首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The southern European peninsulas (Iberian, Italian and Balkan) are traditionally recognized as glacial refugia from where many species colonized central and northern Europe after the Last Glacial Maximum (LGM). However, evidence that some species had more northerly refugia is accumulating from phylogeographic, palaeontological and palynological studies, and more recently from species distribution modelling (SDM), but further studies are needed to test the idea of northern refugia in Europe. Here, we take a rarely implemented multidisciplinary approach to assess if the pygmy shrew Sorex minutus, a widespread Eurasian mammal species, had northern refugia during the LGM, and if these influenced its postglacial geographic distribution. First, we evaluated the phylogeographic and population expansion patterns using mtDNA sequence data from 123 pygmy shrews. Then, we used SDM to predict present and past (LGM) potential distributions using two different training data sets, two different algorithms (Maxent and GARP) and climate reconstructions for the LGM with two different general circulation models. An LGM distribution in the southern peninsulas was predicted by the SDM approaches, in line with the occurrence of lineages of S. minutus in these areas. The phylogeographic analyses also indicated a widespread and strictly northern‐central European lineage, not derived from southern peninsulas, and with a postglacial population expansion signature. This was consistent with the SDM predictions of suitable LGM conditions for S. minutus occurring across central and eastern Europe, from unglaciated parts of the British Isles to much of the eastern European Plain. Hence, S. minutus likely persisted in parts of central and eastern Europe during the LGM, from where it colonized other northern areas during the late‐glacial and postglacial periods. Our results provide new insights into the glacial and postglacial colonization history of the European mammal fauna, notably supporting glacial refugia further north than traditionally recognized.  相似文献   

2.
Quaternary glaciations have played a major role in shaping the genetic diversity and distribution of plant species. Strong palaeoecological and genetic evidence supports a postglacial recolonization of most plant species to northern Europe from southern, eastern and even western glacial refugia. Although highly controversial, the existence of small in situ glacial refugia in northern Europe has recently gained molecular support. We used genomic analyses to examine the phylogeography of a species that is critical in this debate. Carex scirpoidea Michx subsp. scirpoidea is a dioecious, amphi‐Atlantic arctic–alpine sedge that is widely distributed in North America, but absent from most of Eurasia, apart from three extremely disjunct populations in Norway, all well within the limits of the Weichselian ice sheet. Range‐wide population sampling and variation at 5,307 single nucleotide polymorphisms show that the three Norwegian populations comprise unique evolutionary lineages divergent from Greenland with high between‐population divergence. The Norwegian populations have low within‐population genetic diversity consistent with having experienced genetic bottlenecks in glacial refugia, and host private alleles that probably accumulated in long‐term isolated populations. Demographic analyses support a single, pre‐Weichselian colonization into Norway from East Greenland, and subsequent divergence of the three populations in separate refugia. Other refugial areas are identified in North‐east Greenland, Minnesota/Michigan, Colorado and Alaska. Admixed populations in British Columbia and West Greenland indicate postglacial contact. Taken together, evidence from this study strongly indicates in situ glacial survival in Scandinavia.  相似文献   

3.
Quaternary climatic oscillations profoundly impacted temperate biodiversity. For many diverse yet undersampled areas, however, the consequences of this impact are still poorly known. In Europe, particular uncertainty surrounds the role of Balkans, a major hotspot of European diversity, in postglacial recolonization of more northerly areas, and the Carpathians, a debatable candidate for a northern ‘cryptic’ glacial refugium. Using genome‐wide SNPs and microsatellites, we examined how the interplay of historical processes and niche shifts structured genetic diversity of diploid Arabidopsis arenosa, a little‐known member of the plant model genus that occupies a wide niche range from sea level to alpine peaks across eastern temperate Europe. While the northern Balkans hosted one isolated endemic lineage, most of the genetic diversity was concentrated further north in the Pannonian Basin and the Carpathians, where it likely survived the last glaciation in northern refugia. Finally, a distinct postglacial environment in northern Europe was colonized by populations of admixed origin from the two Carpathian lineages. Niche differentiation along altitude‐related bioclimatic gradients was the main trend in the phylogeny of A. arenosa. The most prominent niche shifts, however, characterized genetically only slightly divergent populations that expanded into narrowly defined alpine and northern coastal postglacial environments. Our study highlights the role of eastern central European mountains not only as refugia for unique temperate diversity but also sources for postglacial expansion into novel high‐altitude and high‐latitude niches. Knowledge of distinct genetic substructure of diploid A. arenosa also opens new opportunities for follow‐up studies of this emerging model of evolutionary biology.  相似文献   

4.

