首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
When delipidated Mr>10,000 cut-off human fetal lung cytosol was separated on gel filtration and ion-exchange chromatography on Auto-FPLC system, two fatty acid-binding proteins (FABPs) of pI 6.9 and pI 5.4 were purified to homogeneity. On Western blotting analysis with the anti-human fetal lung pI 6.9 FABP, these two proteins showed immunochemical cross reactivity with each other and with purified hepatic FABPs but not with cardiac or gut FABP. These two FABPs have identical molecular mass of 15.2 kDa, which is slightly higher than that of the hepatic proteins (14.2 kDa). Carbohydrate covalently linked to FABPs, that may substantially add to the molecular mass, was not detected in the purified protein preparations. Amino acid analysis revealed that both the proteins have same amino acid composition each containing one Trp residue that is lacking in hepatic FABP. Different isoforms of lung FABP exhibited different binding ability for their natural ligands. These proteins bind palmitoyl CoA with higher affinity than oleic acid. pI 6.9 FABP can more rapidly and efficiently transfer fatty acid than can pI 5.4 FABP from unilammelar liposomes. Thus these FABPs may play a critical role in fatty acid transport during human fetal lung development.Abbreviations AO anthroyloxy - 12-AS 12-(9-anthroyloxy)stearic acid - FABP fatty acid-binding protein - NBD-PE [N-(4-nitrobenzo-2-oxa-1,3-diazole)phosphatidylethanolamine - Pal-CoA palmitoyl coenzyme A - PITC phenylisothiocyanate - PBS phosphate-buffered saline - PtdCho phosphatidylcholine - SUV small unilamellar vesicle - Tris tris(hydroxymethyl) amino methane  相似文献   

2.
P T Guidon  L E Hightower 《Biochemistry》1986,25(11):3231-3239
The major rat heat-shock (stress) protein and its cognate were purified to electrophoretic homogeneity from livers of heat-shocked rats. Both proteins exhibited similar behavior on a variety of column chromatography matrices but were separable by preparative isoelectric focusing under nondenaturing conditions by virtue of a 0.2 pH unit difference in isoelectric point. Both purified proteins had similar physical properties, suggesting the possibility that they may have similar biological functions as well. Both proteins were homodimers under nondissociative conditions (Mr 150 000) with isoelectric points of 5.0 (cognate) and 5.2 (major stress protein). After denaturation, both proteins had an increase in isoelectric point of 0.6 pH unit, and the resulting polypeptide chains had apparent molecular weights of 73 000 (cognate) and 71 000 (major stress protein). Similarities in the electrophoretic properties of these two proteins and serum albumin, which also undergoes a large basic shift in isoelectric point due to loss of fatty acids and conformational changes accompanying denaturation, prompted us to search for lipids associated with the purified 71-kilodalton stress protein and its cognate. Thin-layer chromatography of chloroform/methanol extracts of these two proteins revealed nonesterified fatty acids bound to both proteins. Palmitic acid, stearic acid, and a small amount of myristic acid were identified by gas chromatography/mass spectroscopy. Both proteins contained approximately four molecules of fatty acid per dimer with palmitate and stearate present in a one to one molar ratio. Possible roles of the major stress protein and its cognate as fatty acid associated proteins in cellular responses to stress are discussed.  相似文献   

3.
A fatty acid binding protein (FABP) was isolated from bovine mammary cytosol by gel filtration and ion exchange chromatography. Polyacrylamide gel electrophoresis in sodium dodecyl sulfate indicated a mol. wt. of 12,000. Isoelectric focusing showed two bands at pH 5.6 and 5.8. FABP bound long chain fatty acids and their CoA thioesters, but not medium or short chain fatty acids. Affinity constant (Ka) for 18:1 was about 2 micromolar. Endogenously bound fatty acids included 16:0, 18:0 and 18:1, in both covalent and noncovalent association with FABP. Activities of microsomal phosphatidic acid phosphatase, fatty acid:CoA ligase or diacylglycerol acyltransferase were not affected by purified FABP in vitro.  相似文献   

