首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The orir petite mutants of Saccharomyces cerevisiae show a very low level of suppressivity (5-12%; suppressivity is the percentage of diploid petites issued from a cross of the parental haploid petite with a wild-type cell), indicating a poor replication efficiency of their mitochondrial genome. The latter is made up of repeat units containing two inverted ori sequences and arranged as tandem pairs in inverted orientation relative to their nearest neighbors. After subcloning orir petites or crossing with wild-type cells a large number of ori+ petites are found in the progeny. In contrast to the orir petites, from which they are derived, these ori+ petites are characterized by high suppressivity levels (approx. 90%) and contain mitochondrial genomes made up of tandem repeat units containing single ori sequences. The structural changes underlying the orir to ori+ mutation are therefore accompanied by a dramatic increase in suppressivity, indicating that the elimination of inverted ori sequences causes a drastic change from very poor to very good replicative efficiency in the mitochondrial genome. Finally, crosses of ori0 petites with wild-type cells were also studied; the results obtained have clarified the reasons for the high frequency of petites having genomes similar to those of orir petites after mutagenesis with ethidium bromide.  相似文献   

2.
We have investigated the mitochondrial genome of eight ori-zero spontaneous petite mutants of Saccharomyces cerevisiae. The tandem repeat units of these genomes do not contain any of the seven canonical ori sequences of the wild-type genome. Instead, they contain one, or more, ori-S sequences. These 44-nucleotide long surrogate origins of replication are a subset of GC clusters characterized by a potential secondary fold with two sequences ATAG and GGAG , inserted in AT spacers, two AT base pairs just following them, a GC stem (broken in the middle, and, in most cases also near the base, by non-paired nucleotides), and a terminal loop. This structure is reminiscent of that of GC clusters A and B from canonical ori sequences and supports the view (Bernardi, 1982a ) that the GC clusters of the mitochondrial genome arose, by an expansion process, from the canonical ori sequences. Like the latter, ori-S sequences are present in both orientations, are located in intergenic regions, and can be used as excision sequences when tandemly oriented. Again as in the case of canonical ori sequences, the density of ori-S sequences on the repeat units of petite genomes are correlated with the replication efficiency of the latter, as assessed by the outcome of crosses with wild-type or petite tester strains.  相似文献   

3.
Inverted repeats have been found to occur in both prokaryotic and eukaryotic genomes. Usually they are short and some have important functions in various biological processes. However, long inverted repeats are rare and can cause genome instability. Analyses of C. elegans genome identified long, nearly-perfect inverted repeat sequences involving both divergently and convergently oriented homologous gene pairs and complete intergenic sequences. Comparisons with the orthologous regions from the genomes of C. briggsae and C. remanei show that the inverted repeat structures are often far more conserved than the sequences. This observation implies that there is an active mechanism for maintaining the inverted repeat nature of the sequences.  相似文献   

4.
F Sor  H Fukuhara 《Cell》1983,32(2):391-396
In the rho- mutants of yeast, the mitochondrial genome is made up of a small segment excised from the wild-type mitochondrial DNA. The segment is repeated either in tandem or in palindrome to form a series of multimeric DNAs. We have asked how the palindromic organization arises. From several palindromic rho- mitochondrial DNAs, we have isolated the restriction fragments that contained the head-to-head or tail-to-tail junction of the repeating units, and have determined their nucleotide sequences. We found that the palindromes were not symmetrical right up to the junction points: at the junction, there was always an asymmetrical sequence of variable length. At both ends of this junction sequence, we found inverted oligonucleotide sequences that were variable in each mutant and that were present in the wild-type DNA. At the moment of excision, a single-strand cut seems to occur at each of these short inverted repeats, in such a way that the two complementary strands of the genome are cut unequally and the single-stranded overhangs become the junction sequences between the palindromic repeating units. This scheme may account for the complex structures of many rho- mitochondrial DNAs.  相似文献   

5.
In this work, the mitochondrial genomes for spotted halibut (Verasper variegatus) and barfin flounder (Verasper moseri) were completely sequenced. The entire mitochondrial genome sequences of the spotted halibut and barfin flounder were 17,273 and 17,588 bp in length, respectively. The organization of the two mitochondrial genomes was similar to those reported from other fish mitochondrial genomes containing 37 genes (2 rRNAs, 22 tRNAs and 13 protein-coding genes) and two non-coding regions (control region (CR) and WANCY region). In the CR, the termination associated sequence (ETAS), six central conserved block (CSB-A,B,C,D,E,F), three conserved sequence blocks (CSB1-3) and a region of 61-bp tandem repeat cluster at the end of CSB-3 were identified by similarity comparison with fishes and other vertebrates. The tandem repeat sequences show polymorphism among the different individuals of the two species. The complete mitochondrial genomes of spotted halibut and barfin flounder should be useful for evolutionary studies of flatfishes and other vertebrate species.  相似文献   