Background and Aims

Plants endemic to areas covered by ice sheets during the last glaciation represent paradigmatic examples of rapid speciation in changing environments, yet very few systems outside the harsh arctic zone have been comprehensively investigated so far. The Galium pusillum aggregate (Rubiaceae) is a challenging species complex that exhibits a marked differentiation in boreal parts of Northern Europe. As a first step towards understanding its evolutionary history in deglaciated regions, this study assesses cytological variation and ecological preferences of the northern endemics and compares the results with corresponding data for species occurring in neighbouring unglaciated parts of Central and Western Europe.

Methods

DNA flow cytometry was used together with confirmatory chromosome counts to determine ploidy levels and relative genome sizes in 1158 individuals from 181 populations. A formalized analysis of habitat preferences was applied to explore niche differentiation among species and ploidy levels.

Key Results

The G. pusillum complex evolved at diploid and tetraploid levels in Northern Europe, in contrast to the high-polyploid evolution of most other northern endemics. A high level of eco-geographic segregation was observed between different species (particularly along gradients of soil pH and competition) which is unusual for plants in deglaciated areas and most probably contributes to maintaining species integrity. Relative monoploid DNA contents of the species from previously glaciated regions were significantly lower than those of their counterparts from mostly unglaciated Central Europe, suggesting independent evolutionary histories.

Conclusions

The aggregate of G. pusillum in Northern Europe represents an exceptional case with a geographically vicariant and ecologically distinct diploid/tetraploid species endemic to formerly glaciated areas. The high level of interspecific differentiation substantially widens our perception of the evolutionary dynamics and speciation rates in the dramatically changing environments of Northern Europe.  相似文献   

5.
6.
Genetic admixture is supposed to be an important trigger of species expansions because it can create the potential for selection of genotypes suitable for new climatic conditions. Up until now, however, no continent‐wide population genetic study has performed a detailed reconstruction of admixture events during natural species expansions. To fill this gap, we analysed the postglacial history of Alnus glutinosa, a keystone species of European swamp habitats, across its entire distribution range using two molecular markers, cpDNA and nuclear microsatellites. CpDNA revealed multiple southern refugia located in the Iberian, Apennine, Balkan and Anatolian Peninsulas, Corsica and North Africa. Analysis of microsatellites variation revealed three main directions of postglacial expansion: (i) from the northern part of the Iberian Peninsula to Western and Central Europe and subsequently to the British Isles, (ii) from the Apennine Peninsula to the Alps and (iii) from the eastern part of the Balkan Peninsula to the Carpathians followed by expansion towards the Northern European plains. This challenges the classical paradigm that most European populations originated from refugial areas in the Carpathians. It has been shown that colonizing lineages have met several times and formed secondary contact zones with unexpectedly high population genetic diversity in Central Europe and Scandinavia. On the contrary, limited genetic admixture in southern refugial areas of A. glutinosa renders rear‐edge populations in the Mediterranean region more vulnerable to extinction due to climate change.  相似文献   

7.
The shrubby milkwort (Polygala chamaebuxus L.) is widely distributed in the Alps, but occurs also in the lower mountain ranges of Central Europe such as the Franconian Jura or the Bohemian uplands. Populations in these regions may either originate from glacial survival or from postglacial recolonization. In this study, we analyzed 30 populations of P. chamaebuxus from the whole distribution range using AFLP (Amplified Fragment Length Polymorphism) analysis to identify glacial refugia and to illuminate the origin of P. chamaebuxus in the lower mountain ranges of Central Europe. Genetic variation and the number of rare fragments within populations were highest in populations from the central part of the distribution range, especially in the Southern Alps (from the Tessin Alps and the Prealps of Lugano to the Triglav Massiv) and in the middle part of the northern Alps. These regions may have served, in accordance with previous studies, as long‐term refugia for the glacial survival of the species. The geographic pattern of genetic variation, as revealed by analysis of molecular variance, Bayesian cluster analysis and a PopGraph genetic network was, however, only weak. Instead of postglacial recolonization from only few long‐term refugia, which would have resulted in deeper genetic splits within the data set, broad waves of postglacial expansion from several short‐term isolated populations in the center to the actual periphery of the distribution range seem to be the scenario explaining the observed pattern of genetic variation most likely. The populations from the lower mountain ranges in Central Europe were more closely related to the populations from the southwestern and northern than from the nearby eastern Alps. Although glacial survival in the Bohemian uplands cannot fully be excluded, P. chamaebuxus seems to have immigrated postglacially from the southwestern or central‐northern parts of the Alps into these regions during the expansion of the pine forests in the early Holocene.  相似文献   

