首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A pathogen survey of the black field cricket, Teleogryllus commodus, in the Western District of Victoria, Australia, during 1979 revealed that cricket paralysis virus (CrPV) was present in 42.7% of the 232 sites sampled. The fungus Metarhizium anisopliae was detected in 5.2% of the sites and represents a new pathogen record for T. commodus. The distribution of both pathogens throughout the sites sampled appeared to be random. There was a positive correlation between sample size and the likelihood of detecting a pathogen, while analysis showed that approximately 30% of the sites were probably virus free. The results are discussed in terms of the potential of CrPV and M. anisopliae as biological control agents for the black field cricket.  相似文献   

2.
Representatives of several families of insect viruses were tested for growth and pathogenicity in the olive fruit fly, Dacus oleae Gmel. The viruses included nuclear polyhedrosis viruses, an iridovirus, two picornaviruses, and Trichoplusia ni small RNA virus (a member of the Nudaurelia β family), in addition to two naturally occurring viruses of the olive fruit fly. Two viruses, one of the two picornaviruses (cricket paralysis virus [CrPV] and the iridovirus (type 21 from Heliothis armigera), were found to replicate in adult flies. Flies which were fed on a solution containing CrPV for 1 day demonstrated a high mortality with 50% dying within 5 days and nearly 80% dying within 12 days of being fed. The virus was transmissible from infected to noninfected flies by fecal contamination. The CrPV which replicated in the infected flies was demonstrated to be the same as input virus by infection of Drosophila melanogaster cells and examination of the expressed viral proteins, immunoprecipitation of the virus purified from flies, and electrophoretic analysis of the structural proteins.  相似文献   

3.
Drosophila C virus (DCV) is a natural pathogen of Drosophila and a useful model for studying antiviral defences. The Drosophila host is also commonly infected with the widespread endosymbiotic bacteria Wolbachia pipientis. When DCV coinfects Wolbachia-infected D. melanogaster, virus particles accumulate more slowly and virus induced mortality is substantially delayed. Considering that Wolbachia is estimated to infect up to two-thirds of all insect species, the observed protective effects of Wolbachia may extend to a range of both beneficial and pest insects, including insects that vector important viral diseases of humans, animals and plants. Currently, Wolbachia-mediated antiviral protection has only been described from a limited number of very closely related strains that infect D. melanogaster. We used D. simulans and its naturally occurring Wolbachia infections to test the generality of the Wolbachia-mediated antiviral protection. We generated paired D. simulans lines either uninfected or infected with five different Wolbachia strains. Each paired fly line was challenged with DCV and Flock House virus. Significant antiviral protection was seen for some but not all of the Wolbachia strain-fly line combinations tested. In some cases, protection from virus-induced mortality was associated with a delay in virus accumulation, but some Wolbachia-infected flies were tolerant to high titres of DCV. The Wolbachia strains that did protect occurred at comparatively high density within the flies and were most closely related to the D. melanogaster Wolbachia strain wMel. These results indicate that Wolbachia-mediated antiviral protection is not ubiquitous, a finding that is important for understanding the distribution of Wolbachia and virus in natural insect populations.  相似文献   

4.
We carried out experiments with the Drosophila C virus (DCV), a nonhereditary virus acting on demographic parameters of infected Drosophila host populations. It is well known that DCV increases mortality rate, decreases developmental time, and increases daily fecundity. As usual for Drosophila viruses, the DCV was multiplied in vivo. In this study we tested the hypothesis of virulence variability in DCV strains by isolating different stocks of the virus. The flies were tested for susceptibility to injection of such isolates and for virulence variability. Possible interactions between demographic parameters in three Drosophila host populations and injected isolates were studied under two egg densities (low and high). The hypothesis of virulence variability of DCV was supported by significant differences in mortality rates, depending on whether virus isolates were ingested or injected. When DCV was ingested, differences between host mortality rates were independent of the Drosophila host populations. Nevertheless, the developmental time was equally decreased by each virus isolate, independent of the host population. Moreover, the two viral stocks strongly increased the egg production of the flies. This experimental approach clearly showed that DCV could be considered a polymorphic virus. The phenotypic interactions between DCV and host flies varied according to parasite genotype.  相似文献   