6.
Functional & Integrative Genomics - Microsatellites (SSRs) are tandem repeat sequences in eukaryote genomes, including plant cytoplasmic genomes. The mitochondrial genome (mtDNA) has been shown...  相似文献   

7.
The terminal structure of the linear mitochondrial DNA (mtDNA) from the yeast Candida parapsilosis was investigated. This mtDNA, 30 kb long, has symmetrical ends forming inverted terminal repeats. These repeats are made up of a variable number of tandemly repeating units of 738 by each; the terminal nucleotide corresponds to a precise position within the last repeat unit sequence. The ends had an open structure accessible to enzymes, with a 5 single-stranded extension of about 110 nucleotides. No circular forms were detected in the DNA preparations. Two other unrelated species, Pichia philodendra and Candida salmanticensis also appear to have a linear mtDNA of similar organization. These linear DNAs (which we name Type 2 linear mtDNAs) are distinct from the previously described linear mtDNAs of yeasts whose termini are formed by a closed hairpin loop (Type 1 linear mtDNA). The terminal structure of C. parapsilosis mtDNA is reminiscent of the linear mitochondrial genomes of the ciliate Tetrahymena although, in the latter, the telomeric tandem repeat unit is considerably shorter.  相似文献   

8.
Virions of human Epstein-Barr virus released from the B95-8 line of marmoset lymphoblasts have linear double-stranded DNA molecules of 115 x 10(6) molecular weight (180 +/- 10 kilobase pairs). Approximately 20% of this DNA yields multiple fragments of 3,200 base pairs when cleaved with any one of the BglII, BamHI, PvuII, SacI, SstII, or XhoI restriction enzymes. The results of cleavage site mapping with these and other enzymes, together with blot hybridization experiments using the 3.2-kilobase pair BglII-R fragment as a probe, indicate that these fragments originate from an internal region between 0.710 and 0.915 map units containing a cluster of at least 12 apparently identical repetitions of a sequence with relatively high guanine plus cytosine content. The repeat units are arranged in adjacent tandem array with all copies having the same orientations, and they form a series of oligomers of tailed double-stranded circles when fragments containing portions of the cluster are denatured and reannealed. Physical maps of cleavage sites within the 3.2-kilobase pair repeat units and in the flanking sequences surrounding the repeat cluster have been constructed. We conclude that the Epstein-Barr virus DNA molecule, like those of other mammalian herpesviruses, may be regarded as being divisible into a large L segment and a smaller S segment. However, the detailed arrangement of repetitive sequences within the Epstein-Barr virus S segment differs significantly from that in all other herpesvirus genomes described so far.  相似文献   

9.
The sinipercids are a group of 12 species of freshwater percoid fish endemic to East Asia and their phylogenetic placements have perplexed generations of taxonomists. We cloned and sequenced the complete mitochondrial DNA (mtDNA) of three sinipercid fishes (Siniperca chuatsi, S. kneri, and S. scherzeri) to characterize and compare their mitochondrial genomes. The mitochondrial genomes of S. chuatsi, S. kneri, and S. scherzeri were 16,496, 17,002, and 16,585?bp in length, respectively. The organization of the three mitochondrial genomes is similar to those reported from other fish mitochondrial genomes, which contains 37 genes (13 protein-coding genes, 2 ribosomal RNAs, and 22 transfer RNAs) and a major non-coding control region. Among the 13 protein-coding genes of all the three sinipercid fishes, three reading-frame overlaps were found on the same strand. There is an 81-bp tandem repeat cluster at the end of CSB-3 in the S. scherzeri control region. The complete mitochondrial genomes of the three sinipercids should be useful for the evolutionary studies of sinipercids and other vertebrate species.  相似文献   

10.
Pornillos O  Chang G 《FEBS letters》2006,580(2):358-362
With the upsurge in known membrane protein structures, common structural themes have started to emerge. One of these is the inverted repeat, a tandem of alpha-helical domains that have similar tertiary folds but opposite membrane orientations. In all previously known examples, both repeat units were encoded in a single continuous polypeptide. Recent structures of a bacterial multidrug transporter, EmrE, revealed an inverted repeat membrane protein wherein the two repeat units are assembled from two polypeptides with the same primary sequence. Here, we speculate on some of the implications of the EmrE structure with regards to our understanding of membrane protein evolution and topogenesis.  相似文献   