4.
Two fatty acid binding proteins (FABPs) of identicalM r, 13 kDa, have been isolated from developing human fetal brain. A delipidated 105,000 g supernatant was incubated with [1 -14C]oleate and subjected to a Sephacryl S-200 column followed by gel filtration chromatography on a Sephadex G-75 column and ion-exchange chromatography using a DEAE-Sephacel column. Purity was checked by UV spectroscopy, SDS-PAGE, isoelectric focusing and immunological cross-reactivity. The two FABPs designated as DE-I (pI 5.4) and DE-II (pI 6.9) showed cross-reactivity with each other and no alteration at the antigenic site during intrauterine development. Anti-human fetal brain FABP does not cross-react with purified human fetal heart, gut, lung or liver FABPs. The molecular mass of DE-I and DE-II is lower than those of fetal lung and liver FABPs. Like liver FABP, these proteins bind organic anions, fatty acids and acyl CoAs but differ in their binding affinities. Both DE-I and DE-II have been found to exhibit higher affinity for oleate (K d = 0.23 μM) than palmitate (K d = 0.9μM) or palmitoyl-CoA (K d = 0.96 μM), with DE-I binding less fatty acids than DE-II. DE-II is more efficient in transferring fatty acid from phospholipid vesjcles than DE-I indicating that human fetal brain FABPs may play a significant role in fatty acid transport in developing fetal brain.  相似文献   

5.
When a 100,000 X g supernatant from bovine heart was incubated with [1-14C]oleic acid and subjected to isoelectric focusing, two fatty acid binding proteins (FABPs) with isoelectric points at 4.9 and 5.1 were detected. The proteins were purified on a large scale first by heat and acid precipitation of a postmitochondrial supernatant, as well as fractionation with ammonium sulfate, then by alternate application of ion-exchange and gel chromatography. The procedure afforded around 60 mg pure proteins from 1.5 kg fresh heart muscle. Relative molecular masses of 15 300 +/- 1600 for both proteins were derived from sodium dodecyl sulfate/polyacrylamide gel electrophoresis, gel chromatography, sedimentation velocity as well as from amino acid analysis. Up to 50% of the proteins' secondary structures consisted of beta-sheet. N-termini of the peptide chains were blocked; the amino acid compositions of the two proteins were similar, but differed considerably from those of the two FABPs isolated from bovine liver [Haunerland et al. (1984) Hoppe Seyler's Z. Physiol. Chem. 365, 365-376]. Whereas hepatic FABPs changed their pI upon binding fatty acids, cardiac FABPs did not. Cardiac FABPs were immunologically identical, but did not cross-react with hepatic proteins. A reversible, concentration-dependent self-association reported for FABP from pig heart [Fournier et al. (1983) Biochemistry 22, 1863-1872] was not observed for FABP from bovine heart. Changes of concentration did not alter secondary structure, intrinsic fluorescence or the sedimentation coefficient of the protein.  相似文献   

6.
Fatty acid binding proteins (FABPs) may play an important role in the transport and metabolism of fatty acids during human embryogenesis. Three fractions of FABP, namely, DE-I, DE-II and DE-III, having Mr 14,200 Da each and pI values 7.8, 6.9 and 5.4, respectively, have been detected in human fetal liver. These proteins were purified by heat and butanol precipitation of fetal liver supernatant as well as by gel filtration and ion-exchange chromatography. Fetal liver FABPs are immunochemically identical to each other. Concentrations of DE-I, DE-II and DE-III increase gradually from early gestation to term. DE-I is almost lipid-free, DE-II binds long-chain fatty acids nonspecifically and DE-III transports mainly arachidonic acid. DE-II and DE-III protect glucose-6-phosphate dehydrogenase, which furnishes NADPH for fatty acid synthesis, from the feed-back inhibition exerted by added palmitoyl-CoA and oleate. In the absence of exogenous inhibitors, this enzyme is stimulated by FABPs. DE-I has no effect on such inhibition. Thus, FABPs play a regulatory role in critical aspects of cellular physiology during human embryogenesis.  相似文献   

