首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Over-expression of chloroplastic glycerol-3-phosphate acyltransferase gene (LeGPAT) increased unsaturated fatty acid contents in phosphatidylglycerol (PG) of thylakoid membrane in tomato. The effect of this increase on the xanthophyll cycle and chloroplast antioxidant enzymes was examined by comparing wild type (WT) tomato with the transgenic (TG) lines at chilling temperature (4 °C) under low irradiance (100 μmol m−2 s−1). Net photosynthetic rate and the maximal photochemical efficiency of photosystem (PS) 2 (Fv/Fm) in TG plants decreased more slowly during chilling stress and Fv/Fm recovered faster than that in WT plants under optimal conditions. The oxidizable P700 in both WT and TG plants decreased during chilling stress under low irradiance, but recovered faster in TG plants than in the WT ones. During chilling stress, non-photochemical quenching (NPQ) and the de-epoxidized ratio of xanthophyll cycle in WT plants were lower than those of TG tomatoes. The higher activities of superoxide dismutase (SOD) and ascorbate peroxidase (APX) in TG plants resulted in the reduction of O2 −· and H2O2 contents during chilling stress. Hence the increase in content of unsaturated fatty acids in PG by the over-expression of LeGPAT could alleviate photoinhibition of PS2 and PS1 by improving the de-epoxidized ratio of xanthophyll cycle and activities of SOD and APX in chloroplast.  相似文献   

2.
A chloroplast-localized tomato ( Lycopersicon esculentum Mill.) glycerol-3-phosphate acyltransferase (LeGPAT) gene was isolated. The antisense tomato plants were got under the control of the caulifower mosaic virus 35S promoter (35S-CaMV). RNA gel blot analysis confirmed that the expression of LeGPAT was inhibited in the tomato genome. The depletion of LeGPAT caused a massive arrest in pollen development. It also increased the size of tapetal cells, delayed tapetum degeneration, reduced ER membrane biogenesis and altered oil body size. Results therefore suggested that LeGPAT played a crucial role in pollen development. There was, however, no effect on the ovule. The depletion of LeGPAT also increased the saturation of phosphatidylglycerol (PG) fatty acids in thylakoid membranes. Increase of PG-saturated fatty acids was helpful in alleviating photoinhibition of PSII in tomato plants under heat stress.  相似文献   

3.
In transgenic (TG) tomato (Lycopersicon esculentum Mill.) overexpressed ω-3 fatty acid desaturase gene (LeFAD7) was identified, which was controlled by the cauliflower mosaic virus 35S promoter and induced increased contents of unsaturated fatty acids in thylakoid membrane. Under chilling stress at low irradiance (4 °C, 100 μmol m−2 s−1) TG plants with higher linolenic acids (18: 3) content maintained a higher O2 evolution rate, oxidizable P700 content, and maximal photochemical efficiency (Fv/Fm) than wild type (WT) plants. Low temperature treatment for 6 h resulted in extensive changes of chloroplast ultrastructure: in WT plants most chloroplasts became circular, the number of amyloids increased, appressed granum stacks were dissolved, grana disappeared, and the number of grana decreased, while only a few grana were found in leaves of TG plants. Hence the overexpression of LeFAD7 could increase the content of 18: 3 in thylakoid membrane, and this increase alleviated the photoinhibition of photosystem (PS) 1 and PS2 under chilling at low irradiance.  相似文献   

4.
A tomato (Lycopersicon esculentum Mill.) zeaxanthin epoxidase gene (LeZE) was isolated and antisense transgenic tomato plants were produced. Northern, southern, and western blot analyses demonstrated that antisense LeZE was transferred into the tomato genome and the expression of LeZE was inhibited. The ratio of (A+Z)/(V+A+Z) in antisense transgenic plants was maintained at a higher level than in the wild type (WT) plants under high light and chilling stress with low irradiance. The value of non-photochemical quenching (NPQ) in WT and transgenic plants was not affected during the stresses. The oxidizable P700 and the maximal photochemical efficiency of PSII (Fv/Fm) in transgenic plants decreased more slowly at chilling temperature under low irradiance. These results suggested that suppression of LeZE caused zeaxanthin accumulation, which was helpful in alleviating photoinhibition of PSI and PSII in tomato plants under chilling stress.  相似文献   