11.
J D Palmer  W F Thompson 《Cell》1982,29(2):537-550
We examined the arrangement of sequences common to seven angiosperm chloroplast genomes. The chloroplast DNAs of spinach, petunia and cucumber are essentially colinear. They share with the corn chloroplast genome a large inversion of approximately 50 kb relative to the genomes of three legumes--mung bean, pea and broad bean. There is one additional rearrangement, a second, smaller inversion within the 50 kb inversion, which is specific to the corn genome. These two changes are the only detectable rearrangements that have occurred during the evolution of the species examined (corn, spinach, petunia, cucumber and mung bean) whose chloroplast genomes contain a large inverted repeat sequence of 22-25 kb. In contrast, we find extensive sequence rearrangements in comparing the pea and broad bean genomes, both of which have deleted one entire segment of the inverted repeat, and also in comparing each of these to the mung bean genome. Thus there is a relatively stable arrangement of sequences in those genomes with the inverted repeat and a much more dynamic arrangement in those that have lost it. We discuss several explanations for this correlation, including the possibility that the inverted repeat may play a direct role in maintaining a conserved arrangement of chloroplast DNA sequences.  相似文献   

12.

Background

Halibuts are commercially important flatfish species confined to the North Pacific and North Atlantic Oceans. We have determined the complete mitochondrial genome sequences of four specimens each of Atlantic halibut (Hippoglossus hippoglossus), Pacific halibut (Hippoglossus stenolepis) and Greenland halibut (Reinhardtius hippoglossoides), and assessed the nucleotide variability within and between species.

Results

About 100 variable positions were identified within the four specimens in each halibut species, with the control regions as the most variable parts of the genomes (10 times that of the mitochondrial ribosomal DNA). Due to tandem repeat arrays, the control regions have unusually large sizes compared to most vertebrate mtDNAs. The arrays are highly heteroplasmic in size and consist mainly of different variants of a 61-bp motif. Halibut mitochondrial genomes lacking arrays were also detected.

Conclusion

The complexity, distribution, and biological role of the heteroplasmic tandem repeat arrays in halibut mitochondrial control regions are discussed. We conclude that the most plausible explanation for array maintenance includes both the slipped-strand mispairing and DNA recombination mechanisms.  相似文献   

13.
Repeat units, widespread in eukaryotic genomes, are often partially or entirely built up of subrepeats. Homogenization between whole repeat units arranged in tandem usually can best be understood as a result of unequal crossing over. Such a mechanism is less plausible for maintaining similarities between subrepeats within a repeat unit when present in a regular array. In Chironomus telomeres, large blocks of tandemly repeated approximately 350 base-pair units contain two or three pairs of subrepeats with high mutual identities, embedded in linker DNA, non-repetitive within the repeat unit. Measurements of evolutionary base changes in two closely related species, Chironomus tentans and Chironomus pallidivittatus, permit us to conclude that the subrepeat arrangement is best explained as a consequence of regional sequence conservation after an earlier duplication of an ancestral half-unit.  相似文献   

14.
Genome organization of herpesvirus aotus type 2.   总被引:2,自引:1,他引:1       下载免费PDF全文
Herpesvirus aotus type 2, a virus commonly found in owl monkeys without overt disease, has a similar genome structure to the oncogenic herpesviruses of nonhuman primates (herpesvirus saimiri, herpesvirus ateles). Virion DNA of herpesvirus aotus type 2 (M-DNA) has an unique 110-kilobase-pair region of low G + C content (40.2%, L-DNA), inserted between stretches of repetitive H-DNA (68.7% G + C, about 41 kilobase pairs per molecule) that are variable in length. A minority of virions contain defective genomes that consist of repetitive H-DNA only. The H-DNA is composed of various types of repeat units that are related in sequence with each other. The two dominant types of repeats (2.3 and 2.7 kilobase pairs) were cloned and compared by restriction enzyme cleavages and partial nucleotide sequencing. They are homologous in at least 1.3 kilobase pairs. The two forms of repeat units are randomly arranged and oriented in tandem. Reassociation kinetics did not allow detection of sequence homologies between H- and L-DNA of herpesvirus aotus type 2 and the respective sequences of oncogenic primate herpesviruses.  相似文献   

15.
The scallop Placopecten magellanicus has the largest reported animal mitochondrial DNA (average 35 kb) and exhibits large inter- and intraindividual length variation owing to the varying copy number of a repeated element. We have characterized the repeat array by using restriction mapping and sequence analysis. The repeated element consists of 1,442 bp flanked on either side by the sequence ACTTTCC in a direct orientation. The array contains two to eight copies of the repeated element arranged in a direct orientation and in tandem. Only complete copies of the element are present in the array. The repeat element contains three regions with characteristic nucleotide sequences: a 10-bp inverted repeat shown to extrude into a cruciform in a supercoiled DNA plasmid, a 120-bp tract rich in G/C (70%) and adjacent to the inverted repeat, and periodically interspersed homopolymer runs of A and T occurring near the middle of the element which induce DNA curvature in dimeric constructs of the element. The element appears to be unique to P. magellanicus. The structural properties of the repeat element and its organization in an array of repeats may be important in explaining the generation and maintenance of large-scale mitochondrial DNA size variation observed in many animal species.  相似文献   

