首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aquatic worms are a biological approach to decrease the amount of biological waste sludge produced at waste water treatment plants. A new reactor concept was recently introduced in which the aquatic oligochaete Lumbriculus variegatus is immobilised in a carrier material. The current paper describes the experiments that were performed to test whether this concept could also be applied in continuous operation, for which worm growth is an important condition. This was tested for two mesh sizes of the carrier material. With an increase in mesh size from 300 to 350 μm, worm biomass growth was possible in the reactor at a rate of 0.013 d−1 and with a yield of 0.13 g dw/g VSS digested by the worms. Mass balances over the worm reactors showed the importance of correcting for natural sludge breakdown, as the contribution of the worms to total VSS reduction was 41–71%.  相似文献   

2.
Biological aerobic wastewater treatment plants (WWTPs) produce a lot of excess sludge. The costs for handling this residual product are increasing, so the search for alternative techniques to reduce the amount of sludge has to be continued. Activated sludge consists of inorganic and organic substances, bacteria, protozoa and metazoa. Due to incomplete biomass conversion, sludge consumption yields less oligochaete biomass. From a technological point of view, the application of aquatic oligochaetes to reduce the sludge production offers interesting perspectives. This paper aims to review the feasibility for the reduction of activated sludge in WWTPs by means of aquatic oligochaetes. Also the current techniques concerning sludge reduction are taken into account. Several of the WWTPs relevant parameters, which may influence predatory activity of aquatic oligochaetes, are discussed: particle size, organic content of substrate, bacteria preference, life cycle and population dynamics of aquatic oligochaetes, temperature, pH, oxygen and process conditions. From the literature it appeared that most research has been performed on laboratory scale. Only a few authors mention a significant reduction of the sludge production by ‘sessile’ species such as Lumbriculus. Vermicultures for the reduction of activated sludge are rather common in developing countries. Incidentally large annelid blooms have been noticed in WWTPs. It remains obscure which factors trigger the initiation of annelid blooms in WWTPs and which are of importance to maintain a stable annelid population in WWTPs. The influence of a considerable worm bloom on the waste sludge production is still under investigation.  相似文献   

3.
AIMS: To investigate the possibility of reducing excess sludge production in activated sludge processes by the addition of chemical uncouplers to greatly dissociate anabolism from catabolism. METHODS AND RESULTS: Ortho-chlorophenol (oCP), 2,4-dichlorophenol (DCP), 3,3',4',5-tetrachlorosalicylanilide (TCS), para-dinitrophenol (pNP) and 2,4-dinitrophenol (DNP) were chosen for short-term tests for their ability to reduce sludge yield by shaking bottle test. The most effective chemicals, DNP and pNP, together with TCS were tested for various uncoupler concentrations and biomass concentrations. TCS was tested in a lab-scale completely mixed activated sludge batch culture. The model (demonstrated by Liu) was verified with experimental data in completely mixed activated sludge batch test, but was inconsistent with the results from the shaking bottle batch test. The observed growth yield (Yobs) decreased with increasing of the ratio of initial uncoupler concentration to initial biomass concentration (Cu/X0). CONCLUSIONS: We suggest that the uncouplers oCP, DCP, TCS, pNP and DNP can cause a significant decrease in sludge production, the metabolism of which can explain the decline in sludge yield. SIGNIFICANCE AND IMPACT OF THE STUDY: The real strength of chemical uncoupler imposing on biomass should be Cu/X0, not initial uncoupler concentration (Cu) alone. Chemical uncouplers can be used to develop the activated sludge processes for minimizing excess sludge production.  相似文献   

4.
This paper is designed to critically review the recent developments of membrane bio-technologies for sludge reduction and treatment by covering process fundamentals, performances (sludge reduction efficiency, membrane fouling, pollutant removal, etc.) and key operational parameters. The future perspectives of the hybrid membrane processes for sludge reduction and treatment are also discussed. For sludge reduction using membrane bioreactors (MBRs), literature review shows that biological maintenance metabolism, predation on bacteria, and uncoupling metabolism through using oxic-settling-anaerobic (OSA) process are promising ways that can be employed in full-scale applications. Development of control methods for worm proliferation is in great need of, and a good sludge reduction and MBR performance can be expected if worm growth is properly controlled. For lysis-cryptic sludge reduction method, improvement of oxidant dispersion and increase of the interaction with sludge cells can enhance the lysis efficiency. Green uncoupler development might be another research direction for uncoupling metabolism in MBRs. Aerobic hybrid membrane system can perform well for sludge thickening and digestion in small- and medium-sized wastewater treatment plants (WWTPs), and pilot-scale/full-scale applications have been reported. Anaerobic membrane digestion (AMD) process is a very competitive technology for sludge stabilization and digestion. Use of biogas recirculation for fouling control can be a powerful way to decrease the energy requirements for AMD process. Future research efforts should be dedicated to membrane preparation for high biomass applications, process optimization, and pilot-scale/full-scale tracking research in order to push forward the real and wide applications of the hybrid membrane systems for sludge minimization and treatment.  相似文献   

