首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Next-generation sequencing of pooled samples (Pool-seq) is a popular method to assess genome-wide diversity patterns in natural and experimental populations. However, Pool-seq is associated with specific sources of noise, such as unequal individual contributions. Consequently, using Pool-seq for the reconstruction of evolutionary history has remained underexplored. Here we describe a novel Approximate Bayesian Computation (ABC) method to infer demographic history, explicitly modelling Pool-seq sources of error. By jointly modelling Pool-seq data, demographic history and the effects of selection due to barrier loci, we obtain estimates of demographic history parameters accounting for technical errors associated with Pool-seq. Our ABC approach is computationally efficient as it relies on simulating subsets of loci (rather than the whole-genome) and on using relative summary statistics and relative model parameters. Our simulation study results indicate Pool-seq data allows distinction between general scenarios of ecotype formation (single versus parallel origin) and to infer relevant demographic parameters (e.g. effective sizes and split times). We exemplify the application of our method to Pool-seq data from the rocky-shore gastropod Littorina saxatilis, sampled on a narrow geographical scale at two Swedish locations where two ecotypes (Wave and Crab) are found. Our model choice and parameter estimates show that ecotypes formed before colonization of the two locations (i.e. single origin) and are maintained despite gene flow. These results indicate that demographic modelling and inference can be successful based on pool-sequencing using ABC, contributing to the development of suitable null models that allow for a better understanding of the genetic basis of divergent adaptation.  相似文献   

2.
Approximate Bayesian computation (ABC) is widely used to infer demographic history of populations and species using DNA markers. Genomic markers can now be developed for nonmodel species using reduced representation library (RRL) sequencing methods that select a fraction of the genome using targeted sequence capture or restriction enzymes (genotyping‐by‐sequencing, GBS). We explored the influence of marker number and length, knowledge of gametic phase, and tradeoffs between sample size and sequencing depth on the quality of demographic inferences performed with ABC. We focused on two‐population models of recent spatial expansion with varying numbers of unknown parameters. Performing ABC on simulated data sets with known parameter values, we found that the timing of a recent spatial expansion event could be precisely estimated in a three‐parameter model. Taking into account uncertainty in parameters such as initial population size and migration rate collectively decreased the precision of inferences dramatically. Phasing haplotypes did not improve results, regardless of sequence length. Numerous short sequences were as valuable as fewer, longer sequences, and performed best when a large sample size was sequenced at low individual depth, even when sequencing errors were added. ABC results were similar to results obtained with an alternative method based on the site frequency spectrum (SFS) when performed with unphased GBS‐type markers. We conclude that unphased GBS‐type data sets can be sufficient to precisely infer simple demographic models, and discuss possible improvements for the use of ABC with genomic data.  相似文献   

3.
Whole‐genome duplications have occurred in the recent ancestors of many plants, fish, and amphibians, resulting in a pervasiveness of paralogous loci and the potential for both disomic and tetrasomic inheritance in the same genome. Paralogs can be difficult to reliably genotype and are often excluded from genotyping‐by‐sequencing (GBS) analyses; however, removal requires paralogs to be identified which is difficult without a reference genome. We present a method for identifying paralogs in natural populations by combining two properties of duplicated loci: (i) the expected frequency of heterozygotes exceeds that for singleton loci, and (ii) within heterozygotes, observed read ratios for each allele in GBS data will deviate from the 1:1 expected for singleton (diploid) loci. These deviations are often not apparent within individuals, particularly when sequence coverage is low; but, we postulated that summing allele reads for each locus over all heterozygous individuals in a population would provide sufficient power to detect deviations at those loci. We identified paralogous loci in three species: Chinook salmon (Oncorhynchus tshawytscha) which retains regions with ongoing residual tetrasomy on eight chromosome arms following a recent whole‐genome duplication, mountain barberry (Berberis alpina) which has a large proportion of paralogs that arose through an unknown mechanism, and dusky parrotfish (Scarus niger) which has largely rediploidized following an ancient whole‐genome duplication. Importantly, this approach only requires the genotype and allele‐specific read counts for each individual, information which is readily obtained from most GBS analysis pipelines.  相似文献   

