首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Biotechnological uses of plant cell-tissue culture usually rely on constitutive transgene expression. However, such expression of transgenes may not always be desirable. In those cases, the use of an inducible promoter could be an alternative approach. To test this hypothesis, we developed two binary vectors harboring a stress-inducible promoter from Arabidopsis thaliana, driving the beta-glucuronidase reporter gene and the oat arginine decarboxylase. Transgenic hairy roots of Lotus corniculatus were obtained with osmotic- and cold-inducible beta-glucuronidase and arginine decarboxylase activities. The increase in the activity of the latter was accompanied by a significant rise in total free polyamines level. Through an organogenesis process, we obtained L. corniculatus transgenic plants avoiding deleterious phenotypes frequently associated with the constitutive over-expression of arginine decarboxylation and putrescine accumulation.  相似文献   

3.
百脉根基因工程研究进展   总被引:1,自引:0,他引:1  
牧草基因工程是近年来国内外研究的热点之一.针对农杆菌介导百脉根遗传转化原理、影响农杆菌介导百脉根遗传转化的重要因素、转基因技术在百脉根的生物固氮、抗逆性和品质改良以及生产可食性疫苗等方面的研究进行了全面综述,并就百脉根基因工程研究今后的主要发展方向进行了展望.  相似文献   

4.
The nodulin N23 gene promoter was analysed in transgenic plants using the chloramphenicol acetyltransferase (CAT) coding sequence as a reporter. A 5' flanking region of less than 1 kb was sufficient for the organ-specific expression of a chimeric N23-CAT-3'lbc3 gene in root nodules formed on Lotus corniculatus and Trifolium repens after infection by their respective Rhizobium symbionts. Expression was regulated at the level of RNA in both species of transgenic plants. Promoter deletion analysis defined the 5' region required for high level expression and delimited two putative regulatory sequences involved in positive control of the N23 gene in L. corniculatus.  相似文献   

5.
6.
Lotus species are legumes with potential for pastures in soils with low-fertility and environmental constraints. The aim of this work was to characterize bacteria that establish efficient nitrogen-fixing symbiosis with the forage species Lotus uliginosus. A total of 39 isolates were obtained from nodules of L. uliginosus naturally growing in two different locations of Portugal. Molecular identification of the isolates plus the commercial inoculant strain NZP2039 was performed by REP-PCR, 16S rRNA RFLP, and 16S rRNA, glnII and recA sequence analyses. Limited genetic diversity was found among the L. uliginosus symbionts, which showed a close phylogenetic relationship with the species Bradyrhizobium japonicum. The symbiotic nifH, nodA and nodC gene sequences were closely related with the corresponding genes of various Bradyrhizobium strains isolated from Lupinus and other genistoid legumes and therefore were phylogenetically separated from other Lotus spp. rhizobia. The L. uliginosus bradyrhizobia were able to nodulate and fix nitrogen in association with L. uliginosus, could nodulate Lotus corniculatus with generally poor nitrogen-fixing efficiency, formed nonfixing nodules in Lotus tenuis and Lupinus luteus roots and were unable to nodulate Glycine soja or Glycine max. Thus, L. uliginosus rhizobia seem closely related to B. japonicum biovar genistearum strains.  相似文献   

7.
The culture of transgenic Lotus corniculatus plants producing opines, which are bacterial growth substrates, leads to the selection of rhizospheric bacteria able to utilize these substrates. We have investigated the fate of the opine-utilizing community over time under different experimental conditions following elimination of selective pressure exerted by the transgenic plants. These plants were removed from the soil, which was either left unplanted or replanted with wild-type L. corniculatus or wheat plants. The density of opine-utilizing bacteria in the fallow soils remained essentially unchanged throughout the experiment, regardless of the soil of origin (soil planted with wild-type or transgenic plants). When wild-type Lotus plants were used to replace their transgenic counterparts, only the bacterial populations able to utilize the opines were affected. Long-term changes affecting the opine-utilizing bacterial community on Lotus roots was dependent upon the opine studied. The concentration of nopaline utilizers decreased, upon replacement of the transgenic plants, to a level similar to that of normal plants, while the concentration of mannopine utilizers decreased to levels intermediate between transgenic and normal plants. These data indicate that: (i) the opine-utilizing bacterial populations can be controlled in the rhizosphere via plant-exudate engineering; (ii) the interaction between the engineered plants and their root-associated micro-organisms is transgene specific; and (iii) alterations induced by the cultivation of transgenic plants may sometimes be persistent. Furthermore, opine-utilizing bacterial populations can be controlled by crop rotation. Therefore, favouring the growth of a rhizobacterium of agronomic interest via an opine-based strategy appears feasible.  相似文献   