5.
Cricket Paralysis virus (CrPV) is a member of the Dicistroviridae family of RNA viruses, which infect a broad range of insect hosts, including the fruit fly Drosophila melanogaster. Drosophila has emerged as an effective system for studying innate immunity because of its powerful genetic techniques and the high degree of gene and pathway conservation. Intra-abdominal injection of CrPV into adult flies causes a lethal infection that provides a robust assay for the identification of mutants with altered sensitivity to viral infection. To gain insight into the interactions between viruses and the innate immune system, we injected wild type flies with CrPV and observed that antimicrobial peptides (AMPs) were not induced and hemocytes were depleted in the course of infection. To investigate the contribution of conserved immune signaling pathways to antiviral innate immune responses, CrPV was injected into isogenic mutants of the Immune Deficiency (Imd) pathway, which resembles the mammalian Tumor Necrosis Factor Receptor (TNFR) pathway. Loss-of-function mutations in several Imd pathway genes displayed increased sensitivity to CrPV infection and higher CrPV loads. Our data show that antiviral innate immune responses in flies infected with CrPV depend upon hemocytes and signaling through the Imd pathway.  相似文献   

6.
Soil represents the principal environmental reservoir of many insect-pathogenic viruses. We compared the adsorption and infectivity of one occluded and two nonoccluded viruses, Helicoverpa armigera single nucleopolyhedrovirus (HaSNPV) (Baculoviridae), Cricket paralysis virus (CrPV) (Dicistroviridae), and Invertebrate iridescent virus 6 (IIV-6) (Iridoviridae), respectively, in mixtures with a selection of soil-forming minerals. The relative infective titers of HaSNPV and CrPV were unchanged or slightly reduced in the presence of different minerals compared to their titers in the absence of the mineral. In contrast, the infective titer of IIV-6 varied according to the mineral being tested. In adsorption studies, over 98% of HaSNPV occlusion bodies were adsorbed by all the minerals, and a particularly high affinity was observed with ferric oxide, attapulgite, and kaolinite. In contrast, the adsorption of CrPV and IIV-6 differed markedly with mineral type, with low affinity to bentonites and high affinity to ferric oxide and kaolinite. We conclude that interactions between soil-forming minerals and insect viruses appear to be most important in nucleopolyhedroviruses, followed by invertebrate iridescent viruses, and least important in CrPV, which may reflect the ecology of these pathogens. Moreover, soils with a high content of iron oxides or kaolinite would likely represent highly effective reservoirs for insect-pathogenic viruses.  相似文献   

7.
Thomas-Orillard M 《Genetics》1984,107(4):635-644
Drosophila C virus, a picornavirus that has some influence on ovarian morphogenesis, was discovered in a French strain of Drosophila melanogaster. When the strain was infected by Drosophila C virus (DCV), the mean number of ovarian tubes and weights of the adult females increased, but the developmental time from egg to imago decreased. The maternal effects observed when DCV was present disappeared when the strain was DCV free but were restored by experimental contamination.  相似文献   

8.
9.
10.
Cryo-electron microscopy and image reconstruction were used to determine the three-dimensional structure of Infectious flacherie virus (IFV). 5047 particles were selected for the final reconstruction. The FSC curve showed that the resolution of this capsid structure was 18 Å. The structure is a psuedo T=3 (P=3) icosahedral capsid with a diameter of 302.4 Å and a single shell thickness of 15 Å. The density map showed that IFV has a smooth surface without any prominent protrude or depression. Comparison of the IFV structure with those of the insect picorna-like virus-Cricket paralysis virus (CrPV)and human picornavirus-Human rhinovirus 14 (HRV 14) revealed that the IFV structure resembles the CrPV structure. The “Rossmann canyon” is absent in both IFV and CrPV particles. The polypeptide topology of IFV VP2, IFV VP3 was predicted and the subunit location at the capsid surface was further analyzed.  相似文献   