5.
Release of nitrogen and phosphorus into effluent of activated sludge process was reported in the recent researches of sludge reduction induced by oligochaetes. In this study, batch test and radioisotope 32P tracer test were therefore carried out to further investigate nutrients release and phosphorus distribution among supernatant, sludge and worm during predation of oligochaetes on sludge. Results showed that more nutrients release into supernatant occurred in the tests of worms with sterilized sludge than that of worms with activated sludge, and release of nitrogen and phosphorus was few in the tests of worms with activated sludge. Statistical analysis showed that no factor was significantly correlated with phosphorus concentration in the supernatant, but time and worm were only two factors significantly affecting total nitrogen (TN) concentration in the supernatant in the test of worms with activated sludge. Through test of radioisotope 32P tracer, 32P mainly distributed in activated sludge and supernatant, and more release of 32P into the supernatant occurred in the test of sludge with worms. After 24 h, 32P concentration of supernatant in the test of sludge with worms was 9% higher than that in the test of sludge without worms, and 32P concentration of worm increased by 2.7%. Additionally, the release rate of phosphorus into supernatant caused by worm's predation on activated sludge was 0.1211 mgTP/gWorm (wet weight) h.  相似文献   

6.
Chong NM  Wang CH  Ho CH  Hwu CS 《Bioresource technology》2011,102(5):4069-4075
The biomass yield of a continuous flow activated sludge system varied when the system treated influent containing different compositions of biogenic and xenobiotic substrates. Both the biogenic substrate and a test xenobiotic 2,4-dichlorophenoxyacetic acid (2,4-D) were degraded at steady-state activated sludge operations. The true yields, determined from steady-state activated sludge treatment performances, were at the maximum and the minimum when the activated sludge treated the influent of sole biogenic substrate and sole 2,4-D, respectively. The minimum yield was 56% of the maximum. Yield reduction between the maximum and the minimum was proportional to the concentration of 2,4-D in the influent. This trend of yield reduction suited a model that describes the metabolic uncoupling effect of 2,4-D on the sludge's degradation of the substrates. The model function variable was defined as the ratio of 2,4-D to biogenic COD concentrations in the influent.  相似文献   

7.
Many sludge reduction processes have been studied for the minimization of sludge production in biological wastewater treatment. The investigations on most of these processes have monitored the increase of the soluble chemical oxygen demand, the sludge mass reduction, or the decrease of the floc size, but little information has been obtained on cell lysis and the change of the biological cell activity. However, employing any strategy for reducing sludge production may have an impact of microbial community in biological wastewater treatment process. This impact may influence the sludge characteristics and the quality of effluent. The objective of this study concerns the determination of the physiological state of activated sludge microorganisms during a sludge minimization process. A thermal treatment at 80 °C for 5, 20, 40 and 60 min was chosen in this study. Staining bacteria with CTC and SYTOX green was used to evaluate biological cell activity and viability of cell types contained in activated sludge, respectively. The monitoring of cell activity and viability was performed using flow cytometry (FCM) analysis before and after thermal treatment of activated sludge. Results indicated an increase in the number of permeabilized cells and a decrease in the number of active cells, subsequent to the thermal treatment. The study also confirms the potential of FCM to successfully evaluate the physiological heterogeneity of an activated sludge bacterial population. Moreover, the experimentally observed correlations between the FCM results and the organic matter solubilization in activated sludge samples during thermal treatment revealed that the increase in the soluble organic matter concentration was predominantly due to an intracellular material release. Identifying the increase in activated sludge hydrolysis requires a precise knowledge of the involved mechanisms, and this study indicated that the FCM, used in conjunction with specific probes, could be a useful tool.  相似文献   

8.
The tetrazolium salt 3′-{1-[(phenylamino)-carbonyl]-3,4-tetrazolium}-bis (4-methoxy-6-nitro) benzenesulfonic acid hydrate (XTT) was used as a tool for estimating the activity of the electron transport system (ETS) in activated sludge cultivated under steady-state and transient regimes in chemostat culture. Production of formazan by reduction of XTT depended on the initial concentration of the XTT following a saturation law and was proportional to live cell biomass. Addition of cyanide (KCN) to activated sludge gave an initial 1.5-fold increase in XTT reduction, while addition of 3,5-dichlorophenol (3,5-DCP) reduced this value drastically. At steady-state and transient regimes of an activated sludge chemostat, oxygen uptake rate (OUR) and XTT reduction rate were highly correlated and indicated significant variations depending on the growth conditions.  相似文献   