4.
Next‐generation sequencing has vast potential to revolutionize the fields of phylogenetics and population genetics through its ability to collect genomic scale data sets of thousands of orthologous loci. Despite this potential, other types of data (e.g. morphology, ecology) remain important, particularly for studies endeavouring to delimit species. Here, we integrate next‐generation sequencing with morphology to examine divergence between populations of Tribolonotus pseudoponceleti on the islands of Buka and Bougainville in the Solomon Archipelago. We used the Ion Torrent PGM to collect over 648 Mbp of sequence data for 12 samples, representing 1526 loci recovered from all samples, and 3342 were recovered from at least six samples. Genetic structure analyses strongly support the distinctiveness of these two populations, and Bayes factor delimitations decisively select speciation between Buka and Bougainville. Principal components and discriminant function analyses reveal concordant morphological divergence. Finally, demographic analyses via diffusion approximation and approximate Bayesian computation prefer a complex model of mid‐Pleistocene divergence with migration, and a later decrease or cessation of migration and population size shift, suggesting a scenario in which migration was enabled by Pleistocene merging of these two islands, and limited when isolated by higher sea levels. Further analysis of four Sanger sequenced loci in IMa2 had limited power to distinguish among models including and excluding migration, but resulted in similar population size and divergence time estimates, although with much broader confidence intervals. This study represents a framework for how next‐generation sequencing and morphological data can be combined and leveraged towards validating putative species and testing demographic scenarios for speciation.  相似文献   

5.
Establishing the sex of individuals in wild systems can be challenging and often requires genetic testing. Genotyping‐by‐sequencing (GBS) and other reduced‐representation DNA sequencing (RRS) protocols (e.g., RADseq, ddRAD) have enabled the analysis of genetic data on an unprecedented scale. Here, we present a novel approach for the discovery and statistical validation of sex‐specific loci in GBS data sets. We used GBS to genotype 166 New Zealand fur seals (NZFS, Arctocephalus forsteri) of known sex. We retained monomorphic loci as potential sex‐specific markers in the locus discovery phase. We then used (i) a sex‐specific locus threshold (SSLT) to identify significantly male‐specific loci within our data set; and (ii) a significant sex‐assignment threshold (SSAT) to confidently assign sex in silico the presence or absence of significantly male‐specific loci to individuals in our data set treated as unknowns (98.9% accuracy for females; 95.8% for males, estimated via cross‐validation). Furthermore, we assigned sex to 86 individuals of true unknown sex using our SSAT and assessed the effect of SSLT adjustments on these assignments. From 90 verified sex‐specific loci, we developed a panel of three sex‐specific PCR primers that we used to ascertain sex independently of our GBS data, which we show amplify reliably in at least two other pinniped species. Using monomorphic loci normally discarded from large SNP data sets is an effective way to identify robust sex‐linked markers for nonmodel species. Our novel pipeline can be used to identify and statistically validate monomorphic and polymorphic sex‐specific markers across a range of species and RRS data sets.  相似文献   