7.
A protein fraction with fatty acid binding activity has been isolated from mammary tissue from lactating rats by a process involving DEAE-cellulose ion-exchange chromatography, heat treatment, CM-cellulose ion-exchange chromatography and finally ammonium sulphate precipitation. The purified fraction migrated as a single band on SDS/polyacrylamide-gel electrophoresis with an apparent molecular mass of 14400. However, when this protein fraction was electrophoresed under non-dissociating conditions, two species were observed in a 4:1 ratio. The two components were separated using h.p.l.c. Both bind fatty acids and appear to have similar amino acid compositions although exhibiting different pI values of 4.8 and 4.9. The mammary fatty acid binding proteins appear to be very similar to the fatty acid binding protein isolated from rat heart based on the electrophoretic mobilities and amino acid composition. The major mammary form (pI 4.9) has been partially sequenced and the amino acid sequences obtained can be aligned with 67 residues of the revised rat heart amino acid sequence [Heuckeroth, Birkenmeier, Levin & Gordon (1987) J. Biol. Chem. 262, 9709-9717]. Both mammary species also showed immunochemical identity to rat heart fatty acid binding protein when tested with an anti-serum raised against the heart protein. Anti-sera raised against the minor mammary form (pI 4.8) specifically precipitated this form under non-denaturing conditions but both forms after they had been denatured. Quantitative immunoassays using the anti-(heart fatty acid binding protein) serum showed that concentrations of the fatty acid binding proteins present in mammary cytosols increase during lactation and increase further after feeding a high-fat diet.  相似文献   

8.
A method is described for the separation of beef brain cerebrosides into three fractions containing different classes of fatty acids: nonhydroxy (I), unsaturated nonhydroxy (II), and hydroxy fatty acid cerebrosides (III). The procedure consists of benzoylation of either crude or purified cerebrosides, followed by column chromatographic separation of benzoylated derivatives containing nonhydroxy acids from those containing hydroxy fatty acids. The benzoyl groups are removed by sodium methoxide-catalyzed transesterification; from the reaction mixtures, fractions I and III precipitate. The fraction II present in mother liquor of I was shown to contain mainly short-chain and unsaturated nonhydroxy fatty acid cerebrosides. The fatty acid composition of each fraction was obtained by gas-liquid chromatography.  相似文献   

9.
The hydrophobic region of the binding site of a bovine fatty acid binding protein (pI 7.0-FABP) has been characterized using fluorescence and circular dichroism (CD) spectroscopy. Blue-shifts of fluorescence emission maxima and increased lifetimes of naphthylamine dyes, anthroyloxy-fatty acids, pyrene nonanoic acid and trans-parinaric acid indicated a hydrophobic interaction with FABP. The fluorescence quenching of various anthroyloxy-fatty acids by iodide and acrylamide showed lower accessibility to the fluorophore linked to the carbon adjacent to the carbonyl group and towards the methyl end of the fatty acid. Binding stoichiometries were different for fatty acids and their bulky fluorescent analogues. trans-Parinaric acid when bound to FABP showed a complex induced CD-spectrum, which is explained by a close proximity of two ligands in the same binding site. Fluorescent derivatives of phosphatidylcholine with trans-parinaric acid and cholesteryl trans-parinarate did not bind to FABP. Thus, the binding site appears to be constructed for high affinity binding of long chain fatty acids.  相似文献   

10.
In the present study we have investigated the effect of partially purified retinal fatty acid binding protein (FABP) against nonenzymatic lipid peroxidation stimulated by hydroperoxides derived from fatty acids on rod outer segment (ROS) membranes. Linoleic acid hydroperoxide (LHP), arachidonic acid hydroperoxide (AHP) and docosahexaenoic acid hydroperoxide (DHP) were prepared from linoleic acid, arachidonic acid and docosahexaenoic acid, respectively, by means of lipoxidase. ROS membranes were peroxidized using an ascorbate-Fe(+2) experimental system. The effect on the peroxidation of ROS containing different amounts of lipid hydroperoxides (LOOH) was studied; ROS deprived of exogenously added LOOH was utilized as control. The degradative process was measured simultaneously by determining chemiluminescence and fatty acid composition of total lipids isolated from ROS. The addition of hydroperoxides to ROS produced a marked increase in light emission. This increase was hydroperoxide concentration-dependent. The highest value of activation was produced by DHP. The decrease percentage of the more polyunsaturated fatty acids (PUFAs) (20:4 n6 and 22:6 n3) was used to evaluate the fatty acid alterations observed during the process. We have compared the fatty acid composition of total lipids isolated from native ROS and peroxidized ROS that were incubated with and without hydroperoxides. The major difference in the fatty acid composition was found in the docosahexaenoic acid content, which decreased by 45.51+/-1.07% in the peroxidized group compared to native ROS; the decrease was even higher, 81.38+/-1.11%, when the lipid peroxidation was stimulated by DHP. Retinal FABP was partially purified from retinal cytosol. Afterwards, we measured its effect on the reaction of lipid peroxidation induced by LOOH. As a result, we observed a decrease of chemiluminescence (inhibition of lipid peroxidation) when adding increasing amounts (0.2 to 0.6 mg) of retinal FABP to ROS. The inhibitory effect reaches its highest value in the presence of DHP (41.81+/-10.18%). Under these conditions, bovine serum albumin (BSA) produces a smaller inhibitory effect (20.2+/-7.06%) than FABP.  相似文献   