9.
An activated sludge plant was established which was capable of treating an influent containing morpholine. When this compound was deleted from the influent the ability of the activated sludge to degrade morpholine was reduced. This reduction took the form of an increase in the length of the lag period before morpholine degradation was detected in a die-away test from 0 to ca 1000 h. The decreased ability of the activated sludge to degrade morpholine was accounted for by a decline in the specific population of morpholine-degrading microbes. In this activated sludge all morpholine degraders were Mycobacterium spp. In the absence of morpholine in the influent most mycobacteria in the activated sludge retained their morpholine-degrading phenotypes. This is despite the fact that some of these organisms can lose this phenotype when grown under non-selective conditions. These results are discussed in relation to other work on the degradation of morpholine and to problems in the treatment of xenobiotic compounds in industrial effluents.  相似文献   

10.
Effects of Nais elinguis on the performance of an activated sludge plant   总被引:8,自引:0,他引:8  
Ratsak  Christa H. 《Hydrobiologia》2001,463(1-3):217-222
The oligochaete worm Nais elinguis was counted during a year and a half in a full-scale, completely mixed, municipal activated sludge plant consisting of four aeration tanks connected in parallel. Simultaneously the operating variables, i.e. effluent quality, energy costs in kWh for oxygen supply in the aeration tanks, and sludge-disposal were measured. The number of worms varied both seasonally and among the aeration tanks. A major worm bloom resulted in a low sludge volume-index, lower energy consumption for oxygen supply expressed in kWh and, depending on the temperature, less sludge-disposal. The worms had no influence on the effluent quality.  相似文献   

11.
In a previous paper, the first ever application of lytic bacteriophage (virus)-mediated biocontrol of biomass bulking in the activated sludge process using Haliscomenobacter hydrossis as a model filamentous bacterium was demonstrated. In this work we extended the biocontrol application to another predominant filamentous bacterium, Sphaerotilus natans, notoriously known to cause filamentous bulking in wastewater treatment systems. Very similar to previous study, one lytic bacteriophage was isolated from wastewater that could infect S. natans and cause lysis. Significant reduction in sludge volume index and turbidity of the supernatant was observed in batches containing S. natans biomass following addition of lytic phages. Microscopic examination confirmed that the isolated lytic phage can trigger the bacteriolysis of S. natans. This extended finding further strengthens our hypothesis of bacteriophage-based biocontrol of overgrowth of filamentous bacteria and the possibility of phage application in activated sludge processes, the world's widely used wastewater treatment processes.  相似文献   

12.
AIMS: The aim of this investigation was to develop an empirical model for the autotrophic biodegradation of thiocyanate using an activated sludge reactor. METHODS AND RESULTS: The methods used for this purpose included the use of a laboratory scale activated sludge reactor unit using thiocyante feed concentrations from 200 to 550 mg x l(-1). Reactor effluent concentrations of <1 mg x l(-1) thiocyanate were consistently achieved for the entire duration of the investigation at a hydraulic retention time of 8 h, solids (biomass) retention of 18 h and biomass (dry weight) concentrations ranging from 2 to 4 g x l(-1). A biomass specific degradation rate factor was used to relate thiocyanate degradation in the reactor to the prevailing biomass and thiocyanate feed concentrations. A maximum biomass specific degradation rate of 16 mg(-1) x g(-1) x h(-1) (mg thiocyanate consumed per gram biomass per hour) was achieved at a thiocyanate feed concentration of 550 mg x l(-1). The overall yield coefficient was found to be 0.086 (biomass dry weight produced per mass of thiocyanate consumed). CONCLUSION: Using the results generated by this investigation, an empirical model was developed, based on thiocyanate feed concentration and reactor biomass concentration, to calculate the required absolute hydraulic retention time at which a single-stage continuously stirred tank activated sludge reactor could be operated in order to achieve an effluent concentration of <1 mg x l(-1). The use of an empirical model rather than a mechanistic-based kinetic model was proposed due to the low prevailing thiocyanate concentrations in the reactor. SIGNIFICANCE AND IMPACT OF THE STUDY: These results represent the first empirical model, based on a comprehensive data set, that could be used for the design of thiocyanate-degrading activated sludge systems.  相似文献   