6.
Unraveling genetic population structure is challenging in species potentially characterized by large population size and high dispersal rates, often resulting in weak genetic differentiation. Genotyping a large number of samples can improve the detection of subtle genetic structure, but this may substantially increase sequencing cost and downstream bioinformatics computational time. To overcome this challenge, alternative, cost‐effective sequencing approaches, namely Pool‐seq and Rapture, have been developed. We empirically measured the power of resolution and congruence of these two methods in documenting weak population structure in nonmodel species with high gene flow comparatively to a conventional genotyping‐by‐sequencing (GBS) approach. For this, we used the American lobster (Homarus americanus) as a case study. First, we found that GBS, Rapture, and Pool‐seq approaches gave similar allele frequency estimates (i.e., correlation coefficient over 0.90) and all three revealed the same weak pattern of population structure. Yet, Pool‐seq data showed FST estimates three to five times higher than GBS and Rapture, while the latter two methods returned similar FST estimates, indicating that individual‐based approaches provided more congruent results than Pool‐seq. We conclude that despite higher costs, GBS and Rapture are more convenient approaches to use in the case of species exhibiting very weak differentiation. While both GBS and Rapture approaches provided similar results with regard to estimates of population genetic parameters, GBS remains more cost‐effective in project involving a relatively small numbers of genotyped individuals (e.g., <1,000). Overall, this study illustrates the complexity of estimating genetic differentiation and other summary statistics in complex biological systems characterized by large population size and migration rates.  相似文献   

7.
Many eukaryote organisms are polyploid. However, despite their importance, evolutionary inference of polyploid origins and modes of inheritance has been limited by a need for analyses of allele segregation at multiple loci using crosses. The increasing availability of sequence data for nonmodel species now allows the application of established approaches for the analysis of genomic data in polyploids. Here, we ask whether approximate Bayesian computation (ABC), applied to realistic traditional and next‐generation sequence data, allows correct inference of the evolutionary and demographic history of polyploids. Using simulations, we evaluate the robustness of evolutionary inference by ABC for tetraploid species as a function of the number of individuals and loci sampled, and the presence or absence of an outgroup. We find that ABC adequately retrieves the recent evolutionary history of polyploid species on the basis of both old and new sequencing technologies. The application of ABC to sequence data from diploid and polyploid species of the plant genus Capsella confirms its utility. Our analysis strongly supports an allopolyploid origin of C. bursa‐pastoris about 80 000 years ago. This conclusion runs contrary to previous findings based on the same data set but using an alternative approach and is in agreement with recent findings based on whole‐genome sequencing. Our results indicate that ABC is a promising and powerful method for revealing the evolution of polyploid species, without the need to attribute alleles to a homeologous chromosome pair. The approach can readily be extended to more complex scenarios involving higher ploidy levels.  相似文献   

8.
With the advent of next‐generation sequencing technologies, large data sets of several thousand loci from multiple conspecific individuals are available. Such data sets should make it possible to obtain accurate estimates of population genetic parameters, even for complex models of population history. In the analyses of large data sets, it is difficult to consider finite‐sites mutation models (FSMs). Here, we use extensive simulations to demonstrate that the inclusion of FSMs is necessary to avoid severe biases in the estimation of the population mutation rate θ, population divergence times, and migration rates. We present a new version of Jaatha, an efficient composite‐likelihood method for estimating demographic parameters from population genetic data and evaluate the usefulness of Jaatha in two biological examples. For the first application, we infer the speciation process of two wild tomato species, Solanum chilense and Solanum peruvianum. In our second application example, we demonstrate that Jaatha is readily applicable to NGS data by analyzing genome‐wide data from two southern European populations of Arabidopsis thaliana. Jaatha is now freely available as an R package from the Comprehensive R Archive Network (CRAN).  相似文献   

9.
With the increasing availability of both molecular and topo‐climatic data, the main challenges facing landscape genomics – that is the combination of landscape ecology with population genomics – include processing large numbers of models and distinguishing between selection and demographic processes (e.g. population structure). Several methods address the latter, either by estimating a null model of population history or by simultaneously inferring environmental and demographic effects. Here we present sam βada , an approach designed to study signatures of local adaptation, with special emphasis on high performance computing of large‐scale genetic and environmental data sets. sam βada identifies candidate loci using genotype–environment associations while also incorporating multivariate analyses to assess the effect of many environmental predictor variables. This enables the inclusion of explanatory variables representing population structure into the models to lower the occurrences of spurious genotype–environment associations. In addition, sam βada calculates local indicators of spatial association for candidate loci to provide information on whether similar genotypes tend to cluster in space, which constitutes a useful indication of the possible kinship between individuals. To test the usefulness of this approach, we carried out a simulation study and analysed a data set from Ugandan cattle to detect signatures of local adaptation with sam βada , bayenv , lfmm and an FST outlier method (FDIST approach in arlequin ) and compare their results. sam βada – an open source software for Windows, Linux and Mac OS X available at http://lasig.epfl.ch/sambada – outperforms other approaches and better suits whole‐genome sequence data processing.  相似文献   