8.
McAlvin CB  Stacey G 《Plant physiology》2005,137(4):1456-1462
The soybean apyrase, GS52, was previously characterized as an early nodulin that is expressed in roots and localized to the plasma membrane. Transgenic Lotus japonicus plants were constructed constitutively expressing the GS52 apyrase. Segregation and Southern-blot analysis identified four single-copy sense lines, several double-copy sense lines, and one double-copy antisense line for further analysis. The single- and double-copy sense gs52 L. japonicus lines had enhanced nodulation that correlated with expression of the transgene. The sense transgenic lines were also found to have increased infection thread formation and enhanced infection zone length when infected by Mesorhizobium loti, the natural symbiont of L. japonicus. The data presented show that expression of the GS52 apyrase can enhance nodulation in L. japonicus and points to an important role for this group of enzymes in nodulation.  相似文献   

9.
10.
The promoters of the hemoglobin genes from the nitrogen-fixing tree Parasponia andersonii and the related nonnitrogen-fixing Trema tomentosa both confer beta-glucuronidase reporter gene expression to the central zone of the nodules of a transgenic legume, Lotus corniculatus. beta-Glucuronidase expression was high in the uninfected interstitial cells and parenchyma of the surrounding boundary layer and was low in the Rhizobium-infected cells. This contrasts with the expression of both the P. andersonii hemoglobin protein in P. andersonii nodules and the endogenous Lotus leghemoglobins that are expressed in the infected cells at very high levels. The expression pattern of the P. andersonii and T. tomentosa hemoglobin promoters in L. corniculatus resembles that of a nonsymbiotic hemoglobin gene from Casuarina glauca, which was introduced into this legume, and suggests that only the nonsymbiotic functions of the P. andersonii promoter are being recognized. Deletion of the distal segments of both the P. andersonii and T. tomentosa promoters identified regions important for the control of their tissue-specific and temporal activity in Lotus. Potential regulatory elements, which enhance nodule expression and suppress nonnodule expression, were also identified and localized to a distal promoter segment. A proximal AAGAG motif is present in the P. andersonii, T. tomentosa, and nonsymbiotic Casuarina hemoglobin genes. Mutation of this motif in the P. andersonii promoter resulted in a significant reduction in both the nodule and root expression levels in L. corniculatus. Some of the regulatory motifs characterized are similar to, but different from, the nodulin motifs of the leghemoglobins.  相似文献   

11.
The gln-gamma gene, which specifies the gamma subunit of glutamine synthetase in Phaseolus vulgaris L., has been isolated and the regulatory properties of its promoter region analyzed in transgenic Lotus corniculatus plants. A 2-kilobase fragment from the 5'-flanking region of gln-gamma conferred a strongly nodule-enhanced pattern of expression on the beta-glucuronidase reporter gene. Parallel studies on the promoter of another glutamine synthetase gene (gln-beta) showed that a 1.7-kilobase fragment directed 20-fold to 140-fold higher levels of beta-glucuronidase expression in roots than in shoots. Histochemical localization of beta-glucuronidase activity in nodules of the transgenic plants indicated that the chimeric gln-gamma gene was expressed specifically in the rhizobially infected cells; expression of the gln-beta construct was detected in both cortical and infected regions of young nodules, and became restricted to the vascular tissue as the nodule matured. We conclude that gln-beta and gln-gamma genes are differentially expressed both temporally and spatially in plant development and that the cis-acting regulatory elements responsible for conferring these contrasting expression patterns are located within a 2-kilobase region upstream of their coding sequences.  相似文献   

12.
超表达AVP1基因提高转基因百脉根的耐盐性和抗旱性   总被引:1,自引:0,他引:1  
本研究以超表达拟南芥液泡膜H+-焦磷酸酶编码基因AVPI的转基因百脉根为材料,对其耐盐性和抗旱性进行了检测。结果显示:在200mmol·L^-1 NaCl下处理或自然干旱7d后,转基因植株的生长虽然受到抑制,但受抑程度明显低于野生型植株,前者叶片相对含水量比后者分别高18%和14%,净光合速率分别高20%和21%,而MDA含量则分别低35%和27%,相对质膜透性分别低28%和27%。此外,随着盐和干旱胁迫的加剧,与野生型植株相比,转基因植株体内积累了更多Na+、K+和Ca2+。以上结果表明,AVPI基因的超表达可能提高了百脉根细胞Na+区域化能力,既减轻了过量Na+对细胞质的毒害作用,也提高了植株的渗透调节能力,从而增强了百脉根的耐盐性和抗旱性。  相似文献   