13.
A mathematical model is developed to describe the growth of multiple microbial species such as heterotrophs and autotrophs in activated sludge system. Performance of a lab-scale sequencing batch reactor involving storage process is used to evaluate the model. Results show that the model is appropriate for predicting the fate of major model components, i.e., chemical oxygen demand, storage polymers (X STO), volatile suspended solid (VSS), ammonia, and oxygen uptake rate (OUR). The influence of sludge retention time (SRT) on reactor performance is analyzed by model simulation. The biomass components require different time periods from one to four times of SRT to reach steady state. At an SRT of 20 days, the active bacteria (autotrophs and heterotrophs) constitute about 57% of the VSS; the remaining biomass is not active. The model established demonstrates its capacity of simulating the reactor performance and getting insight in autotrophic and heterotrophic growth in complex activated sludge systems.  相似文献   

14.
The response of activated sludge characteristics to the presence of 2,4-dinitrophenol (dNP) in batch cultures was investigated in this study. The sludge yield slightly decreased with an increase in dNP concentration. At 10 mg l(-1), or lower, dNP significantly reduced sludge yield and relative specific growth rates (mu/mu0), but didn't substantially affect its relative specific chemical oxygen demand removal rate (q/q0). Presence of dNP at 1-20 mg l(-1) increased the specific oxygen uptake rate of activated sludge, and slightly changed its hydrophobicity. An analysis on inhibition indicated that the reduction in sludge yield in the presence of dNP was mainly attributed to the significant decreased sludge growth, rather than the reduced substrate degradation.  相似文献   

15.
Odours from wastewater treatment plants are comprised of a mixture of various gases, of which hydrogen sulphide (H2S) is the main constituent. Sulphurous compounds can be degraded by microorganisms commonly found in wastewater. The use of activated sludge (AS) diffusion as a dual-role system, for the treatment of wastewater and for odour control, offers an alternative to traditional sulphurous waste gas treatment processes, such as biofilters, bioscrubbers and biotrickling filters, both in practical terms (use of existing facilities) and economically (minimal capital cost). Activated sludge diffusion avoids the common problems associated with these processes such as media plugging, excess biomass accumulation, gas short-circuiting, and moisture control and maintaining the correct biofilm thickness. The design issues to be considered when using AS diffusion for odour abatement, comprise odourous air pre-treatment,blowers and diffuser types, corrosion protection and increase in odour emission intensity. Nitrification inhibition depends on the composition and acclimation of the biomass, the concentration of H2S and other components of the wastewater. Hydrogen sulphide removal rates of >98% were consistently achieved for loads of 3–34 mg H2S/g MLSS/h, in two case studies, which also showed that sludge type has an impact on the ability of the sludge to degrade H2S. Wastewater process performance measured as five-day biological oxygen demand (BOD5), chemical oxygen demand (COD) and effluent suspended solids removal was not affected by H2S diffusionat 5 ppm. A change in the microorganism population dynamics of anactivated sludge was observed when it was exposed to H2S for aperiod of more than 21 days.  相似文献   

16.
AIMS: The aim of this study is to evaluate the utility of aerobically grown microbial granules for the biological treatment of phenol-containing wastewater. METHODS AND RESULTS: A column-type sequential aerobic sludge blanket reactor was inoculated with activated sludge and fed with phenol as the sole carbon source, at a rate of 1.5 g phenol l-1 d-1. Aerobically grown microbial granules first appeared on day 9 of reactor operation and quickly grew to displace the seed flocs as the dominant form of biomass in the reactor. These granules were compact and regular in appearance, and consisted of bacterial rods and cocci and fungi embedded in an extracellular polymeric matrix. The granules had a mean size of 0.52 mm, a sludge volume index of 40 ml g-1 and a specific oxygen utilization rate of 110 mg oxygen g VSS-1 h-1 (VSS stands for volatile suspended solids). Specific phenol degradation rates increased with phenol concentration from 0 to 500 mg phenol l-1, peaked at 1.4 g phenol g VSS-1 d-1, and declined with further increases in phenol concentration as substrate inhibition effects became important. CONCLUSIONS: Aerobically grown microbial granules were successfully cultivated in a reactor maintained at a loading rate of 1.5 g phenol l-1 d-1. The granules exhibited a high tolerance towards phenol. Significant rates of phenol degradation were attained at phenol concentrations as high as 2 g l-1. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first study to demonstrate the ability of aerobically grown microbial granules to degrade phenol. These granules appear to represent an excellent immobilization strategy for microorganisms to biologically remove phenol and other toxic chemicals in high-strength industrial wastewaters.  相似文献   