10.
The use of molecular data to reconstruct the history of divergence and gene flow between populations of closely related taxa represents a challenging problem. It has been proposed that the long‐standing debate about the geography of speciation can be resolved by comparing the likelihoods of a model of isolation with migration and a model of secondary contact. However, data are commonly only fit to a model of isolation with migration and rarely tested against the secondary contact alternative. Furthermore, most demographic inference methods have neglected variation in introgression rates and assume that the gene flow parameter (Nm) is similar among loci. Here, we show that neglecting this source of variation can give misleading results. We analysed DNA sequences sampled from populations of the marine mussels, Mytilus edulis and M. galloprovincialis, across a well‐studied mosaic hybrid zone in Europe and evaluated various scenarios of speciation, with or without variation in introgression rates, using an Approximate Bayesian Computation (ABC) approach. Models with heterogeneous gene flow across loci always outperformed models assuming equal migration rates irrespective of the history of gene flow being considered. By incorporating this heterogeneity, the best‐supported scenario was a long period of allopatric isolation during the first three‐quarters of the time since divergence followed by secondary contact and introgression during the last quarter. By contrast, constraining migration to be homogeneous failed to discriminate among any of the different models of gene flow tested. Our simulations thus provide statistical support for the secondary contact scenario in the European Mytilus hybrid zone that the standard coalescent approach failed to confirm. Our results demonstrate that genomic variation in introgression rates can have profound impacts on the biological conclusions drawn from inference methods and needs to be incorporated in future studies.  相似文献   

11.
Inferring the demographic history of species and their populations is crucial to understand their contemporary distribution, abundance and adaptations. The high computational overhead of likelihood‐based inference approaches severely restricts their applicability to large data sets or complex models. In response to these restrictions, approximate Bayesian computation (ABC) methods have been developed to infer the demographic past of populations and species. Here, we present the results of an evaluation of the ABC‐based approach implemented in the popular software package diyabc using simulated data sets (mitochondrial DNA sequences, microsatellite genotypes and single nucleotide polymorphisms). We simulated population genetic data under five different simple, single‐population models to assess the model recovery rates as well as the bias and error of the parameter estimates. The ability of diyabc to recover the correct model was relatively low (0.49): 0.6 for the simplest models and 0.3 for the more complex models. The recovery rate improved significantly when reducing the number of candidate models from five to three (from 0.57 to 0.71). Among the parameters of interest, the effective population size was estimated at a higher accuracy compared to the timing of events. Increased amounts of genetic data did not significantly improve the accuracy of the parameter estimates. Some gains in accuracy and decreases in error were observed for scaled parameters (e.g., Neμ) compared to unscaled parameters (e.g., Ne and μ). We concluded that diyabc ‐based assessments are not suited to capture a detailed demographic history, but might be efficient at capturing simple, major demographic changes.  相似文献   

