geographic replicates of the system: numerous seabird colonies of the North Pacific and North Atlantic Ocean basins. Methods Using eight microsatellite markers and tick samples from a suite of multi‐specific seabird colonies, we examined tick population structure in the North Pacific and compare patterns of diversity and structure to those in the Atlantic basin. Analyses included population genetic estimations of diversity and population differentiation, exploratory multivariate analyses, and Bayesian clustering approaches. These different analyses explicitly took into account both the geographic distance among colonies and host use by the tick. Results Overall, little geographic structure was observed among Pacific tick populations. However, host‐related genetic differentiation was evident, but was variable among host types and lower than in the North Atlantic. Main conclusions Tick population structure is concordant with the genetic structure observed in seabird host species within each ocean basin, where seabird populations tend to be less structured in the North Pacific than in the North Atlantic. Reduced tick genetic structure in the North Pacific suggests that host movement among colonies, and thus tick dispersal, is higher in this region. In addition to information on parasite diversity and gene flow, our findings raise interesting questions about the subtle ways that host behaviour, distribution and phylogeographic history shape the genetics of associated parasites across geographic landscapes.  相似文献   

20.
Understanding the genetic consequences of changes in species distributions has wide‐ranging implications for predicting future outcomes of climate change, for protecting threatened or endangered populations and for understanding the history that has led to current genetic patterns within species. Herein, we examine the genetic consequences of range expansion over a 25‐year period in a parasite (Geomydoecus aurei) that is in the process of expanding its geographic range via invasion of a novel host. By sampling the genetics of 1,935 G. aurei lice taken from 64 host individuals collected over this time period using 12 microsatellite markers, we test hypotheses concerning linear spatial expansion, genetic recovery time and allele surfing. We find evidence of decreasing allelic richness (AR) with increasing distance from the source population, supporting a linear, stepping stone model of spatial expansion that emphasizes the effects of repeated bottleneck events during colonization. We provide evidence of post‐bottleneck genetic recovery, with average AR of infrapopulations increasing about 30% over the 225‐generation span of time observed directly in this study. Our estimates of recovery rate suggest, however, that recovery has plateaued and that this population may not reach genetic diversity levels of the source population without further immigration from the source population. Finally, we employ a grid‐based sampling scheme in the region of ongoing population expansion and provide empirical evidence for the power of allele surfing to impart genetic structure on a population, even under conditions of selective neutrality and in a place that lacks strong barriers to gene flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号