13.
The nodulation characteristics of wild-type Bradyrhizobium japonicum USDA 110 and mutant strain HS111 were examined. Mutant strain HS111 exhibits a delayed-nodulation phenotype, a result of its inability to initiate successful nodulation promptly following inoculation of the soybean root. Previously, we showed that the defect in initiation of infection leading to subsequent nodulation which is found in HS111 can be phenotypically reversed by pretreatment with soybean root exudate or soybean seed lectin. This effect is not seen after pretreatment with root exudates and lectins obtained from other plant species. Treatment of strain HS111 with as little as 10 soybean seed lectin molecules per bacterium (3.3 X 10 (-12) M) resulted in enhancement of nodule formation. Pretreatment of wild-type B. japonicum USDA 110 with soybean root exudate or seed lectin increased nodule numbers twofold on 6-week-old plants. Wild-type strain USDA 110 cells inoculated at 10(4) cells per seedling exhibited a delay in initiation of infection leading to subsequent nodulation. Wild-type cells pretreated in soybean root exudates or seed lectin did not exhibit a delay in nodulation at this cell concentration. Mutant strain HS111 pretreated in seed lectin for 0 or 1 h, followed by washing with the hapten D-galactose to remove the lectin, exhibited a delay in initiation of nodulation. Phenotypic reversal of the delayed-nodulation phenotype exhibited by strain HS111 was seen if incubation was continued for an additional 71 h in plant nutrient solution following 1 h of lectin pretreatment. Reversal of the delayed-nodulation phenotype of HS111 through lectin pretreatment was prevented by chloramphenicol or rifampin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Hemoglobin genes from the nitrogen-fixing nonlegume Parasponia andersonii and the related non-nitrogen-fixing nonlegume Trema tomentosa have been isolated [Landsmann et al. (1986). Nature 324, 166-168; Bogusz et al. (1988). Nature 331, 178-180]. The promoters of these genes have been linked to a beta-glucuronidase reporter gene and introduced into both the nonlegume Nicotiana tabacum and the legume Lotus corniculatus. Both promoters directed root-specific expression in transgenic tobacco. When transgenic Lotus plants were nodulated by Rhizobium loti, both promoter constructs showed a high level of nodule-specific expression confined to the central bacteroid-containing portion of the nodule corresponding to the expression seen for the endogenous Lotus leghemoglobin gene. The T. tomentosa promoter was also expressed at a low level in the vascular tissue of the Lotus roots. The hemoglobin promoters from both nonlegumes, including the non-nodulating species, must contain conserved cis-acting DNA signals that are responsible for nodule-specific expression in legumes. We have identified sequence motifs postulated previously as the nodule-specific regulatory elements of the soybean leghemoglobin genes [Stougaard et al. (1987). EMBO J. 6, 3565-3569].  相似文献   