5.
Sun XL  Yang S  Wang LY  Zhang QY  Zhao SJ  Meng QW 《Plant cell reports》2011,30(10):1939-1947
Over-expression of chloroplast glycerol-3-phosphate acyltransferase gene (LeGPAT) in tomato increased cis-unsaturated fatty acid content in phosphatidylglycerol (PG) of the thylakoid membrane. Under chilling stress, the oxygen evolving activity, the maximal photochemical efficiency of PSII (F v/F m), and superoxide dismutase (SOD) and ascorbate peroxidase (APX) activities decreased less in sense lines than in antisense lines compared to wild-type (WT) plants. Consistently, the relative electric conductivity, \textO2 . - {\text{O}}_{2} ^{{. - }} and H2O2 contents in sense lines were lower than those of WT and antisense lines. The antisense lines with low level of unsaturated fatty acids in PG were extremely susceptible to photoinhibition of PSII and had a significant reduction in the D1 protein content of PSII reaction center under chilling stress. However, in the presence of streptomycin (SM), the degradation of D1 protein was faster in sense lines than in WT and antisense plants. These results suggested that, under chilling stress conditions, increasing cis-unsaturated fatty acids in PG through over-expression of LeGPAT can alleviate PSII photoinhibition by accelerating the repair of D1 protein and improving the activities of antioxidant enzymes in chloroplasts.  相似文献   

6.
7.
A tomato (Lycopersicon esculentum Mill.) monodehydroascorbate reductase gene (LeMDAR) was isolated. The LeMDAR–green fluorescence protein (GFP) fusion protein was targeted to chloroplast in Arabidopsis mesophyll protoplast. RNA and protein gel blot analyses confirmed that the sense‐ and antisense‐ LeMDAR were integrated into the tomato genome. The MDAR activities and the levels of reduced ascorbate (AsA) were markedly increased in sense transgenic lines and decreased in antisense transgenic lines compared with wild‐type (WT) plants. Under low and high temperature stresses, the sense transgenic plants showed lower level of hydrogen peroxide (H2O2), lower thiobarbituric acid reactive substance (TBARS) content, higher net photosynthetic rate (Pn), higher maximal photochemical efficiency of PSII (Fv/Fm) and fresh weight compared with WT plants. The oxidizable P700 decreased more obviously in WT and antisense plants than that in sense plants at chilling temperature under low irradiance. Furthermore, the sense transgenic plants exhibited significantly lower H2O2 level, higher ascorbate peroxidase (APX) activity, greater Pn and Fv/Fm under methyl viologen (MV)‐mediated oxidative stresses. These results indicated that overexpression of chloroplastic MDAR played an important role in alleviating photoinhibition of PSI and PSII and enhancing the tolerance to various abiotic stresses by elevating AsA level.  相似文献   

8.
Overexpression of chloroplastic glycerol-3-phosphate acyltransferase gene (LeGPAT) in tomato increased cis-unsaturated fatty acid content in phosphatidylglycerol (PG) of thylakoid membrane. By contrast, suppressing the expression of LeGPAT decreased the content of cis-unsaturated fatty acid in PG. Under salt stress, sense transgenic plants exhibited higher activities of chloroplastic antioxidant enzymes, lower content of reactive oxygen species (ROS) and less ion leakage compared with the wild type (WT) plants. The net photosynthetic rate (P N) and the maximal photochemical efficiency (Fv/Fm) of photosystem II (PSII) decreased more slightly in sense lines but more markedly in the antisense ones, compared to WT. D1 protein, located in the reactive center of the PSII, is the primary target of photodamage and has the highest turnover rate in the chloroplast. Under salt stress, compared with WT, the content of D1 protein decreased slightly in sense lines and significantly in the antisense ones. In the presence of streptomycin (SM), the net degradation of the damaged D1 protein was faster in sense lines than in other plants. These results suggested that, under salt-stress conditions, increasing cis-unsaturated fatty acids in PG by overexpression of LeGPAT can alleviate PSII photoinhibition by accelerating the repair of D1 protein and improving the activity of antioxidant enzymes in chloroplasts.  相似文献   

9.
An endoplasmic reticulum-localized tomato omega-3 fatty acid desaturase gene (LeFAD3) was isolated and characterized with regard to its sequence, response to various temperatures and function in transgenic tomato plants. Northern blot analysis showed that LeFAD3 was expressed in all organs tested and was markedly abundant in roots. Meanwhile, the expression of LeFAD3 was induced by chilling stress (4 °C), but inhibited by high temperature (40 °C). The transgenic plants were obtained under the control of the cauliflower mosaic virus 35S promoter (35S-CaMV). Northern and western blot analyses confirmed that sense LeFAD3 was transferred into tomato genome and overexpressed. Level of linolenic acids (18:3) increased and correspondingly level of linoleic acid (18:2) decreased in leaves and roots. After chilling stress, the fresh weight of the aerial parts of transgenic plants was higher than that of the wild type (WT) plants, and the membrane system ultrastructure of chloroplast in leaf cell and all the subcellular organelles in root tips of transgenic plants kept more intact than those of WT. Relative electric conductivity increased less in transgenic plants than that in WT, and the respiration rate of the transgenic plants was notably higher than that of WT. The maximal photochemical efficiency of PSII (Fv/Fm) and the O2 evolution rate in WT decreased more than those in transgenic plants under chilling stress. Together with other data, results showed that the overexpression of LeFAD3 led to increased level of 18:3 and alleviated the injuries under chilling stress.  相似文献   