11.
Western-blot analysis using antiserum to 3T3-L1-cell fatty acid binding protein (FABP) revealed that pig adipose tissue contains a 15 kDa protein immunologically similar to the murine protein. This 15 kDa protein was purified from pig adipose tissue by sequential application of Sephadex G-50 gel filtration, cation exchange and covalent chromatography on Thiol-Sepharose-4B. The purity of the pig protein was established by two-dimensional polyacrylamide-gel electrophoresis. Isoelectric focusing indicated that the pig adipose FABP (a-FABP) exists with two charge isoforms (pI 5.1 and 5.2), both of which persist after delipidation. The N-terminus of the purified pig a-FABP was blocked; however, cleavage with CNBr allowed recovery of a 12-amino-acid peptide which was identical with the murine a-FABP sequence (residues 36-48) at 10 of 12 positions. The pig a-FABP bound 12-(9-anthroyloxy)oleic acid saturably and stoichiometrically, with an apparent dissociation constant of 1.0 microM. Northern-blot analysis using the cDNA for the murine 3T3-L1 FABP revealed that the pig a-FABP was expressed exclusively in adipose tissue.  相似文献   

12.
Summary Although abundant in most biological tissues and chemically well characterized, the fatty acid-binding protein (FABP) was until recently in search of a function. Because of its strong affinity for long chain fatty acids and its cytoplasmic origin, this protein was repeatedly claimed in the literature to be the transcytoplasmic fatty acid carrier. However, techniques to visualize and quantify the movements of molecules in the cytoplasm are still in their infancy. Consequently the carrier function of FABP remains somewhat speculative. However, FABP binds not only fatty acids but also their CoA and carnitine derivatives, two typical molecules of mitochondrial origin. Moreover, it has been demonstrated and confirmed that FABP is not exclusively cytoplasmic, but also mitochondrial. A function for FABP in the mitochondrial metabolism of fatty acids plus CoA and carnitine derivatives would therefore be anticpated. Using spin-labelling techniques, we present here evidence that FABP is a powerful regulator of acylcarnitine flux entering the mitochondrial -oxidative system. In this perspective FABP appears to be an active link between the cytoplasm and the mitochondria, regulating the energy made available to the cell. This active participation of FABP is shown to be the consequence of its gradient-like distribution in the cardiac cell, and also of the coexistence of multispecies of this protein produced by self-aggregation.  相似文献   

13.
Although movement of fatty acids between bilayers can occur spontaneously, it has been postulated that intracellular movement is facilitated by a class of proteins named fatty acid binding proteins (FABP). In this study we have incorporated long chain fatty acids into multilamellar liposomes made of phosphatidylcholine, incubated them with rat liver microsomes containing an active acyl-CoA synthetase, and measured formation of acyl-CoA in the absence or presence of FABP purified from rat liver. FABP increased about 2-fold the accumulation of acyl-CoA when liposomes were the fatty acid donor. Using fatty acid incorporated into liposomes made either of egg yolk lecithin or of dipalmitoylphosphatidylcholine, it was found that the temperature dependence of acyl-CoA accumulation in the presence of FABP correlated with both the physical state of phospholipid molecules in the liposomes and the binding of fatty acid to FABP, suggesting that fatty acid must first desorb from the liposomes before FABP can have an effect. An FABP-fatty acid complex incubated with microsomes, in the absence of liposomes, resulted in greater acyl-CoA formation than when liposomes were present, suggesting that desorption of fatty acid from the membrane is rate-limiting in the accumulation of acyl-CoA by this system. Finally, an equilibrium dialysis cell separating liposomes from microsomes on opposite sides of a Nuclepore filter was used to show that liver FABP was required for the movement and activation of fatty acid between the compartments. These studies show that liver FABP interacts with fatty acid that desorbs from phospholipid bilayers, and promotes movement to a membrane-bound enzyme, suggesting that FABP may act intracellularly by increasing net desorption of fatty acid from cell membranes.  相似文献   