16.
In higher eukaryotes, the 5S ribosomal DNA (5S rDNA) is organized in tandem arrays with repeat units composed of a coding region and a non-transcribed spacer sequence (NTS). These tandem arrays can be found on either one or more chromosome pairs. 5S rDNA copies from the tilapia fish, Oreochromis niloticus, were cloned and the nucleotide sequences of the coding region and of the non-transcribed spacer were determined. Moreover, the genomic organization of the 5S rDNA tandem repeats was investigated by fluorescence IN SITU hybridization (FISH) and Southern blot hybridization. Two 5S rDNA classes, one consisting of 1.4-kb repeats and another one with 0.5-kb repeats were identified and designated 5S rDNA type I and type II, respectively. An inverted 5S rRNA gene and a 5S rRNA putative pseudogene were also identified inside the tandem repeats of 5S rDNA type I. FISH permitted the visualization of the 5S rRNA genes at three chromosome loci, one of them consisting of arrays of the 5S rDNA type I, and the two others corresponding to arrays of the 5S rDNA type II. The two classes of the 5S rDNA, the presence of pseudogenes, and the inverted genes observed in the O. niloticus genome might be a consequence of the intense dynamics of the evolution of these tandem repeat elements.  相似文献   

17.
Cheung AK 《Journal of virology》2004,78(17):9016-9029
Palindromic sequences (inverted repeats) flanking the origin of DNA replication with the potential of forming single-stranded stem-loop cruciform structures have been reported to be essential for replication of the circular genomes of many prokaryotic and eukaryotic systems. In this study, mutant genomes of porcine circovirus with deletions in the origin-flanking palindrome and incapable of forming any cruciform structures invariably yielded progeny viruses containing longer and more stable palindromes. These results suggest that origin-flanking palindromes are essential for termination but not for initiation of DNA replication. Detection of template strand switching in the middle of an inverted repeat strand among the progeny viruses demonstrated that both the minus genome and a corresponding palindromic strand served as templates simultaneously during DNA biosynthesis and supports the recently proposed rolling-circle "melting-pot" replication model. The genome configuration presented by this model, a four-stranded tertiary structure, provides insights into the mechanisms of DNA replication, inverted repeat correction (or conversion), and illegitimate recombination of any circular DNA molecule with an origin-flanking palindrome.  相似文献   

18.
Electron microscopic analysis of reassociated deoxyribonucleic acid (DNA) from the aquatic fungus Achlya bisexualis revealed details of the sequence arrangement of the inverted repeats and both the highly and moderately repetitive sequence clusters. We used the gene 32 protein-ethidium bromide technique for visualizing the DNA molecules, a procedure which provides excellent contrast between single- and double-stranded DNA regions. Long (greater than 6-kilobase) DNA fragments were isolated after reannealing to two different repetitive C0t values, and the renatured structures were then visualized in an electron microscope. Our results showed that the inverted repeat sequences were short (0.5 kilobase, number-average) and separated by nonhomologous DNA of various lengths. These pairs of sequences were not clustered within the genome. Both highly repetitive and moderately repetitive DNA sequences were organized as tandem arrays of precisely paired, regularly repeating units. No permuted clusters of repeating sequences were observed, nor was there evidence of interspersion of repetitive with single-copy DNA sequences in the Achlya genome.  相似文献   

19.
Interactions between the termini of adeno-associated virus DNA   总被引:10,自引:0,他引:10  
  相似文献   

20.
Gene order and content differ among homologous regions of closely related genomes. Similarities in the expression profiles of physically adjacent genes suggest that the proper functioning of these genes depends on maintaining a specific position relative to each other. To better understand the results of the interaction of these two genomic forces, convergent, divergent, and tandem gene pairs in rice and sorghum, as well as their homologs in rice, sorghum, maize, and Brachypodium were analyzed. The status of each pair in all four species: whether it was conserved, inverted, rearranged, or missing homologs was determined. We observed that divergent gene pairs had lower rates of conservation than convergent or tandem pairs, but higher rates of rearranged pairs and missing homologs in maize than in any other species. We also discovered species-specific gene pairs in rice and sorghum. In rice, gene pairs with strongly correlated expression levels were conserved significantly more often than those with little or no correlation. We assigned three types of gene pair to one of 14 possible evolutionary history categories to uncover their evolutionary dynamics during the evolution of grass genomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号