10.
Polygalacturonase (PG, EC 3.2.1.15), an enzyme commonly found in ripening fruit, has also been shown to be associated with abscission. A zone-specific rise in PG activity accompanies the abscission of both leaves and flowers of tomato (Lycopersicon esculentum Mill.) plants. Studies of transgenic plants expressing an antisense RNA for fruit PG indicate that although the enzyme activity in transgenic fruit is < 1 % of that in untransformed fruit, the PG activity in the leaf abscission zone increases during separation to a similar value to that in untransformed plants. The timing and rate of leaf abscission in transgenic plants are unaffected by the introduction of the antisense gene. A polyclonal antibody raised against tomato fruit PG does not recognise the leaf abscission protein. Furthermore a complementary DNA (cDNA) clone (pTOM6), which has been demonstrated to code for fruit PG, does not hybridise to mRNA isolated from the abscission-zone region of tomato leaves. These results indicate that the PG protein in abscission zones of tomato is different from that in the fruit, and that the gene coding for this protein may also be different.Abbreviation PG polygalacturonase The authors of this paper are grateful to David Jackson of the John Innes Institute, Norwich, UK for his assistance with the in-situ hybridisation work. This research was supported by an Agricultural and Food Research Council Post-Doctoral award to J.E.T., and by a grant to D.G. from the Science and Engineering Research Council Biotechnology Directorate in association with ICI seeds. The work was carried out under Ministry of Agriculture, Food and Fisheries licences.  相似文献   

11.
Wang N  Fang W  Han H  Sui N  Li B  Meng QW 《Physiologia plantarum》2008,132(3):384-396
A tomato ( Lycopersicon esculentum Mill.) zeaxanthin epoxidase gene ( LeZE ) was isolated. The deduced amino acid sequence of LeZE showed high identities with zeaxanthin epoxidase in other plant species. Northern blot analysis showed that the mRNA accumulation of LeZE in the wild-type (WT) was not induced by light and temperature but regulated by the diurnal rhythm. The sense transgenic plants were obtained under the control of the cauliflower mosaic virus 35S promoter (35S-CaMV). Northern and western blot analysis confirmed that sense LeZE was transferred into the tomato genome and overexpressed. The ratio of (A + Z)/(V + A + Z) and the values of non-photochemical quenching were lower in transgenic plants than in WT plants under high light and chilling stress with low irradiance. The O2 evolution rate and the maximal photochemical efficiency of PSII (Fv/Fm) in transgenic plants decreased more quickly during both stresses and recovered slower than that in WT under optimal conditions. These results suggested that overexpression of LeZE impaired the function of the xanthophyll cycle and aggravated PSII photoinhibition in tomato under high light and chilling stress.  相似文献   

12.
The level of cis-unsaturated fatty acids in phosphatidylglycerol (PG) from rice leaves was genetically altered from 19.3% in the wild-type to 29.4 and 32.0% in T1 plants segregated with cDNAs for glycerol-3-phosphate acyltransferase of chloroplasts (GPAT; EC 2.3.1.15) from Arabidopsis (+AGPAT plant) and spinach (+SGPAT plant), respectively; and to 21.4% in a non-transformant segregated from +SGPAT plants (-SGPAT plant). In all these plants, O2 evolution from leaves was similar at 25 degrees C and was impaired to a similar extent at 5 and 11 degrees C. However, in parallel with the levels of cis-unsaturated fatty acids in PG, +AGPAT and +SGPAT plants showed less impaired rates of O(2) evolution from leaves than the wild-type and -SGPAT plants at 14 and 17 degrees C. In agreement with this, the fresh weight of 14-day-old seedlings increased to 571 + or - 18, 591 + or - 23, 687 + or - 32 and 705 + or - 31 mg in the wild-type, -SGPAT, +AGPAT and +SGPAT plants, respectively, after 6 weeks at 17/14 degrees C (day/night). These results demonstrate the practical importance of the present technology with GPAT in improvement of the chilling sensitivity of crops.  相似文献   

13.
14.
In order to investigate the function of chloroplast ascorbate peroxidase under temperature stress, the thylakoid-bound ascorbate peroxidase gene from tomato leaf (TtAPX) was introduced into tobacco. Transformants were selected for their ability to grow on medium containing kanamycin. RNA gel blot analysis confirmed that TtAPX in tomato was induced by chilling or heat stress. Over-expression of TtAPX in tobacco improved seed germination under temperature stress. Two transgenic tobacco lines showed higher ascorbate peroxidase activity, accumulated less hydrogen peroxide and malondialdehyde than wild type plants under stress condition. The photochemical efficiency of photosystem 2 in the transgenic lines was distinctly higher than that of wild type plants under chilling and heat stresses. Results indicated that the over-expression of TtAPX enhanced tolerance to temperature stress in transgenic tobacco plants.  相似文献   