14.
Fatty acid-binding proteins (FABPs) were isolated from the cytosols of hearts of man, pig, and rat by gel filtration and anion-exchange chromatography. The heart FABPs had a Mr of about 15,000 (pig, rat) and 15,500 (man); pI values were 5.2, 4.9, and 5.0 for human, pig, and rat heart, respectively. In contrast to liver FABPs, tryptophan was present in the heart FABPs. Binding characteristics for long-chain fatty acids determined with the radiochemical Lipidex assay were comparable for all three proteins. Heart FABPs also bind palmitoyl-CoA and -carnitine with an affinity comparable to that for palmitic acid. Other ligands investigated, heme, bilirubin, cholesterol, retinoids, and prostaglandins, could not compete with oleic acid for binding by human heart FABP. Binding parameters of FABP for oleic acid from multilamellar liposomes were comparable to those from the Lipidex binding assay. Immunological interspecies cross-reactivity with antisera against the heart FABPs was much higher between man and pig than between rat and man or pig. None of the antisera reacted with liver FABPs. The IgG fraction of anti-human heart FABP serum inhibited fatty acid binding to human heart FABP.  相似文献   

15.
K Zaman  Z Zak 《Biochimie》1990,72(10):711-714
A cobalamin-binding protein has been purified from chicken egg-white by using a combination of conventional and high performance ion-exchange chromatography. Following initial purification by DEAE-cellulose, ammonium sulphate precipitation, Sephacryl S-200 CM-cellulose and affinity chromatography, appropriate fractions were further purified using the Pharmacia fast protein liquid chromatography (FPLC) system. Using this method of purification, egg-white CBP has been purified more rapidly and with greater recovery than with conventional column chromatography. The homogeneity of this protein was verified by SDS-PAGE. The Mr was 37,000 by SDS-PAGE and 39,000 by gel filtration, which indicated that it was a glycoprotein. The stokes radius was 4.1 nm and pI was 4.3. The protein bound 57COB12 with a molar ratio of 1/1 and kd of 0.40 microM. The egg-white CBP was composed of 294 amino acid residues. Thiol groups and metal ions were not connected with the Cbl-binding activities.  相似文献   

16.
Gel filtration of male rat liver cytosol preincubated with radiolabeled lithocholic, chenodeoxycholic, and glycochenodeoxycholic acids, and taurocholic acid revealed two major peaks of radioactivity, one co-eluting with the glutathione S-transferases and the other with a separate fraction, respectively. Chromatofocusing of the pooled fractions containing the new bile acid binding activity resulted in a separation of bile acid binding from the previously described organic anion binding activity in this fraction. Two binding peaks for lithocholic acid (pI 5.6, Binder I, and pI 5.5, Binder II) were identified on chromatofocusing and were further purified to apparent homogeneity by hydroxyapatite chromatography. The two Binders were monomers having identical molecular weight (33,000) and similar amino acid compositions. Bile acid binding to purified Binders I and II and glutathione S-transferases A, B, and C was studied by inhibition of the fluorescence of bound 1-anilino-8-naphthalenesulfonate (ANS). Confirmatory experiments using equilibrium dialysis produced comparable results. Glutathione S-transferase B had greater affinity for bile acids than transferases A or C. Binder II, which had greater affinity than Binder I for most bile acids, had greater affinity for chenodeoxycholic acid than transferase B but comparable or lower affinities for the other bile acids. All bile acids studied diminished ANS fluorescence with Binder II. Taurocholic and cholic acids increased ANS fluorescence with Binder I without affecting KANS, whereas lithocholic and chenodeoxycholic acids diminished ANS fluorescence with Binder I. In summary, we have identified and isolated two proteins (Binders I and II) which, along with glutathione S-transferase B, are the major hepatic cytosol bile acid binding proteins; these proteins have overlapping but distinct specificities for various bile acids.  相似文献   