17.
Ozonation strategies to reduce sludge production of a seafood industry WWTP   总被引:1,自引:0,他引:1  
In this work, several alternatives related to the application of ozone in different streams of a seafood industry WWTP were evaluated to minimize the production of waste sludge. The WWTP was composed of two coagulation-flocculation units and a biological unit and generated around of 6550 kg/d of sludge. Ozone was applied to sludge coming from flotation units (110 g TSS/L) at doses up to 0.03 g O(3)/g TSS during batch tests, no solids solubilization being observed. Ozone doses ranging from 0.007 to 0.02 g O(3)/g TSS were also applied to the raw wastewater in a bubble column reaching a 6.8% of TSS removal for the highest ozone dose. Finally, the effect of the pre-ozonation (0.05 g O(3)/g TSS) of wastewater coming from the first flotation unit was tested in two activated sludge systems during 70 days. Ozonation caused a reduction of the observed yield coefficient of biomass from 0.14 to 0.07g TSS/g COD(Tremoved) and a slight improvement of COD removal efficiencies. On the basis of the capacity for ozone production available in the industry, a maximum reduction of sludge generated by the WWTP of 7.5% could be expected.  相似文献   

18.
The performance of an activated sludge wastewater treatment process consisting of an aeration tank and a secondary settler has been studied. A tanks-in-series model with backflow was used for mathematical modeling of the activated sludge wastewater treatment process. Non-linear algebraic equations obtained from the material balances of MLSS (mixed liquor suspended solids or activated sludge), BOD (biological oxygen demand) and DO (dissolved oxygen) for the aeration tank and the settler and from the behavior of the settler were solved simultaneously using the modified Newton-Raphson technique. The concentration profiles of MLSS, BOD and DO in the aeration tank were obtained. The simulation results were examined from the viewpoints of mixing in the aeration tank and flow in the secondary settling tank. The relationships between the overall performance of the activated sludge process and the operating and design parameters such as hydraulic residence time, influent BOD, recycle ratio and waste sludge ratio were obtained.  相似文献   

19.
AIMS: To test the potential use of Phanerochaete chrysosporium and other white-rot fungi to detoxify olive mill wastewaters (OMW) in the presence of a complex activated sludge. To combine the aerobic with anaerobic treatment to optimize the conversion of OMW in biogas. METHODS AND RESULTS: A 25-l air lift reactor was used to pretreat OMW by white-rot fungi. Detoxification of the OMW was monitored by size exclusion HPLC analysis, chemical oxygen demand (COD)/biological oxygen demand (BOD(5)) ratio evolution, and bioluminescence toxicity test. Anaerobic treatment of OMW was performed in a 12-l anaerobic filter reactor. Efficiency of the treatment was evaluated by organic matter removal, and biogas production. By comparison with the pretreatment by activated sludge only, the bioaugmentation with Phanerochaete chrysosporium or Trametes versicolor led to high removal of organic matter, decreased the COD/BOD(5) ratio and the toxicity. The subsequent anaerobic digestion of the OMW pretreated with activated sludge-white-rot fungi showed higher biomethanization yields than that pretreated with activated sludge only. Higher loading rates (7 g COD l(-1) day(-1)) were reached without any acidification or inhibition of biomethanization. CONCLUSIONS: The use of white-rot fungi, even in the presence of complex biological consortia to detoxify OMW, proved to be possible and made the anaerobic digestion of OMW for methane production feasible. SIGNIFICANCE AND IMPACT OF THE STUDY: The use of fungi for OMW reuse and energy production could be adapted to industrial applications.  相似文献   

20.
Summary Parallel bench-scale activated sludge systems were operated using air or hydrogen peroxide as oxygen source. The use of H2O2 resulted in a temporary decrease of COD reduction, an increase of the catalase activity of the activated sludge, a depression of the nitrification, and a marked decrease of some filamentous organisms. Enumeration of some microbiologic groups indicated that the counts of enterobacteria, coliforms, staphylococci, and streptococci were lower in the H2O2 unit than in the parallel air unit. Also the use of H2O2 did not induce the selection of bacterial species that are more resistant to H2O2. The increase in catalase activity after H2O2 addition might be the result of a stimulation of catalase synthesis in catalase positive microorganisms.List of Abbreviation COD chemical oxygen demand, mg O2/1 - CODeff chemical oxygen demand of the effluent, mg O2/1 - DO dissolved oxygen, mg O2/1 - MLSS mixed liquor suspended solids, g dry weight/1 - SVI sludge volume index, ml settled sludge per liter/MLSS (ml/g) - F:M sludge loading factor or the Food to Microorganisms ratio, g COD/g MLSS.day  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号