8.
There is an ongoing debate about the glacial history of non‐arctic species in central and northern Europe. The two main hypotheses are: (1) postglacial colonization from refugia outside this region; (2) glacial survival in microclimatically favourable sites within the periglacial areas. In order to clarify the glacial history of a boreo‐montane tall forb, we analysed AFLPs from populations of Cicerbita alpina through most of its range (Scandinavia, the mountains of central Europe, the Alps, the Pyrenees and the Balkan Peninsula). We found a major differentiation between the Pyrenean population and all others, supported by principal coordinate, neighbour joining and STRUCTURE analyses. Furthermore, three populations from the central and north‐eastern Alps were genetically distinct from the bulk of populations from Scandinavia, central Europe, the Alps and the Balkan Peninsula. Most populations, including those from central and northern Europe, had moderate to high levels of genetic diversity (mean Shannon index HSh = 0.292, mean percentage of polymorphic loci P = 54.1%, mean Nei's gene diversity H = 0.195). The results indicate separate glacial refugia in the Pyrenean region and the Italian Alps. Furthermore, they provide evidence of glacial persistence in cryptic refugia north of the Alps, from where Scandinavia and most of the Alps are likely to have been colonized following deglaciation. © 2010 The Linnean Society of London, Botanical Journal of the Linnean Society, 2010, 164 , 142–154.  相似文献   

9.
Genetic data are currently providing a large amount of new information on past distribution of species and are contributing to a new vision of Pleistocene ice ages. Nonetheless, an increasing number of studies on the 'time dependency' of mutation rates suggest that date assessments for evolutionary events of the Pleistocene might be overestimated. We analysed mitochondrial (mt) DNA (COI) sequence variation in 225 Parnassius mnemosyne individuals sampled across central and eastern Europe in order to assess (i) the existence of genetic signatures of Pleistocene climate shifts; and (ii) the timescale of demographic and evolutionary events. Our analyses reveal a phylogeographical pattern markedly influenced by the Pleistocene/Holocene climate shifts. Eastern Alpine and Balkan populations display comparatively high mtDNA diversity, suggesting multiple glacial refugia. On the other hand, three widely distributed and spatially segregated lineages occupy most of northern and eastern Europe, indicating postglacial recolonization from different refugial areas. We show that a conventional 'phylogenetic' substitution rate cannot account for the present distribution of genetic variation in this species, and we combine phylogeographical pattern and palaeoecological information in order to determine a suitable intraspecific rate through a Bayesian coalescent approach. We argue that our calibrated 'time-dependent' rate (0.096 substitutions/ million years), offers the most convincing time frame for the evolutionary events inferred from sequence data. When scaled by the new rate, estimates of divergence between Balkan and Alpine lineages point to c. 19 000 years before present (last glacial maximum), and parameters of demographic expansion for northern lineages are consistent with postglacial warming (5-11 000 years before present).  相似文献   

10.
Recent phylogeographical studies have re‐evaluated the role of refugia in central and northern Europe for glacial persistence and postglacial assembly of temperate biota. Yet, on a regional scale within Mediterranean peninsulas, putative ‘northern’ refugia's contribution to the current structure of biodiversity still needs to be fully appreciated. To this end, we investigated the phylogeographical structure and the evolutionary history of the Italian smooth newt, Lissotriton vulgaris meridionalis, through phylogeographical, molecular dating and historical demographic analyses. We found ten differentiated mitochondrial lineages with a clear geographical association, mainly distributed in northern Italy. The most ancient divergence among these lineages was estimated at the Early Pleistocene and was followed by a series of splits throughout the Middle Pleistocene. No haplogroup turned out to be derived from another one, each one occupying terminal positions within the phylogenetic network topologies. These results suggest an unprecedented scenario involving long‐term survival of distinct evolutionary lineages in multiple northern Mediterranean refugia. This scenario mirrors on a smaller geographical scale what has been previously observed in the literature concerning northern European environments; it also sheds more light on how northern Italy has contributed to temperate species' long‐term survival and to the assembly of regional biota. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 590–603.  相似文献   