17.
Summary A cytosolic protein, able to facilitate intermembrane movements of phospholipids in vitro, has been purified to homogeneity from sunflower seedlings. This protein, which has the properties of a lipid-transfer protein (UP), is also able to bind oleoyl-CoA, as shown by FPLC chromatography. This finding, in addition to previous observations suggesting that a lipid-transfer protein from spinach leaves can bind oleic acid and that oat seedlings contain a fatty acid-binding protein with similar features than lipid transfer proteins, provides a clear demonstration that plant cells contain bifunctional fatty acid/lipid transfer proteins. These proteins can play an active role in fatty acid metabolism which involves movements of oleyl-CoA between intracellular membranes.Abbreviations FABP Fatty Acid-Binding Proteins - UP Lipid-Transfer Protein - PC Phosphatidylcholine - PI Phosphatidylinositol - PE Phosphatidylethanolamine - pI Isoelectric point  相似文献   

18.
In the course of our studies on the structural diversity of the isoforms of cardiac fatty acid-binding proteins (cFABPs), a cardiac-type FABP from the matrix of bovine heart mitochondria was purified to homogeneity and obtained as a single 15-kDa protein with an isoelectric point of 4.9. The primary structures of this protein and of the two isoforms isolated from the cytosol (pI4.9-cFABP and pI 5.1-cFABP) were investigated by means of plasma desorption mass spectrometry and sequencing of peptides. All three proteins are amino-terminally blocked with an acetyl group and shown to be colinear with the sequence deduced from a cDNA clone for bovine heart fatty acid-binding protein (Billich, S., Wissel, T., Kratzin, H., Hahn, U., Hagenhoff, B., Lezius, A. G., and Spener, F. (1988) Eur. J. Biochem. 175, 549-556) except for the residue at position 98. This residue is demonstrated to be the molecular origin of bovine cFABP isoforms since pI 5.1-cFABP contains Asn98 in accordance with the sequence derived from the cDNA, whereas in pI 4.9-cFABP, this position is occupied by Asp98. Moreover, mitochondrial FABP is identical to pI 4.9-cFABP. Molecular masses of pI 4.9-cFABP (14,679 +/- 10 Da) and pI 5.1-cFABP (14,678 +/- 20 Da) determined by plasma desorption mass spectrometry coincide with that calculated from the cDNA (14,673 Da). Hence, residues linked to these proteins by posttranslational modification are not present, and the Asn-Asp exchange is the sole origin of heterogeneity of mitochondrial and cytosolic fatty acid-binding proteins from bovine heart.  相似文献   

19.
.16 +/- 0.062% of the fatty acid-binding protein purified from 50 mM N-ethylmaleimide-treated rat liver (L-FABP) was determined as a form S-thiolated by glutathione (L-FABP-SSG). L-FABP-SSG, which was prepared in vitro through thiol-disulfide exchange reaction, showed more acidic pI (approximately 5.0) than the pI (approximately 7.0) of reduced L-FABP. S-thiolation of L-FABP by glutathione decreased the affinity of the protein for unsaturated fatty acids without changing the equimolar maximum binding. The changes in Kd were from 0.63 +/- 0.054 microM to 1.03 +/- 0.14 microM for oleic acid, from 0.63 +/- 0.028 microM to 0.97 +/- 0.12 microM for linoleic acid and from 0.85 +/- 0.050 microM to 1.45 +/- 0.024 microM for arachidonic acid. This modification did not alter the affinity nor the maximum binding for saturated fatty acids, which were determined to be Kd of approximately 1.0 microM for palmitic acid and approximately 0.9 microM for stearic acids, and equimolar maximum binding for both fatty acids. The binding affinity of L-FABP for unsaturated fatty acid may be regulated by redox state of the liver.  相似文献   

20.
Rat liver fatty acid-binding protein (FABP) can function as a fatty acid donor protein for both peroxisomal and mitochondrial fatty acid oxidation, since 14C-labeled palmitic acid bound to FABP is oxidized by both organelles. FABP is, however, not detected in peroxisomes and mitochondria of rat liver by ELISA. Acyl-CoA oxidase activity of isolated peroxisomes was not changed by addition of FABP or flavaspidic acid, an inhibitor of fatty acid binding to FABP, nor by disruption of the peroxisomal membranes. These data indicate that FABP may transfer fatty acids to peroxisomes, but is not involved in the transport of acyl-CoA through the peroxisomal membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号