15.
16.
Li  X.-G.  Meng  Q.-W.  Jiang  G.-Q.  Zou  Q. 《Photosynthetica》2003,41(2):259-265
The photoprotection of energy dissipation and water-water cycle were investigated by comparing chilling sensitivity of photosystems 2 (PS2) and 1 (PS1) in two chilling-sensitive plants, cucumber and sweet pepper, upon exposure to 4 °C under low irradiance (100 μmol m−2 s−1) for 6 h. During chilling stress, the maximum photochemical efficiency of PS2 (Fv/Fm) decreased only slightly in both plants, but the oxidisable P700 decreased markedly, which indicated that PS1 was more sensitive to chilling treatment under low irradiance than PS2. Sweet pepper leaves had lower Fv/Fm, higher non-photochemical quenching (NPQ), and higher oxidisable P700 during chilling stress. Activity of superoxide dismutase (SOD) and ascorbate peroxidase (APX) in cucumber leaves was higher, but APX activity decreased apparently compared to that at room temperature. The productions of active oxygen species (H2O2, O2 ) increased in both plants, faster in cucumber leaves than in sweet pepper leaves. In sweet pepper leaves, a stronger de-epoxidation of the xanthophyll cycle pigments, a higher NPQ could act as a major protective mechanism to reduce the formation of active oxygen species during stress. Thus sensitivity of both plants to chilling under low irradiance was dominated by the protective mechanisms between PS1 and PS2, especially the energy dissipation and the water-water cycle. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
NAC(NAM-ATAF1,2-CUC2)转录因子在植物胁迫响应中起重要作用。为了探讨三舭丹基因在番茄抗低温胁迫中的功能,分离了番茄LeNLP4转录因子基因,并获得转正义LeNLP4基因番茄植株。荧光定量PCR分析表明,LeNLP4的表达受低温诱导。与野生型植株相比,在4℃胁迫下转基因植株具有较高的生长量和光系统II(PSH)最大光化学效率(Fv/Fm)、过氧化氢(H2O2)和超氧阴离子(O2-)清除速率、抗坏血酸过氧化物酶(APX)和超氧化物歧化酶(SOD)活性,以及较低的丙二醛(MDA)含量和相对电导率(REC)。过表达株系中SICBF1的表达高于野生型。上述结果表明,LeNLP4的过表达提高了转基因番茄抗低温胁迫能力。  相似文献   

18.
A cDNA encoding a 1-acyl-sn-glycerol-3-phosphate acyltransferase from Limnanthes douglasii was introduced into oil seed rape (Brassica napus) under the control of a napin promoter. Seed triacylglycerols from transgenic plants were analysed by reversed-phase HPLC and trierucin was detected at a level of 0.4% and 2.8% in two transgenic plants but was not found in untransformed rape seed. Total fatty acid composition analysis of seeds from these selected plants revealed that the erucic acid content was no higher than the maximum found in the starting population. Analysis of fatty acids at the sn-2 position showed no erucic acid in untransformed rape but in the selected transgenic plants 9% (mol/mol) and 28.3% (mol/mol) erucic acid was present. These results conclusively demonstrate that the gene from L. douglasii encodes a 1-acyl-sn-glycerol-3-phosphate acyltransferase which can function in rape and incorporate erucic acid at the sn-2 position of triacylglycerols in seed. Additional modifications may further increase levels of trierucin.  相似文献   

19.

Key message

The overexpression of tomato GDP- l -galactose phosphorylase gene enhanced tolerance to chilling stress and reduced photoinhibition of photosystems I and II in transgenic tobacco.

Abstract

Chilling stress is a crucial factor that limits the geographical distribution and yield of chilling-sensitive plants. Ascorbate (AsA) protects plants by scavenging reactive oxygen species and reduces photoinhibition by promoting the conversion of violaxanthin to zeaxanthin in the xanthophyll cycle to dissipate excess excitation energy. Possible mechanisms of AsA for plant photoprotection under chilling stress were investigated by isolating the tomato GDP-l-galactose phosphorylase gene (SlGGP) and producing transgenic tobacco plants with overexpression of SlGGP. The transgenic plants subjected to chilling stress accumulated less H2O2, demonstrated lower levels of ion leakage and malondialdehyde, and acquired higher net photosynthetic rate, higher maximum photochemical efficiency of PSII, and higher D1 protein content compared with the wild-type (WT) plants. The transgenic plants subjected to chilling stress also showed higher GDP-l-galactose phosphorylase activity, increased AsA content as well as ascorbate peroxidase and oxidizable P700 activities than WT plants. Thus, SlGGP overexpression is crucial in promoting AsA synthesis and alleviating photoinhibition of two photosystems.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号