11.
Species in northern Europe re‐colonized the region after the last glacial maximum via several routes, which could have lingering signatures in current intraspecific trait variation. The spruce bark beetle, Ips typographus, occurs across Europe, and biological differences have been found between southern and northern Scandinavian populations. However, the postglacial history of I. typographus in Scandinavia has not been previously studied at a fine geographical scale. Therefore, we collected specimens across northern Europe and analysed the genetic variation in a quite large mitochondrial fragment (698 bp). A high genetic diversity was found in some of the most northern populations, in the Baltic States, Gotland and central Europe. Detected genetic and phylogeographic structures suggest that I. typographus re‐colonized Scandinavia via two pathways, one from the northeast and one from the south. These findings are consistent with the re‐colonization history of its host plant, Picea abies. However, we observed low haplotype and nucleotide diversity in southern Scandinavian populations of I. typographus, indicating that (unlike Pabies) it did not disperse across the Baltic Sea in multiple events. Further, the divergence among Scandinavian populations was shallow, conflicting with a scenario where I. typographus expanded concurrently with its host plant from a ‘cryptic refugium’ in the northwest.  相似文献   

12.
The biogeography of the western Palearctic has been intensively studied for more than a century. Recent advances in genetics have allowed the testing of old theories based on distribution patterns, although these analyses are obviously restricted to a reduced number of specific genetic data sets. On the other hand, an increased knowledge on the distributions of species and advances in computer capacities have allowed more detailed biogeographical analyses based on species presence/absence. In the present study, we selected the Odonata as the study group. For all 162 species native to the western Palearctic, we compiled their respective presence or absence in 97 predefined biogeographical regions. Using cluster analyses and principal component analyses, both based on Jaccard similarity coefficients, we analysed the differentiation among these regions and species. In subsequent analyses, the data set was reduced to the Zygoptera, Anisoptera, and the western Palearctic endemics. All analyses consistently showed different faunal regions and faunal elements. In particular, the (1) western and (2) eastern Mediterranean; (3) Central and (4) Northern Europe; and (5) the British Isles were invariably found in all cases. Although the two major Mediterranean regions were characterized by several endemic faunal elements, Northern Europe and the British Isles lacked such elements, but were characterized by faunal compositions strongly deviating from the rest of the western Palearctic region. Moderate differences between Zygoptera and Anisoptera existed, with the latter more clearly redrawing the Mediterranean refuge areas, whereas the former reflected to a greater extent the postglacial expansion patterns from these regions. In general, our findings underline the old biogeographical theories, but refine especially our understanding of the Atlanto‐ and Ponto‐Mediterranean region. Central Europe, comprising the area with the highest species numbers of our whole study region, unravels as a crossroad of postglacial immigrations, but might also represent a region of in situ glacial survival. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99 , 177–195.  相似文献   

13.
A long‐standing goal of evolutionary biology is to understand how paleoclimatic and geological events shape the geographical distribution and genetic structure within and among species. Using a diverse set of markers (cuticular hydrocarbons, mitochondrial and nuclear gene sequences, microsatellite loci), we studied Reticulitermes grassei and R. banyulensis, two closely related termite species in southwestern Europe. We sought to clarify the current genetic structure of populations that formed following postglacial dispersal from refugia in southern Spain and characterize the gene flow between the two lineages over the last several million years. Each marker type separately provided a fragmented picture of the evolutionary history at different timescales. Chemical analyses of cuticular hydrocarbons and phylogenetic analyses of mitochondrial and nuclear genes showed clear separation between the species, suggesting they diverged following vicariance events in the Late Miocene. However, the presence of intermediate chemical profiles and mtDNA introgression in some Spanish colonies suggests ongoing gene flow. The current genetic structure of Iberian populations is consistent with alternating isolation and dispersal events during Quaternary glacial periods. Analyses of population genetic structure revealed postglacial colonization routes from southern Spain to France, where populations underwent strong genetic bottlenecks after traversing the Pyrenees resulting in parapatric speciation.  相似文献   