15.
The nodulation characteristics of wild-type Bradyrhizobium japonicum USDA 110 and mutant strain HS111 were examined. Mutant strain HS111 exhibits a delayed-nodulation phenotype, a result of its inability to initiate successful nodulation promptly following inoculation of the soybean root. Previously, we showed that the defect in initiation of infection leading to subsequent nodulation which is found in HS111 can be phenotypically reversed by pretreatment with soybean root exudate or soybean seed lectin. This effect is not seen after pretreatment with root exudates and lectins obtained from other plant species. Treatment of strain HS111 with as little as 10 soybean seed lectin molecules per bacterium (3.3 X 10 (-12) M) resulted in enhancement of nodule formation. Pretreatment of wild-type B. japonicum USDA 110 with soybean root exudate or seed lectin increased nodule numbers twofold on 6-week-old plants. Wild-type strain USDA 110 cells inoculated at 10(4) cells per seedling exhibited a delay in initiation of infection leading to subsequent nodulation. Wild-type cells pretreated in soybean root exudates or seed lectin did not exhibit a delay in nodulation at this cell concentration. Mutant strain HS111 pretreated in seed lectin for 0 or 1 h, followed by washing with the hapten D-galactose to remove the lectin, exhibited a delay in initiation of nodulation. Phenotypic reversal of the delayed-nodulation phenotype exhibited by strain HS111 was seen if incubation was continued for an additional 71 h in plant nutrient solution following 1 h of lectin pretreatment. Reversal of the delayed-nodulation phenotype of HS111 through lectin pretreatment was prevented by chloramphenicol or rifampin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Salinity and waterlogging interact to reduce growth of poorly adapted species by, amongst other processes, increasing the rate of Na(+) and Cl(-) transport to shoots. Xylem concentrations of these ions were measured in sap collected using xylem-feeding spittlebugs (Philaenus spumarius) from Lotus tenuis and Lotus corniculatus in saline (NaCl) and anoxic (stagnant) treatments. In aerated NaCl solution (200 mM), L. corniculatus had 50% higher Cl(-) concentrations in the xylem and shoot compared with L. tenuis, whereas concentrations of Na(+) and K(+) did not differ between the species. In stagnant-plus-NaCl solution, xylem Cl(-) and Na(+) concentrations of L. corniculatus increased to twice those of L. tenuis. These differences in xylem ion concentrations, which were not caused by variation in transpiration between the two species, contributed to lower net accumulation of Na(+) and Cl(-) in shoots of L. tenuis, indicating that ion transport mechanisms in roots of L. tenuis were contributing to better 'exclusion' of Cl(-) and Na(+) from shoots, compared with L. corniculatus. Root porosity was also higher in L. tenuis, due to constitutive aerenchyma, than in L. corniculatus, suggesting that enhanced root aeration contributed to the maintenance of Na(+) and Cl(-) 'exclusion' in L. tenuis exposed to stagnant-plus-NaCl treatment. Lotus tenuis also had greater dry mass than L. corniculatus after 56 d in NaCl or stagnant-plus-NaCl treatment. Thus, Cl(-) 'exclusion' is a key trait contributing to salt tolerance of L. tenuis, and 'exclusion' of both Cl(-) and Na(+) from the xylem enables L. tenuis to tolerate, better than L. corniculatus, the interactive stresses of salinity and waterlogging.  相似文献   

17.
18.
通过根癌农杆菌介导法,将FMDV阿克苏(Akesu/O/58)株结构基因vp1转化豆科牧草百脉根子叶和子叶柄,其愈伤、芽和生根等过程经50 mg/L Kan筛选后,获得Kan抗性百脉根植株。对抗性植株进行vp1基因的PCR、RT-PCR检测和VP1蛋白的Western-blotting杂交。结果表明:vp1基因转入百脉根中,检测有转录活性;目的蛋白获得了正确表达;扩繁和移栽后获得了批量转基因百脉根,为下一阶段的动物试验提供了实验材料。  相似文献   

19.
富硫蛋白基因对牧草百脉根的转化   总被引:8,自引:0,他引:8  
豆科植物百脉根(LotuscornicofatusL.)是一种优良的牧草。10kD玉米醇溶蛋白是一种富硫蛋白,依分子数计算,含硫氨基酸占总氨基酸量的25%。通过根癌农杆菌(Agrobacteriumtumefaciens)的介导,将rbcS启动子及CaMV35S启动于调控下的10kD玉米醇溶蛋白基因的嵌合质粒导入百脉根,得到转化的植株,其卡那霉素的抗性由BNPTⅡ活性分析进一步得到证明。Southernblot分析表明,10kD玉米醇溶蛋白基因已整合到百脉根的核基因组中。  相似文献   

20.
The expression of a lectin gene in pea (Pisum sativum L.) roots has been investigated using the copy DNA of a pea seed lectin as a probe. An mRNA which has the same size as the seed mRNA but which is about 4000 times less abundant has been detected in 21-d-old roots. The probe detected lectin expression as early as 4 d after sowing, with the highest level being reached at 10 d, i.e. just before nodulation. In later stages (16-d- and 21-d-old roots), expression was substantially decreased. The correlation between infection by Rhizobium leguminosarum and lectin expression in pea roots has been investigated by comparing root lectin mRNA levels in inoculated plants and in plants grown under conditions preventing nodulation. Neither growth in a nitrate concentration which inhibited nodulation nor growth in the absence of Rhizobium appreciably affected lectin expression in roots.Abbreviation cDNA copy DNA - poly(A)+RNA polyadenylated RNA  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号