12.
We propose a two‐step procedure for estimating multiple migration rates in an approximate Bayesian computation (ABC) framework, accounting for global nuisance parameters. The approach is not limited to migration, but generally of interest for inference problems with multiple parameters and a modular structure (e.g. independent sets of demes or loci). We condition on a known, but complex demographic model of a spatially subdivided population, motivated by the reintroduction of Alpine ibex (Capra ibex) into Switzerland. In the first step, the global parameters ancestral mutation rate and male mating skew have been estimated for the whole population in Aeschbacher et al. (Genetics 2012; 192 : 1027). In the second step, we estimate in this study the migration rates independently for clusters of demes putatively connected by migration. For large clusters (many migration rates), ABC faces the problem of too many summary statistics. We therefore assess by simulation if estimation per pair of demes is a valid alternative. We find that the trade‐off between reduced dimensionality for the pairwise estimation on the one hand and lower accuracy due to the assumption of pairwise independence on the other depends on the number of migration rates to be inferred: the accuracy of the pairwise approach increases with the number of parameters, relative to the joint estimation approach. To distinguish between low and zero migration, we perform ABC‐type model comparison between a model with migration and one without. Applying the approach to microsatellite data from Alpine ibex, we find no evidence for substantial gene flow via migration, except for one pair of demes in one direction.  相似文献   

13.
Conservation of the local genetic variation and evolutionary integrity of economically and ecologically important trees is a key aspect of studies involving forest genetics, and a population demographic history of the target species provides valuable information for this purpose. Here, the genetic structure of 48 populations of Betula maximowicziana was assessed using 12 expressed sequence tag–simple sequence repeat (EST‐SSR) markers. Genetic diversity was lower in northern populations than southern ones and structure analysis revealed three groups: northern and southern clusters and an admixed group. Eleven more genomic‐SSR loci were added and the demographic history of these three groups was inferred by approximate Bayesian computation (ABC). The ABC revealed that a simple split scenario was much more likely than isolation with admixture, suggesting that the admixture‐like structure detected in this species was due to ancestral polymorphisms. The ABC analysis suggested that the population growth and divergence of the three groups occurred 96 800 (95% CI, 20 500–599 000) and 28 300 (95% CI, 8700–98 400) years ago, respectively. We need to be aware of several sources of uncertainty in the inference such as assumptions about the generation time, overlapping of generations, confidence intervals of the estimated parameters and the assumed model in the ABC. However, the results of the ABC together with the model‐based maps of reconstructed past species distribution and palaeoecological data suggested that the modern genetic structure of B. maximowicziana originated prior to the last glacial maximum (LGM) and that some populations survived in the northern range even during the LGM.  相似文献   

14.
The analysis of genetic variation to estimate demographic and historical parameters and to quantitatively compare alternative scenarios recently gained a powerful and flexible approach: the Approximate Bayesian Computation (ABC). The likelihood functions does not need to be theoretically specified, but posterior distributions can be approximated by simulation even assuming very complex population models including both natural and human‐induced processes. Prior information can be easily incorporated and the quality of the results can be analysed with rather limited additional effort. ABC is not a statistical analysis per se, but rather a statistical framework and any specific application is a sort of hybrid between a simulation and a data‐analysis study. Complete software packages performing the necessary steps under a set of models and for specific genetic markers are already available, but the flexibility of the method is better exploited combining different programs. Many questions relevant in ecology can be addressed using ABC, but adequate amount of time should be dedicated to decide among alternative options and to evaluate the results. In this paper we will describe and critically comment on the different steps of an ABC analysis, analyse some of the published applications of ABC and provide user guidelines.  相似文献   

15.
Rapidly developing sequencing technologies and declining costs have made it possible to collect genome‐scale data from population‐level samples in nonmodel systems. Inferential tools for historical demography given these data sets are, at present, underdeveloped. In particular, approximate Bayesian computation (ABC) has yet to be widely embraced by researchers generating these data. Here, we demonstrate the promise of ABC for analysis of the large data sets that are now attainable from nonmodel taxa through current genomic sequencing technologies. We develop and test an ABC framework for model selection and parameter estimation, given histories of three‐population divergence with admixture. We then explore different sampling regimes to illustrate how sampling more loci, longer loci or more individuals affects the quality of model selection and parameter estimation in this ABC framework. Our results show that inferences improved substantially with increases in the number and/or length of sequenced loci, while less benefit was gained by sampling large numbers of individuals. Optimal sampling strategies given our inferential models included at least 2000 loci, each approximately 2 kb in length, sampled from five diploid individuals per population, although specific strategies are model and question dependent. We tested our ABC approach through simulation‐based cross‐validations and illustrate its application using previously analysed data from the oak gall wasp, Biorhiza pallida.  相似文献   