11.
Drosophila C virus (DCV) cycle during Drosophila melanogaster development was studied after feeding contamination at the first, most sensitive, instar (L1). Two Drosophila strains were examined and compared. Presence of DCVC in apparently healthy animals (L3 larvae bred on a contaminated rearing medium and adults coming from larvae which were grown on medium containing DCVC) was demonstrated by biological tests. Using the immunofluorescence technique, DCV was exhibited in the diseased Charolles larvae, in the lumen of the digestive tract and in the basal part of gut cells which is in contact with the haemolymph. On the contrary, in Charolles larvae which seemed 'healthy', DCV was exhibited only in the lumen of the digestive tract at the apical boundary of the gut cells. But DCV typical protein capsid was not shown in the tissues of Drosophila L3 and adults. However, C virus remained in Drosophila tissues even after host metamorphosis and would seem to interact with Drosophila cells. Hypotheses are proposed concerning the intracellular state of Drosophila C virus in this case.  相似文献   

12.
DTH responses were evaluated in different strains of mice shown to be resistant or sensitive to leukemogenesis by the radiation leukemia virus variants A-RadLV and D-RadLV. A significant response was observed only in the H-2 complex-linked resistant haplotypes to RadLV leukemogenesis. The DTH response could be transferred by immune cells of mice resistant to the appropriate RadLV variant. Thus, an inverse relationship between the leukemogenic activity of the virus and its immunization ability expressed by DTH response was demonstrated in different mouse strains.  相似文献   

13.
1. Under a variety of conditions in which cells are infected with one or a few virus particles and the host cells are killed, but no infective particles or virus material is formed as indicated by plaque count, one-step growth curve, or protein or desoxyribonucleic determinations, the cells neither lyse nor release ribonucleic acid into the medium. 2. The "killing" effect of S. muscae phage is separate from its lytic property. 3. The release of ribonucleic acid into the medium is not simply due to the killing of the cell by the virus, and ribonucleic acid is never found in the medium unless virus material is synthesized. 4. Infected cells of S. muscae synthesizing virus release ribonucleic acid into the medium before cellular lysis begins and before any virus is liberated. 5. The higher the phage yield the more ribonucleic acid is released into the medium before any virus is released. 6. Phage may be released from one strain of Staphylococcus muscae without cellular lysis, although bacterial lysis begins shortly after the virus is released. In another strain, infected under similar conditions, virus liberation occurs simultaneously with cellular lysis. 7. The viruses liberated from both bacterial strains appear to be the same in so far as they cannot be distinguished by serological tests, have the same plaque type and plaque size, and need the same amino acids added to the medium in order to grow. Furthermore, the virus liberated from one strain can infect and multiply in the other strain and vice versa. 8. It is suggested that virus synthesis, in S. muscae cells infected with one or a few phage particles, leads to a disturbance of the normal cellular metabolism, resulting in lysis of the host cell.  相似文献   

14.
Several B 10 strains of mice, recombinant at theH-2 locus, have been shown to differ in their resistance to infection with ectromelia virus, a natural mouse pathogen. Of 10 strains, 1310, B 10.A(2R), B10.A(4R) and B10.D2 were the most resistant, while B10.G and B 10.A(5R) were the most susceptible. Other strains were intermediate between these extremes. Several genes conferring resistance have been mapped toD b in B10.A(2R),K k I-A k I-B k in B10.A,I-J b in B10.A(2R) and toD d in B 10.T(6R). In general, death among susceptible strains was not a consequence of acute liver necrosis as in other non-B10 strains, and occurred randomly from 8–14 days after infection. The exact cause of death is unknown but is characterized by persisting high titers of virus in the spleen and sometimes the liver, despite an ongoing immune response indicated by strong cytotoxic T-cell activity detectable in the spleens of all mice. The most resistant B10 and B10.A(2R) strains cleared virus from the spleen and liver by 8 days after infection. Analysis of infection in chimeric mice indicates thatH-2 genes, which determine susceptibility to virus persistence in the spleen, operate via radiosensitive cells of the lymphomyeloid system. This evidence, together with several examples ofH-2-linked differences in cytotoxic T-cell responsiveness between resistant and susceptible strains, is consistent with the hypothesis that the mechanism by whichH-2 genes control resistance to ectromelia virus in B10 strain mice is by their influence on the effectiveness of a cell-mediated immune response.  相似文献   