14.
The extant taxa of central and northern Europe are commonly believed to derive from Pleistocene ancestors, who moved to the north from three separate glacial refugia: the Iberian and Italian peninsulae, as well as the southern Balkans. The issue of postglacial dispersal patterns was addressed through the investigation of population structure and phylogeography of the European roe deer, Capreolus capreolus . The genetic diversity in 376 individuals representing 14 allegedly native populations across their European range was assessed, using ten autosomal microsatellite loci and restriction fragment length polymorphisms of the mitochondrial D-loop and NADH dehydrogenase 1 gene segments. Our results suggest the existence of three major genetic lineages of roe deer in Europe. One comprises populations in the south-western limit of the species' distribution (i.e. Iberia), where an internal substructure splits a northern from a southern sublineage. A second lineage includes populations of southern and eastern Europe, as well as a separate sublineage sampled in central-southern Italy, where the existence of the subspecies Capreolus c. italicus was supported. In central-northern Europe, a third lineage is present, which appeared genetically rather homogeneous, although admixed, and equally divergent from both the eastern and western lineages. Current patterns of intraspecific genetic variation suggest that postglacial recolonization routes of this cervid to northern Europe could be due to range expansion from one or more refugia in central-eastern Europe, rather than proceeding from the Mediterranean areas.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 88 , 85–100.  相似文献   

15.
  • Calcareous grasslands belong to the most species‐rich and endangered habitats in Europe. However, little is known about the origin of the species typically occurring in these grasslands. In this study we analysed the glacial and post‐glacial history of Sanguisorba minor, a typical plant species frequently occurring in calcareous grasslands.
  • The study comprised 38 populations throughout the whole distribution range of the species across Europe. We used molecular markers (AFLP) and applied Bayesian cluster analysis as well as spatial principal components analysis (sPCA) to identify glacial refugia and post‐glacial migration routes to Central Europe.
  • Our study revealed significant differences in the level of genetic variation and the occurrence of rare fragments within populations of S. minor and a distinct separation of eastern and western lineages. The analyses uncovered traditional southern but also cryptic northern refugia and point towards a broad fronted post‐glacial recolonisation.
  • Based on these results we postulate that incomplete lineage sorting may have contributed to the detected pattern of genetic variation and that S. minor recolonised Central Europe post‐glacially from Iberia and northern glacial refugia in France, Belgium or Germany. Our results highlight the importance of refugial areas for the conservation of intraspecific variation in calcareous grassland species.
  相似文献   

16.
Eurasia is a large continent characterized by heterogeneous environments. Glacial cycles during the late Pleistocene have had variable impacts on the avifauna across Eurasia. Bird populations from South‐East Asia show stability through the Last Glacial Maximum (LGM), while populations from Europe exhibit evidence of post‐LGM expansion. We investigated the phylogeography of the Long‐tailed Tit (Aegithalos caudatus), which spans the longitudinal breadth of Eurasia to test how climatic history and regional topographical complexity affected populations and diversification within the species complex. Our results show that two lineages from central and southern China (lineages C and D) segregate geographically, while lineages across northern Eurasia (lineage A and B) show substantial sympatry. Bayesian estimates for the timing of diversification suggest that the four lineages diverged during the middle Pleistocene, splitting in parallel and undergoing concurrent demographic histories since divergence. A. caudatus lineages experienced similar and synchronous population size dynamics during glacial cycles before the LGM. We conclude that the difference in geo‐topologic complexity may be an important factor that led to the variation in secondary admixture between northern Eurasian and eastern Asian lineages.  相似文献   

17.
Understanding the impact of postglacial recolonization on genetic diversity is essential in explaining current patterns of genetic variation. The central–marginal hypothesis (CMH) predicts a reduction in genetic diversity from the core of the distribution to peripheral populations, as well as reduced connectivity between peripheral populations. While the CMH has received considerable empirical support, its broad applicability is still debated and alternative hypotheses predict different spatial patterns of genetic diversity. Using microsatellite markers, we analysed the genetic diversity of the adder (Vipera berus) in western Europe to reconstruct postglacial recolonization. Approximate Bayesian Computation (ABC) analyses suggested a postglacial recolonization from two routes: a western route from the Atlantic Coast up to Belgium and a central route from the Massif Central to the Alps. This cold‐adapted species likely used two isolated glacial refugia in southern France, in permafrost‐free areas during the last glacial maximum. Adder populations further from putative glacial refugia had lower genetic diversity and reduced connectivity; therefore, our results support the predictions of the CMH. Our study also illustrates the utility of highly variable nuclear markers, such as microsatellites, and ABC to test competing recolonization hypotheses.  相似文献   