16.
Recent papers have promoted the view that model‐based methods in general, and those based on Approximate Bayesian Computation (ABC) in particular, are flawed in a number of ways, and are therefore inappropriate for the analysis of phylogeographic data. These papers further argue that Nested Clade Phylogeographic Analysis (NCPA) offers the best approach in statistical phylogeography. In order to remove the confusion and misconceptions introduced by these papers, we justify and explain the reasoning behind model‐based inference. We argue that ABC is a statistically valid approach, alongside other computational statistical techniques that have been successfully used to infer parameters and compare models in population genetics. We also examine the NCPA method and highlight numerous deficiencies, either when used with single or multiple loci. We further show that the ages of clades are carelessly used to infer ages of demographic events, that these ages are estimated under a simple model of panmixia and population stationarity but are then used under different and unspecified models to test hypotheses, a usage the invalidates these testing procedures. We conclude by encouraging researchers to study and use model‐based inference in population genetics.  相似文献   

17.
Genetic data have been widely used to reconstruct the demographic history of populations, including the estimation of migration rates, divergence times and relative admixture contribution from different populations. Recently, increasing interest has been given to the ability of genetic data to distinguish alternative models. One of the issues that has plagued this kind of inference is that ancestral shared polymorphism is often difficult to separate from admixture or gene flow. Here, we applied an approximate Bayesian computation (ABC) approach to select the model that best fits microsatellite data among alternative splitting and admixture models. We performed a simulation study and showed that with reasonably large data sets (20 loci) it is possible to identify with a high level of accuracy the model that generated the data. This suggests that it is possible to distinguish genetic patterns due to past admixture events from those due to shared polymorphism (population split without admixture). We then apply this approach to microsatellite data from an endangered and endemic Iberian freshwater fish species, in which a clustering analysis suggested that one of the populations could be admixed. In contrast, our results suggest that the observed genetic patterns are better explained by a population split model without admixture.  相似文献   

18.
Repeated Quaternary glaciations have significantly shaped the present distribution and diversity of several European species in aquatic and terrestrial habitats. To study the phylogeography of freshwater invertebrates, patterns of intraspecific variation have been examined primarily using mitochondrial DNA markers that may yield results unrepresentative of the true species history. Here, population genetic parameters were inferred for a montane aquatic caddisfly, Thremma gallicum, by sequencing a 658‐bp fragment of the mitochondrial CO1 gene, and 12,514 nuclear RAD loci. T. gallicum has a highly disjunct distribution in southern and central Europe, with known populations in the Cantabrian Mountains, Pyrenees, Massif Central, and Black Forest. Both datasets represented rangewide sampling of T. gallicum. For the CO1 dataset, this included 352 specimens from 26 populations, and for the RAD dataset, 17 specimens from eight populations. We tested 20 competing phylogeographic scenarios using approximate Bayesian computation (ABC) and estimated genetic diversity patterns. Support for phylogeographic scenarios and diversity estimates differed between datasets with the RAD data favouring a southern origin of extant populations and indicating the Cantabrian Mountains and Massif Central populations to represent highly diverse populations as compared with the Pyrenees and Black Forest populations. The CO1 data supported a vicariance scenario (north–south) and yielded inconsistent diversity estimates. Permutation tests suggest that a few hundred polymorphic RAD SNPs are necessary for reliable parameter estimates. Our results highlight the potential of RAD and ABC‐based hypothesis testing to complement phylogeographic studies on non‐model species.  相似文献   