15.
《Research in virology》1990,141(5):533-543
The West Nile (WN) virus strains isolated in Bangui, Central African Republic (CAR), from patients with hepatitis were analysed comparatively with the prototype WN virus strain and 7 WN strains previously isolated from birds (2 strains), mosquitoes (3 strains) and ticks (2 strains) in CAR.The comparison was based on two techniques: an epitopic analysis by indirect immunofluorescence assay using a panel of 9 monoclonal antibodies to WN virus, and an analysis of HaeIII and TaqI restriction digest profiles of cDNA to infected cell RNA.Similar results were obtained with both techniques: the 3 human strains were found to be identical to each other and identical or very close to mosquito and tick strains, whereas prototype WN virus and bird strains were significantly different from the human strains.As “classical” infections due to WN virus without hepatic involvement were also reported during the period of isolation of the arthropod strains, we concluded that the same virus subtype may have been the cause of different infection patterns. A new definition of the disease spectrum of WN virus, including the possibility of liver involvement, should be established.Clearly, the Egyptian prototype WN virus represents a different topotype. Bird strains also appear to be different from human and arthropod strains, raising the question of their transmissibility and pathogenicity for man, and of the role of birds in the natural cycle of WN virus.  相似文献   

16.
Internal ribosome entry site (IRES) elements found in the 5′ untranslated region of mRNAs enable translation initiation in a cap-independent manner, thereby representing an alternative to cap-dependent translation in cell-free protein expression systems. However, IRES function is largely species-dependent so their utility in cell-free systems from different species is rather limited. A promising approach to overcome these limitations would be the use of IRESs that are able to recruit components of the translation initiation apparatus from diverse origins. Here, we present a solution to this technical problem and describe the ability of a number of viral IRESs to direct efficient protein expression in different eukaryotic cell-free expression systems. The IRES from the intergenic region (IGR) of the Cricket paralysis virus (CrPV) genome was shown to function efficiently in four different cell-free systems based on lysates derived from cultured Sf21, CHO and K562 cells as well as wheat germ. Our results suggest that the CrPV IGR IRES-based expression vector is universally applicable for a broad range of eukaryotic cell lysates. Sf21, CHO and K562 cell-free expression systems are particularly promising platforms for the production of glycoproteins and membrane proteins since they contain endogenous microsomes that facilitate the incorporation of membrane-spanning proteins and the formation of post-translational modifications. We demonstrate the use of the CrPV IGR IRES-based expression vector for the enhanced synthesis of various target proteins including the glycoprotein erythropoietin and the membrane proteins heparin-binding EGF-like growth factor receptor as well as epidermal growth factor receptor in the above mentioned eukaryotic cell-free systems. CrPV IGR IRES-mediated translation will facilitate the development of novel eukaryotic cell-free expression platforms as well as the high-yield synthesis of desired proteins in already established systems.  相似文献   

17.
The bacterial endosymbiont Wolbachia pipientis protects its hosts from a range of pathogens by limiting their ability to form infections inside the insect. This “pathogen blocking” could be explained by innate immune priming by the symbiont, competition for host-derived resources between pathogens and Wolbachia, or the direct modification of the cell or cellular environment by Wolbachia. Recent comparative work in Drosophila and the mosquito Aedes aegypti has shown that an immune response is not required for pathogen blocking, implying that there must be an additional component to the mechanism. Here we have examined the involvement of cholesterol in pathogen blocking using a system of dietary manipulation in Drosophila melanogaster in combination with challenge by Drosophila C virus (DCV), a common fly pathogen. We observed that flies reared on cholesterol-enriched diets infected with the Wolbachia strains wMelPop and wMelCS exhibited reduced pathogen blocking, with viral-induced mortality occurring 2–5 days earlier than flies reared on Standard diet. This shift toward greater virulence in the presence of cholesterol also corresponded to higher viral copy numbers in the host. Interestingly, an increase in dietary cholesterol did not have an effect on Wolbachia density except in one case, but this did not directly affect the strength of pathogen blocking. Our results indicate that host cholesterol levels are involved with the ability of Wolbachia-infected flies to resist DCV infections, suggesting that cholesterol contributes to the underlying mechanism of pathogen blocking.  相似文献   

18.