18.
Changes in climate conditions, particularly during the Quaternary climatic oscillations, have long been recognized to be important for shaping patterns of species diversity. For species residing in the western Palearctic, two commonly observed genetic patterns resulting from these cycles are as follows: (1) that the numbers and distributions of genetic lineages correspond with the use of geographically distinct glacial refugia and (2) that southern populations are generally more diverse than northern populations (the “southern richness, northern purity” paradigm). To determine whether these patterns hold true for the widespread pest species the winter moth (Operophtera brumata), we genotyped 699 individual winter moths collected from 15 Eurasian countries with 24 polymorphic microsatellite loci. We find strong evidence for the presence of two major genetic clusters that diverged ~18 to ~22 ka, with evidence that secondary contact (i.e., hybridization) resumed ~ 5 ka along a well‐established hybrid zone in Central Europe. This pattern supports the hypothesis that contemporary populations descend from populations that resided in distinct glacial refugia. However, unlike many previous studies of postglacial recolonization, we found no evidence for the “southern richness, northern purity” paradigm. We also find evidence for ongoing gene flow between populations in adjacent Eurasian countries, suggesting that long‐distance dispersal plays an important part in shaping winter moth genetic diversity. In addition, we find that this gene flow is predominantly in a west‐to‐east direction, suggesting that recently debated reports of cyclical outbreaks of winter moth spreading from east to west across Europe are not the result of dispersal.  相似文献   

19.
Here, palaeobotanical and genetic data for common beech (Fagus sylvatica) in Europe are used to evaluate the genetic consequences of long-term survival in refuge areas and postglacial spread. Four large datasets are presented, including over 400 fossil-pollen sites, 80 plant-macrofossil sites, and 450 and 600 modern beech populations for chloroplast and nuclear markers, respectively. The largely complementary palaeobotanical and genetic data indicate that: (i) beech survived the last glacial period in multiple refuge areas; (ii) the central European refugia were separated from the Mediterranean refugia; (iii) the Mediterranean refuges did not contribute to the colonization of central and northern Europe; (iv) some populations expanded considerably during the postglacial period, while others experienced only a limited expansion; (v) the mountain chains were not geographical barriers for beech but rather facilitated its diffusion; and (vi) the modern genetic diversity was shaped over multiple glacial-interglacial cycles. This scenario differs from many recent treatments of tree phylogeography in Europe that largely focus on the last ice age and the postglacial period to interpret genetic structure and argue that the southern peninsulas (Iberian, Italian and Balkan) were the main source areas for trees in central and northern Europe.  相似文献   

20.
The systematic structure and postglacial population history of the freshwater amphipod Gammarus lacustris were explored in an allozyme survey of 65 populations across Northern Europe. A strong multilocus pattern of differentiation discriminated populations of the north‐east (north‐eastern Norway, northern Finland) from those in the west and the south (southern and central Scandinavia, Denmark, Poland). This principal division is attributed to postglacial colonization of the area by two main refugial races or lineages, one from the east (Russia), the other from the south (north‐western European continent). The strongly diverged Eastern and Western races (Nei's D= 0.3, from 22 loci) now meet in a secondary contact zone across a narrow sector of northernmost Norway. Genetic population compositions in this zone vary in a mosaic pattern, and show no evidence of reproductive incompatibility. Similar contacts of eastern and western lineages, far older than the latest glaciation, are now known from a number of taxa and they constitute a general pattern in Fennoscandian phylogeography. Within the Western Gammarus race, the populations through coastal north‐western Norway are further distinguished from those in southern Scandinavia and Denmark by a set of unique alleles at high frequencies (D = 0.12). This suggests an independent early colonization of the coastal region by another distinct stock, either along an early deglaciated coastal corridor from the south‐west, or directly from the ice‐free continental shelf off the Norwegian coast – a hypothesis that has also previously been presented for G. lacustris, and parallels controversial suggestions of local refugia for other taxa in Scandinavia. The coastal population type only later could come into contact with Gammarus invading over the mountains from the south; these two population types now smoothly intergrade. © 2003 The Linnean Society of London, Biological Journal of the Linnean Society, 2003, 79, 523–542.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号