19.
Increasingly imperative objectives in ecology are to understand and forecast population dynamic and evolutionary responses to seasonal environmental variation and change. Such population and evolutionary dynamics result from immediate and lagged responses of all key life‐history traits, and resulting demographic rates that affect population growth rate, to seasonal environmental conditions and population density. However, existing population dynamic and eco‐evolutionary theory and models have not yet fully encompassed within‐individual and among‐individual variation, covariation, structure and heterogeneity, and ongoing evolution, in a critical life‐history trait that allows individuals to respond to seasonal environmental conditions: seasonal migration. Meanwhile, empirical studies aided by new animal‐tracking technologies are increasingly demonstrating substantial within‐population variation in the occurrence and form of migration versus year‐round residence, generating diverse forms of ‘partial migration’ spanning diverse species, habitats and spatial scales. Such partially migratory systems form a continuum between the extreme scenarios of full migration and full year‐round residence, and are commonplace in nature. Here, we first review basic scenarios of partial migration and associated models designed to identify conditions that facilitate the maintenance of migratory polymorphism. We highlight that such models have been fundamental to the development of partial migration theory, but are spatially and demographically simplistic compared to the rich bodies of population dynamic theory and models that consider spatially structured populations with dispersal but no migration, or consider populations experiencing strong seasonality and full obligate migration. Second, to provide an overarching conceptual framework for spatio‐temporal population dynamics, we define a ‘partially migratory meta‐population’ system as a spatially structured set of locations that can be occupied by different sets of resident and migrant individuals in different seasons, and where locations that can support reproduction can also be linked by dispersal. We outline key forms of within‐individual and among‐individual variation and structure in migration that could arise within such systems and interact with variation in individual survival, reproduction and dispersal to create complex population dynamics and evolutionary responses across locations, seasons, years and generations. Third, we review approaches by which population dynamic and eco‐evolutionary models could be developed to test hypotheses regarding the dynamics and persistence of partially migratory meta‐populations given diverse forms of seasonal environmental variation and change, and to forecast system‐specific dynamics. To demonstrate one such approach, we use an evolutionary individual‐based model to illustrate that multiple forms of partial migration can readily co‐exist in a simple spatially structured landscape. Finally, we summarise recent empirical studies that demonstrate key components of demographic structure in partial migration, and demonstrate diverse associations with reproduction and survival. We thereby identify key theoretical and empirical knowledge gaps that remain, and consider multiple complementary approaches by which these gaps can be filled in order to elucidate population dynamic and eco‐evolutionary responses to spatio‐temporal seasonal environmental variation and change.  相似文献   

20.
Spatial and environmental heterogeneity are major factors in structuring species distributions in alpine landscapes. These landscapes have also been affected by glacial advances and retreats, causing alpine taxa to undergo range shifts and demographic changes. These nonequilibrium population dynamics have the potential to obscure the effects of environmental factors on the distribution of genetic variation. Here, we investigate how demographic change and environmental factors influence genetic variation in the alpine butterfly Colias behrii. Data from 14 microsatellite loci provide evidence of bottlenecks in all population samples. We test several alternative models of demography using approximate Bayesian computation (ABC), with the results favouring a model in which a recent bottleneck precedes rapid population growth. Applying independent calibrations to microsatellite loci and a nuclear gene, we estimate that this bottleneck affected both northern and southern populations 531–281 years ago, coinciding with a period of global cooling. Using regression approaches, we attempt to separate the effects of population structure, geographical distance and landscape on patterns of population genetic differentiation. Only 40% of the variation in FST is explained by these models, with geographical distance and least‐cost distance among meadow patches selected as the best predictors. Various measures of genetic diversity within populations are also decoupled from estimates of local abundance and habitat patch characteristics. Our results demonstrate that demographic change can have a disproportionate influence on genetic diversity in alpine species, contrasting with other studies that suggest landscape features control contemporary demographic processes in high‐elevation environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号