Objective

To compare the effect of novel direct cover vitrification (DCV) and conventional vitrification (CV) for human ovarian tissue.

Study design

Ovarian biopsy specimens obtained from 12 patients were randomly allocated into five groups: Fresh, DCV1, DCV2, DCV3 and CV. Three concentrations of cryoprotectants were used in DCV group. The equilibration solution of DCV1, DCV2, DCV3 was 5% EG + 5% DMSO + DPBS, 7.5% EG + 7.5%DMSO + DPBS, 10% EG + 10% DMSO + DPBS, respectively. And the vitrification solution of DCV1, DCV2, DCV3 was 10% EG + 10% DMSO + DPBS, 15%EG+15% DMSO + DPBS, 20% EG + 20% DMSO + DPBS, respectively. The equilibration solution and the vitrification solution of CV group was same as DCV3 group. The effects of cryopreserved procedure on human ovarian tissue were studied by histology, TUNEL assay, transmission electron microscopy (TEM) and heterotopic allograft.

Results

The percentages of morphologically normal and viable follicles of DCV2 were significantly higher than DCV1, DCV3 and CV groups (P < 0.05). TUNEL assay demonstrated that the incidence of apoptotic cell in vitrification ovarian tissue was significantly higher than fresh tissue (P < 0.05), but there were no difference in various groups with cryopreservation. TEM showed that less damage was detected in DCV2 group. After grafting, the follicle density of DCV2 was greater than DCV1, DCV3 and CV groups (P < 0.05).

Conclusions

The novel cover vitrification with optimal concentration of cryoprotectants is superior to conventional vitrification. It is suitable for human ovarian tissue fragments with high efficiency and facility.  相似文献   

19.
The structure of the inclusion bodies (IBs) of three multiply enveloped nuclear polyhedrosis viruses (MNPVs), one singly enveloped NPV (SNPV), two granulosis viruses (GVs) and one cytoplasmic polyhedrosis virus (CPV) were compared. A method was devised to calculate the numbers of virus particles and nucleocapsids in IBs using data from light microscopy and thin sections. The three MNPVs, from Agrotis segetum (English and Polish virus isolates) and Mamestra brassicae had similar concentrations of virus particles ranging from 17.3 to 19.6 per μm3 of IB. Plusia gamma SNPV had a higher density of 59.6 virus particles per μm3 of IB, which partly compensated for its having smaller IBs (mean volume 0.65 μm3) than the MNPVs (2.60–9.71 μm3). The English A. segetum MNPV isolate had the most nucleocapsids in each virus particle (mean, 4.04) and the largest IBs (mean volume, 9.71 μm3), giving 674 nucleocapsids per IB on average. The GVs, from A. segetum and Pieris brassicae, mainly contained one nucleocapsid per IB. P. gamma CPV IBs had a much higher density of virus particles than the baculoviruses (260 per μm3 compared with 17–60 per μm3). These data are discussed in relation to the biological properties of these viruses, and possible adaptational advantages of alternative IB designs are considered.  相似文献   

20.
The two groups per subunit which titrate with an abnormal pK of about 7 in tobacco mosaic virus Vulgare have also been found in three other naturally occurring strains and two mutants. Possession of these groups, almost certainly carboxyl-carboxylate pairs, therefore appears to be a crucial feature of the virus protein structure, which has been conserved during the evolution of the strains. The residues responsible may be narrowed down to those carboxylic acid residues which are at the same position in all the tobacco mosaic virus variants titrated. Residues 115 and 116 make up one probable pair, while residue 145 and one other, as yet unidentified, make up the second probable pair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号